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ABSTRACT: The paper deals with a numerical approach for the problem of earth-
quake interaction among neighboring buildings when unilateral elastonlastic/
elastic contact under second-order geometric and other instabilizing effects
can take place. The method is based on formulating the problem by the finite
element method as an inegualityv one and on solving this by the average-acce-
leration method of time-discretization and nonlinear mathematical programming.
Some results concerning a two-building svstem under P-Delta effects are given

in a numerical example.

1 INTRODUCTION

Earthquake induced prounding between
adjacent buildings has been recogni-
zed -see e.g. Newmark and Rosenblueth
(1971)- as one of the main usual cau-
ses of significant damages in seismi-
cally active reqgions. This holds es-
necially for market-areas of cities,
where the building codes, due to va-
rious socioceconomic reasons, allow
partial or full contact between neigh-
boring buildings (Bertero (1987)).

From mathematical woint of view, the
governing conditions of the relevant
ovroblem are equalities as well as in-
equalities. The latter ones concern on
the one hand the possibility to be an-
peared compressive stresses only (no
tension) on the interface, and on the
other hand the appearence of retire -
ment relative displacements (no vene-
tration) for the same interface points
where unilateral contact can take pla-
ce. So, the problem belongs to so-cal-
led inecquality problems of mechanics,
for which a mathematical study can be
done by the variational ineguality con-
cept - see Panagiotopoulos (1985).

As regards numerical results, some
interesting studies concerning simpli-
fied models of single-degree-of-free-
dom systems have been reported by Wolf
and Skrikerud (1980), Anagostopoulos
(1988), Penelis and Athanassiadou(1989).
These investigations are based on a
varametric trial-and-error approach.

A more realistic numerical treatment
of such inequality problems in earth-
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quake enaineering for multidegree-of-
freedom structural systems has been
already presented by the first author
(A.A.L.) in a series of papers, see
e.g. Liolios (1984,1988,1989,1990,1991).
The purpose of this paper is to deal
with a numerical approach for the abo-
ve outlined dynamic inecuality problem
when some instabilizing effects are ta-
ken into account. These effects concern
here elastorlastic-softening/fracturing
behaviour for unilateral contact and
P-Delta effects. The method is based on
a double discretization, in space by
the finite element method and in time by
the average acceleration method, and on
solving a non-convex linear complemen-
tarity problem in each time-stepo. The
proposed method is applied, finally, to
a civil engineering example and some
conclusions are discussed.

2 METHOD OF ANALYSIS

A system of two only adjacent buildings
(p) and (B) is considered here for sim-
plicity. Certainly, the extension to
systems with more than two buildings is
straightforward.

First, following Liolios (1984), the
system is discretized in space by the
finite element method. Any two associ-
ated nodes ip and ip on the interface
are considered as connected by a uni-
lateral constraint, normal to the in-
terface. The stress r;, positive when
it is compressive, ané the correspon-
ding shortening relative displacement



v; of the i-th unilateral constraint
satisfy the following, in general non-
convex, constitutive relation:

SRi(vi.gi). (1)

r, €
i
is the existing gap at ti-
me t between nodes i, and ip, ¥ 1is
Clarke”s generalized gradient and Rj
is the symbol of aon-convex superpo-
tential - see Panagiotopoulos (1985).
Relation (1) expresses in a general
mathematical way the unilateral fri-
ctionless elastoplastic contact taken
into account hardening/softening, un-
loading/reloading, fracturing etc. be-
haviour. For simplicity, the case of
frictionless contact is studied here.
The frictional case, which is more
complicated, can be investigated in
a wav similar to that of Liolios (1989,
1991) . As known, softening/fracturing
behaviour corresponds to descending
branches inthe diagram of (1), and u-
sually has instabilizing effects to
the numerical procedures and the struc-
tural . resoponse. Moreover, the elasto-
plastic behaviour of unilateral con-
straint permits us to assume that lo-
cal impact phaenomena have no signifi-
cant influence to the global building
response.

Now, for the numerical treatment of
the problem, the rel. (1) is piece-wi-
se linearized in a way similar to that
used by Maier (1971,1973) in elasto -
plasticity. So, introducing the nonne-
gative multipliers wj, rel. (1) is e-
aquivalent to the following linear com-
plementarity conditions:

Here g, (t)

r, = pi(vi-qi+wi)+ciwi, (2a)

Wy >0, T >0, (2b,c)
rw, = 0. (24)

Here c, is the damping coefficient and

P the’stress function for the i-th u-
nilateral constraint. Dots over sym -
bols denote, as usually, time-deriva-
tives.

Further, the incremental global e-
quations of dynamic equilibrium for
the two buildings (A) and (B) due to
a seismic ground displacement history
gg(t) are written in matrix notation:

a * Callp

M, AL, +

+
A (Kpte,) by

=M, X+ Az,

A (3a)
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Mpbup + Cpbup + (Kp+GplAuy =

=—_MBAgg_AE.

Here, as usually, M, C and K denote
the mass, damping and current (tangent)
first-order (linear elastic) stiffness
matrices, respectively. G 1is the sym-
metric constant geometric stiffness
matrix, depending linearly. on preexi-
sting constant stresses. Thus, via
the term Gu alone the geometry chan-
ges affect the equilibrium (second-or-
der geometric effects) -see e.g.Maier
(1971), Corradi and De Donato (1975),
Chen and Lui (1987). wu(t) is the no-
de-displacement vector (relative to
ground) ; A denotes increment; and fi-
nally, r is the vector of interaction
forces between (A) and (B) with ele -
ments satisfying rels. (1)-(2).

Thus the problem consists in compu-
ting the time-dependent set Ups Upy
r, w and g satisfying (1)-(3) “for
given initial conditions and x_(t).

Due to inegquality conditions; the
problem is a nonlinear one, even in
the case of linear structures. To di-
scretize this problem in time, use is
made of the average-acceleration me-
thod, which belongs to Newmark”s fa-
mily of step-by-step direct time in-
tegration methods -see e.g. Weaver and
Johnston (1987). So we substitute in
(3) for every time-step

(3b)

AU = c,Au + a, (4a)

1

Au = Au + b, (4b)

c

2
where a, b known quantities from pre-
vious time-steps and

4/(At2), c, = (5)

2
are method parameters. After the abo-
ve manipulation we arrive eventually
to a linear complementarity problem
-see also Liolios (1988,1989)- of the
form

cy = 2/At

z 2 g’ (6a,b)

zT(pz + d) = 0.

Dz +d < 0,

(6c)

This problem is solved by known algo-
rithmes of nonlinear optimization -
see e.g. Panagiotopoulos (1985) or
Maer (1973). Thus, in each time-step
At is computed which unilateral con-
straints are active and which are not.

The so-obtained results concern the
response of the courled system, where
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Fig. 1. Numerical example

the unilateral contact and the second-
order geometric effects are taken in-
to account. To compare these results
with corresponding ones for the uncou-
pled system, where the interaction ef-
fects are not taken into account and
the structures are designed as beeing
entirely independent {as was usual un-
til recently in most aseismic computa-
tions), the following influence coef-
ficients are introduced:

u u
.100/ Q4

_Qi

(7)

A
i

c
( Qi .
Here 0 and Qc are the absolutely
maximum values, which a response gquan-

tity Q takes during the seismic exci-

tation when the structures are uncou-
pled and coupled, respectively.

3 NUMERICAL EXAMPLE

In the building system of Fig. 1a, the
frame (A) is of reinforced concrete
with elastic modulus Ep =3.4*10’KN/m?
and column sections 40/60 in cm, and
the frame (B) is of steel with Eg =
21*10’kN/m?and columns IPBl 500. Dam-
ping ratio is 5% for (A) and 3% for
(B). Both frames are considered as ha-
ving rigid beams with total vertical
loads ajm g, where m o9 =98.1 KN, g =
9.81 m/ séc? and al—coeff1c1ents as in
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Unilateral contact can take
joint-points i, ip, where
The corresponéing to (2a)
is assumed to be as shown
in Fig. 1b, where AB and BCF are pa-
rabolas of 2-nd and 3-rd degree, re-
spectively. The above simulation of
unilateral contact is certainly a ve-
ry complicated task and can be esti-
mated on the basis of experimental re-
sults. P-Delta effects for the steel
frame (B) are taken into account. The
plane system is subjected to an hori-
zontal earthquake ground displacement

-2t
xg(t) = x_e (8)

Fig. 1a.
place at
i=1,2,3.
function pj

sin(4nt)

with x_ = 10mm and diagram as in Fig.
1c. The®herein presented numerical ap-
proach has been applied to estimate
quantitatively the interaction effects
on the seismic response of frames (A)
and (B).

From the so-obtained results are
shown indicatively in Table 1 only
those concerning the storey-shear-for-
ces of the frames (A) and (B).

Table 1. Influence coefficients (in
%) for the storey shear forces ’
Storey Frame (A) Frame (B)

1 -24.19 +67.42

2 -15.98 +12.54

3 -25.67 +26.41

4 +119.73

5 +46.88

6 +46.05

7 +41.79

8 +44.96

As the table results show, the un-

coupled stress-state of the three-sto-
rey frame (A) is reduced about 16% -
26% due to interaction. On the con-
trary, the uncoupled stress-state of
the eight-storey frame (B) is increa-
sed about 13% - 120%. As was expected,
the most significant increase is for
the 4-th floor of (B). Thus, if the
columns of this floor are designed
without taken into account the sei -
smic interaction effects, then these
columns are overstressed about 120%
more than the designed capacity. This
remarkable result shows the signifi-
cance of computing the interaction in-
fluence on the seismic response of
adjacent buildings.

4 CONCLUSIONS .
The herein presented numerical method

can be used effectively in practical
civil engineering applications, where
a quantitative estimation of the sei-
smic interaction between adjacent bu-
ildings under second-order effects is
required. For this purpose, the rea-
lization on computer of the method se-
ems to be indispensable. This is ob-
tained by using available computer co-
des of the finite element method, the
direct time integration methods and
nonlinear optimization.

As the results of the numerical ex-
ample show, the interaction influence
on the earthouake response of neigh-
boring buildings may be significant.
Therefore the usual aseismic design
and control without taking into acco-
unt such a possible interaction under
second-order effects may be no reali-
stic. Certainly, the sufficient asei-
smic joint among adjacent buildings
seems to be an effective rule for sei-
smically active regions. If this rule
¢an ‘be applicable,and if the simula-
tion of the unilateral contact beha-
viour can be done in a realistic way
(e.g. by experimental results), then
the seismic joint gap can be adjusted
suitably by the herein procedure. So,
a parametric application of the pre-
sented method, having as one parame-
ter the joint gap, can be used effe-
ctively to control the seismic inter-
action effects in a desirable level.
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