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Inelastic spectra for eccentric systems
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ABSTRACT: The torsional inelastic response is a significant research topic since some resisting elements of
asymmetric plan-wise buildings experience larger inelasticity than if they were located in symmetric systems. Then,
the system total strength should be designed by using inelastic spectra provided by the analysis of eccentric models.
In this paper, inelastic spectra are computed by response analysis of a two degree of freedom stiffness eccentric
model. The spectral values are determined by imposing a target maximum ductility among the resisting elements.
For a given total strength two criteria have been considered for designing element yield forces: the first one is based
on assuming equal design levels for all elements while the second one selects the element capacity by using location
dependent design levels. Overstrength factors of the eccentric system with respect to the correspondent symmetric
systemn are evaluated in order to provide a concise measure of effects due to torsional coupling on dynamic inelastic

response.

1 INTRODUCTION

It is well known that asymmetric plan-wise buildings '

undergo translational as well as torsional motions during
seismic excitation. In particular, rotation of decksresults
in non uniform plan distribution of actions such that
some resisting elements experience much larger
deformations than if they were located in a symmetric
system. An updated approach for evaluating torsional
effects requires the analysis of inelastic dynamic
response, since resisting elements are expected to
deform significantly beyond the yield limit under strong
ground motions.

Reduction of peak ductility demand and structural
damage appears to be the main design goal. Two ways
seem convenient for this purpose: the first one reduces
the maximum plastic action by giving the asymmetric
systems a larger total strength compared to that of the
equivalent symmetric systems while defining the
element yield forces with equal design levels.

The second criterion consistsin properly distributing
a fixed total strength. In fact, it has been demonstrated
(De Stefano et al. 1991) that, given the elastic response
and the total capacity, an uniform plan distribution of
plastic actions, with a subsequent reduction of
maximum ductility demand, can be achieved by using
location dependent design levels in defining the element
yield forces. This is seen to be equivalent to selecting
proper values for parameters which globally
characterize the strength plan-wise distribution, such as
the strength eccentricity and the strength radius of
gyration. Adopting such a design procedure leads to a
significant improvement of the inelastic response
compared to that of systems designed with the same total
strength, but equal design levels.

Obviously, the above procedure, which takes into
account the actual inelastic behaviour, can be somehow
difficult to be applied. In fact, even considering
simplified models, the values of inelastic parameters
which optimize dynamic response vary with the elastic
system parameters and the seismic input, even though
arather narrow range where values are included can be
defined (De Stefano et al. 1991). Moreover, giving the
plan-wise strength distribution selected values of
inelastic parameters can be complex as the number of
resisting elements increases.

Therefore, assigning the eccentric system a larger
total strength with respect to an equivalent symmetric
system still appears a suitable design criterion. In light
of this remark, it is of great interest to determine the
overstrength to be supplied in order to achieve a target
value of maximum ductility demand. This evaluation
allows to identify cases for which this procedure can be
used without being prohibitively costly and it can be
performed by computing the inelastic spectra with
imposed ductility for eccentric systems. In the past,
evaluation of inelastic spectra has been carried out for
SDOF systems and the extension to coupled systems
requires that such a procedure is developed with
reference to the element characterized by the maximum
damage or ductility demand, since plastic action is not
uniform in plan.

Asregards the damage index to be considered in the
analysis, itis widely recognized that ability of structures
toresist severe earthquakes manly relies on ductility and
energy dissipation. Thus, a reliable damage index
should account for both aspects in order to provide an
effective measure of structural deterioration. However,
recent studies (Cosenza et al. 1989) have shown that
earthquake type loading histories are usually
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characterized by a single large plastic excursion and
many plastic cyé(les with low ductility demands. In such
cases, the hysteretic energy dissipation is a parameter
less suitable than ductility demand. ) )

In this paper, inelastic dynamic analysis of a simple
two-degree-of-freedom  system allows to evaluate
spectra with imposed ductility, being the resisting
element capacities determined by affecting the peak
elastic forces with equal reduction factors. Then, the
above spectral values are compared to values obtained
for symmetric systems having period equal to the first
period of the coupled system (Mahin and Bruneau
1990). In this way, an overstrength factor to be assumed
is determined as the elastic system parameters vary and
the cases are identified where effects of torsional
response are more significant. Moreover, range of
values are defined in which the overstrength factor is to
be included in order to achieve a targetductility demand.
Finally, the spectral values have been compared to that
obtained from systems designed with selected values of
inelastic parameters.

2 MODEL SPECIFICATION

Inelastic dynamic response of a two-degree-of-freedom
system is examined. The model represents behaviour of
a rigid deck of mass M and mass radius of gyration P,
supported by lateral load resisting elements, located
along x direction as well as y direction. The elements
are considered massless and able to resist forces only in
their plane. The system, which is subjected to
translational ground motion along x direction, is
assumed to be symmetric about the y axis (Figure 1a).

The stiffness centre C; is located at a distance E;
from the mass centre C,, - where the origin of reference
system is placed - which is given by:

ES = Ex yikxi/Kx (1)
while the system torsional stiffness, computed with
respect to Cs, is expressed by:

Ko=3k(y, — Es)' + k% =K.D§ )

where Dy indicates the stiffness radius of gyration.

In equations (1) and (2), k,; and k,; denote the lateral
stiffness of resisting elements oriented along x and y axis
respectively, while X, is the total stiffness along x
direction.

The torsional stiffness arising from elements along
¥ axis is represented by introducing a rotational spring
of stiffness k,, which is related to the. global torsional
stiffness K, by parameter y (Figure 15):

k¢=2,-k,jxl~2='Y‘Ke (3)

Let &5 represent the dimensionless stiffness
eccentricity E¢/L, dg the dimensionless stiffness radius
Dg/L and p the dimensionless mass radius P/L. Then,
the system elastic response is seen to depend on the
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Figure 1. Idealized one-storey system

uncoupled translational period T, the normalized
stiffness eccentricity eg/p, the ratio dg/p and the damping
ratio v.

In addition to the above parameters, the inelastic
response also depends on force-displacement
relationship and plan-wise distribution of resisting
elements. An elastic-perfectly plastic behaviour is
assumed for resisting elements .along the seismic
excitation direction, whereas the rotational spring is
supposed to elastically behave. The latter hypothesis is
justified by the fact that the y direction elements undergo
small deformations because of the symmetry about y
axis.

Denoting with F, the system total capacity and with
F,; the yield force of the ith element, the strength
distribution in plan can be characterized by the strength
eccentricity E (Sadek and Tso 1989), which defines the
point C where the resultant of the forces F is applied,
and the strength radius Dy, computed with respect to Cp.
g‘hc correspondent dimensionless parameters are given

y:

&_ Ziniyi
L~ LF,

D 'in i/L— ?-
dp =—L£='\ ’ z"_(yF_ﬂ ®)

ép =

@



3 SYSTEM DESIGN CRITERIA

The total system capacity F, can be determined by
reducing with a factor « the maximum elastic force F¢
sustained by the system subjected to an assigned ground
motion. The force F; can be derived either from elastic

dynamic analysis of an equivalent SDOF system -
characterized by a period equal to the first period T; of
the coupled system - or from elastic response of the
actual coupled system. Clearly, the above procedures
lead to different values of F,, even because in the second

case the force F; is provided by the sum of peak elastic

forces Fy; acting on resisting elements, which are

attained at different times. According to the second
procedure, the total system strength is provided by:

F; F;

Fx=zini=E=ZiE (6)

while further specifications are needed in order to
univocally define element strengths F,, whose
distribution in plan strongly influences element ductlity
demands and structural damage.

A design criterion adopting equal design levels -

=0, - for all elements results in an automatic definition
of inelastic parameters e and dg provided by equations
(4) and (5).

Alternatively, for a given global reduction factor c,
the element capacities F; can be determined by using
different local design levels «;, depending on element
location, which corresponds to varying parameters e,
and d,. In particular, if the considered model presents
only three elements along seismic excitation direction,
equations (4), (5) and (6) univocally provide the yield
forces. In this case, design is performed with reference
to inelastic system properties and one can search for the
strength plan-wise distribution, defined in terms of e,
and dj, that makes the plastic action uniform in plan.

4 INFLUENCE OF STRENGTH DISTRIBUTION
PARAMETERS

In a recent study (De Stefano et al. 1991), the response
of systems with the same elastic properties and total
strength, but designed with several values of the
inelastic parameters e; and di, has been evaluated
through the most widely used damage indices. In fact,
evaluation of plastic action on a structural element can
be carried out by introduction of indices that measure
both maximum plastic deformation and energy
dissipation (Mahin and Bertero 1981). Since analyses
have shown similar variations of all damage indices with
strength eccentricity and strength radius, comparison
can be carried out with reference to any of them.

As an example, in Figure 2 the Park-Ang damage
index D; of resisting elements (Park and Ang 1985),
multiplied by the available monotonic ductility W, is
presented for systems with T\=0.40 sec, p=0.35,
es=-0.10 and dg=0.40 and subjected to an accelerogram
from Friuli earthquake (Tolmezzo EW - 6/5/1976).

For the stiff side element 1, the damage index, shows
an increasing behaviour as the strength centre C moves
towards the flexible side element 3. An opposite trend
characterizes the curves D; for the element 3, even if
variation is included into a closer range, while values of
D, are almost independent of e, The increase of
parameter dp, results in reduction of damage index for
the element 1 and 3 whereas the values for element 2
grow. This behaviour is easily explained by the
mechanical meaning of dj.

An inelastic SDOF with period equal to 0.4 sec and
design level equal to 4, excited by the same ground
motion, shows Dyp,, equal to 8. Then, the lateral
torsional coupling results in increment of damage index,
as well as ductility demand, on the stiff-side element
and reduction on the flexible-side element, while D, on
the central element is slightly larger.

Therefore, in systems sized so that the strength centre
Cr coincides with the mass centre Cy, (€z=0), the stiff
side element is subjected to larger plastic excursions
whereas the flexible side element experiences larger
plasticity as C, moves towards C; (Goel and Chopra
1991). Examination of these results demonstrates that
an uniform plan-wise distribution of ductility demands,
along with a significant reduction of maximum damage
among resisting elements, can be achieved provided that
proper values of the inelastic parameters are selected.

Moreover, attainment of such a condition is mainly
influenced by the strength eccentricity ez, whereas the
strength radius dy plays a less significant role.
Obviously, as the elastic system characteristics vary, the
values of ez which correspond to unifermly distributed
ductility demands are different.

Inaprevious paper (De Stefano et al. 1991), systems
with periods T, varying from 0.3 to 0.8 sec have been
considered and the best inelastic response has been seen
to occur as the strength eccentricity is included between
0 and ey, being sometimes close to eg/2, while a value
of dj slightly larger or equal to that of a system with
constant design levels appears to be suitable. The
improvement of torsional response deriving from the
above design criterion is remarkable, especially for
torsionally stiff systems whose strength eccentricity is
very different from ey/2 as they are sized with equal
design levels.
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Figure 2. Park-Ang damage index Dgsl, of systems
with T',=0.4 sec, es=-0.10 and dg/p=1.143
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5 CONSTRUCTION OF INELASTIC SPECTRA

Given the elastic system parameters, the linear response
is evaluated and the peak element forces Fy; are
determined. Subsequently, both models with equal
design levels and models with selected values of
inchsthd parameters can be designed as already

As the global design leve] varies with fixed values
of the elastic parameters, the ductility demand ; for
each element has been caiculated such that the
maximum ductility demand among resisting element
L. Can be defined. Therefore, the global design level
o is computed which corresponds to the assigned value

1L OT ; s Thus, the spectral inelastic value Sg for the
eccentric system is given by:

Ss=—2"'p“' ™
OLMg

The above quantity represents the dimensionless
total strength needed by the asymmetric system in order
to get the target ductility L.

With a similar procedure, which is simplified by the
fact that all resisting elements present equal ductility
demands, the spectral values S§; for equivalent
symmetric systems are obtained. Obviously, in addition
to the imposed ductility 1 and the damping ratio v,
parameter Sg depends on the period and the seismic
input. Thus, a factor O, representing the overstrength
needed by the coupled System with respect to the
symmetric system with period equal to T;, can be defined
as a function of the elastic parameters:

Se(T, €5, ds)
Ox(T\, e5,dg) = ——— 8
F P ucs S) SS(TI) ( )

having fixed p at constant value.

Such a parameter provides a concise measure of
effects due to structural asymmetry on dynamic inelastic
response, at least in terms of ductility demands.

6 ANALYZED SYSTEMS

The analyzed systems present three resisting elements
oriented along the direction of seismic excitation, since
it has been shown that a system with few elements can
represent with a good approximation response of
systems having a larger number of elements (Goel and
Chopra 1990). Moreover, a significant torsional
stiffness arises from perpendicular elements, since
parameter y has been fixed at a value of 0.40. All
systems are characterized by p equal to 0.35, which
corresponds to a ratio L/B=].459. Values of the first
period T; have been considered varying between 0.1 and
2.0 sec, while two values are chosen for the stiffness
eccentricity: es=-0.10 and e;=-0,20. The stiffness radius
ds is assigned values of 0.35 and 0.40, such that
behaviour of torsionally-flexible and torsionally-stiff
systems is analyzed.

Three values are chosen for the imposed ductility -
W=3,4,5 - since it should be noticed that an available
ductility of 4 is usually believed to be representative of
well designed structures against earthquake type
loading. The inelastic spectra have been plotted
assurning damping ratio v to be equal to 0.05 for both
modes of vibration. As regards seismic input, a record
from Friuli earthquake (Tolmezzo EW - 6/5/1976)
has been used. The accelerogram presents duration of
36.40 sec, maximum acceleration of 0.312 g and an
acceleration spectrum which amplifies over a short
range of periods about 0.6 sec.

7 INELASTIC SPECTRA AND OVERSTRENGTH
FACTORS

A first analysis has been carried out in order to evaluate
effect of torsional coupling on systems designed with
equal reduction factors ¢;. In Figures 3 and 4 the inelastic
spectra for torsionally-stiff systems with eg=-0.10
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Figure 3. Inelastic spectra for systems with dg/p=1.143
and e=-0.10
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Figure 4. Inelastic spectra for systems with dg/p=1.143
and e;=-0.20
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Figure 5. Inelastic spectra for symmetric systems

and eg=-0.20 are plotted, while Figure 5 contains
inelastic spectra for the correspondent symmetric
systems.

From comparison of figures 3 and 4 with figure 5
asymmetric systems are seen to require a larger strength
- compared to that needed by a symmetric system - in
order to get an imposed ductility on the element with
the greater inelastic excursion. A concise examination
of results can be clearly performed by calculating the
above defined overstrength Op. This factor is
represented in Figures 6 through 9 as the elastic system
parameters vary and it not only allows to relate
asymmetric systems to symmetric systems but also to
compare asymmetric systems having different stiffness
eccentricities and stiffness radii.

Curves of O frequently show an irregular trend with
period T,; however, all laterally stiff models are
characterized by factors Oy very close to unity. The
required overstrength is nearly independent of target
ductility for short period and long period systems
whereas U strongly influences O for medium period
systems. In the latter cases a clear trend cannot be
recognized.
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Figure 6. Overstrength factors for systems with
dg/p=1.143 and eg=-0.10

0

0 — p=3
F s -
..... i=5
N
0 0.5 1.0 15 T [sec)

Figure 7. Overstrength factors for systems with
dg/p=1.143 and ¢=-0.20
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Figure 8. Overstrength factors for systems with
dg/p=1.00 and e,=-0.10
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Figure 9. Overstrength factors for systems with
dy/p=1.00 and e=-0.20
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Values of Op reduce as the torsional stiffness
increases, while the overstrength generally grows for
systems with larger eccentricity e;. In particular, curves
of models with g=-0.10 present a rather flat tendency
with variation of 7; as d/p=1.143 and values seldom
are larger than 1.5. As torsional stiffness decreases
(Figure 8) systems generally demand values up to 2.0
for dg/p=1.0, with a larger dependence on period.

Systems having stiffness eccentricity equal to -0.20
are severely influenced by the first period 7, and they
need to be designed with total strength which is usually
almost twice as much as symmetric systems require.

The above results evidence that a design criterion
based on adopting equal design levels for all resisting
elements does not allow an effective use of available
total strength. Hence, adoption of location dependent
design levels represents a more reliable procedure since
ductility demands of eccentric structures can be reduced
up to values that characterize response of symmetric
systems by adopting the same total strength.

This remark is confirmed by inelastic spectra drawn
in Figure 10 where curves for torsionally stiff systems,
whose elements have equal o;, are compared to curves
obtained by defining plan-wise strength distribution
with selected values of inelastic parameters. In
particular, according to observations already outlined in
discussing Figure 2, d; has been assumed equal to the
value that characterizes models with o=, while ey has
been fixed at value of eg/2. Design performed by setting
inelastic parameters d and €, in such a way is seen to
remarkably improve inelastic response, primarily as the
period T, is shorter than 0.6 sec. In fact, in this range of
periods a fixed value of ductility demand is achieved by
giving the asymmetric Systems a total strength virtually
equivalent to that needed by symmetric structures. The
improvement to be obtained with this design
methodology can be extended to longer periods
provided that the selected values of dj; and e, are
somehow made dependent on elastic systems
parameters. A comparable enhancement of inelastic
response is not evidenced for torsionally flexible
structures since the criterion adopting constant o; leads
to systems having di and e, very close to selected ones.
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Figure 10. Inelastic spectra for systems with

dg/p=1.143, e;=-0.10 and sized by two design criteria
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8 CONCLUSIONS

Analysis of torsional inelastic response of a two degree
of freedom stiffness eccentric model has been
performed in order to construct inelastic spectra for
asymmetric systems. The extension of the usual
procedure developed for SDOF systems has been
carried out by setting the target value of ductility
demand on the element that experiences the largest
plastic excursions. The comparison with inelastic
spectra evaluated for symmetric systems having period
equal to the first period of the coupled systems has
allowed to determine the overstrength required by the
asymmetric structures. Results obtained using two
different design criteria - the first one adopting equal
reduction factors for all resisting elements and the
second one based on location dependent reduction
factors - has confirmed conclusions already drawn by
the Authors. In fact, for short and medium periods, the
second criterion, which results in defining a proper
plan-wise strength distribution, leads to design
asymmetric systems demanding a total yield capacity
very close to that needed by symmetric systems in order
to get a target ductility demand. Further studies are
needed for widening this methodology since values of
inelastic parameters that achieve a significant
improvement of torsional response are seen to depend
on elastic system parameters.
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