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Seismic response of multiblock structures with unilateral constraints

A.Ercolano
Faculry of Engineering, University of Cassino, Italy

ABSTRACT: this work, presents a method for the dynamic analysis of structures consisting of superimposed
blocks. The hypotheses made are those of rigid blocks and monolateral Winkler-type deformable joints; an elastic
joint made of separate infinitesimal springs placed side-by-side and non resistant to tensile stress is assumed to be
between two adjacent blocks. By means of the total lagrangian approach the equation of motion, in the actual
configuration, is obtained so that the coupling between the orizontal and the vertical equilibrium equations and the
p-0 effect of the vertical forces are correctly taken into account. In order to best optimize the numerical procedures,
an implicit integration method derived from the central difference method modified by a first order approximation
method has been developed. Further, a time domain analysis for an existing column with a known horizontal

acceleration assumed at the base, is reported.

1 INTRODUCTION

In the present work, a method for the dynamic analysis
of structures consisting of superimposed blocks is
presented. The hypotheses made are those of rigid
blocks and monolateral Winkler-type deformable
joints, so that the present discrete element model can
be regarded as a particular rigid bodies-spring model
by Kawai, (1978), generally abbreviated as RBSM.

In numerical analysis of the non linear behaviour of
such block structures it is necessary to take into
account the elastic deformation of each block and the
separation-contact between adjacent blocks. Two basic
approaches can be found in the literature: the Housner
one deals with rigid blocks only, and entirely neglects
elastic deformation; the second, derived from
continuurn mechanics, combines the finite element
method with contact techniques such as the gap
element method (Stadter and Weiss (1979)), the
penalty method (Chaudhary and Bathe (1986)), or the
lagrangian multiplier method (Hallquist et ... (1985)).
In general, the latter approach, especially when the
incremental formulation is used, is numerically
unfavorable because of the excessive number of
contact interfaces. On the other hand, the Housner
approach is computationally quite simpler but binding
assumptions have to be made in order to get a solution,
and no information, about the stress and strain fields,
can be obtained.

The method that simulates superimposed structures
herein presented, assumes the contact interface
between the blocks to be a Winkler-type monolateral
bed. In other words an elastic joint made of separated
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infinitesimal springs placed side by side and non
resistant to tensile stresses is assumed to be between
two blocks. Obviously the spring constants represent
the elastic property of the material of the two adjacent
blocks. In the present discretization the springs play
two different roles. They reproduce block elasticity
and, at the same time, deal with contact-separation
conditions. This approach is very similar to the RBS
model first described by Kawai (1978) and, to some
extent, recalls the method proposed by Blasi & Spinelli
(1985), for superimposed blocks. In the following
sections, using the total lagrangian approach, the
incremental formulation of the equation of motion is
obtained. Furthermore, a particular integration method
is presented and some numerical examples showing the
dynamic response of a column to seismic excitations is
reported.

2 THE METHOD

As previously showed, contact between the blocks is
ensured by joints made of infinitesimal springs, placed
side by side incapable of resisting traction and each
indipendent from one another. Further, the joints are
considered to be rigid to shear deformation, (this
ipothesis can be easily removed, see Ercolano
Santorelli (1991)), so_that an assembly of n
superimposed blocks has 2n degrees of freedom. As
unknowns, the horizontal displacements of the sections
at the top of every single block and the vertical
displacements of every baricenter were chosen. For a
better understanding it is convenient to first write the



equilibrium equations in the initial undeformed
configuration..
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The generic horizontal component of the absolute
displacement of the baricenter vgj , can be written as

follows:

h: - h:
V8 = Vp +T_ILiVi+ -I_-I*;Viu (1)

where vy is the horizontal displacement of the above
mentioned base. The generic rotation 6; is

6; =(vi - visd / Hi @

using matrix notation we obtain:
Vg=Vp+Bv =-HlCv 3)

where vy, is the vector collecting the base displacement,
H is the diagonal matrix of the block heights and B and

C are matrices whose non-zero elements assume the
following form:

BG)=h/H BGHDER/H
C@i)=1 CG,i+l)=-1 ()

M4

m;w, " A
YV “rlél I

mVg

fPl o]}

1

~SU

\éﬁy

fig.2

3980

Let us now consider the generic rotation equilibrium
equation around the baricentre of the i-th joint referred
to all the overlying blocks:

imjvgj(hj‘f i Hk)-ilxjéj—MFO (5)

j=1 k=j+1 j=1

The system of the n type (5) equations can be
written:

DMpv-TIP-m=0 6)

where Mp and Iy are the diagonal matrices of
respectively, the masses and the rotational inertias; m
is the vector of the bending moments.while D and T
are low triangular matrices whose generic elements are
unitary for T and assume the physical significance of
distance between the i-th joint and the j-th block
baricentre for D. Substituting (3) into (6) we get:

(DMpB + T LHICV =m - DM, (7)

Let us now examine the vertical equilibrium
equation of all the blocks lying over the ith joint:

i

2 -mg¥y + px+ Nij=0 (8)
k=1
in matrix form:
MW = pg +n 9)
where:
i
Mrj=mj :j<i;pai=), px; ni=Nj (10)
k=1

Observing the system of the equation (7) and (9) it
is evident that m and n must be functions of both the
relative displacements A6j and Awj. For linear springs
the following hold

NFJ ko[A6; y + AWdA M;--f ko[40iy + AvliydA (11)
Ari Ar

where Ay is the reacting drea and kyj is the spring
constant. Equation (7) and (9) with positions:

fv =m- DMwb

= -1
M =DM, B+TLHIC (=75

(12)

can be convenientely written as follows:

Mu =f (13)



where

ut =(v,w)
£ (f.f) (14)

If (13) is wntten in the configuration characterized
by the displacements u (6) becomes

[ M, o]
M{o My

[D+Dy) Mo V- TI9 +Ey[p -Mp#]-m=0  (15)

where the non zero elements of Dy and Ev are the
following:

i-1

Dwij=AWi ), Awg; By j=vgi+ Vi 1jSi  (16)
k=j

(15), bearing (3) in mind, can be written as follows:

[(D+DYMpB +T LH ¢ v - E, Mpw =

17
(D+DyMpVp, +Ey p+m (17)
The vertical equilibrium equations become
Sy MrVg - MW + pg +n =0 (18)

where the elements of the diagonal matrix Sy are
defined as follows:

Svii {6; + 654)/ 2 (19)

It is worthwile to remember that the shear vector s
can be obtained by

S§=- M‘lvg (20)
Substituting (3) in (18) we get:
Mrw-S,MrBV = n+pg+ Sy M,  (21)

(17) and (21) can be written in the system form:

[M+AMJu= f+Afy (22)
where:
_[DwMbB -EyMp ] % -DwMu, -Ev p 23
AM, [-vaT B 0 )] S,Mrw, @3)
Obviously:
limAMy =0  lim Af,=0
u—-0 * u-0 " (24)

(22) can be integrated using any standard integration
method. In this case, although we have a variation in
both the mass and stiffness matrices, the most part of
this variation lies in the second one because of the
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highly non linear constitutive relations. This does not
suggest using an explicit integration method which
needs matrix factorization at each step, but rather the
central difference method, modified in order to avoid
mass matrix factorization. Using time discretization

[M+AMJ (0, 4 2+ u e (F+ARAS  (25)

[M +AMJ Uy p =[M + AMJ (2u¢-u, Mf + AfJAt2 (26)
we finally get an equation of this kind:
[M+AMJu,, 4= by @7)
Premultiplyng (27) by M-! we obtain:
[T+ M1AM] uy, 5 = M-Iby (28)

(28) is a typical structural reanalysis problem. It can
be effectively solved using first order approximations
or binomial series approximations, (se¢ Phansalkar
(1974) and Kirsch and Taye (1988)). First order
approximation, in the Gauss-Seidel formulation is
employed in the following.

Decomposing the matrix M-!AM, into other three
matrices; the lower triangular, the upper triangular and
the diagonal

M1lAM,=A=L+D+U
with: o @)
Lij=Aj :j<i,Di=A , Uj=4A5 :j>i

we obtain from (28),the following recursion:
I+L+D0u*l, = -Ud, 3+ M'b (30)

It can be easily shown how a necessary and
sufficient condition for (30) to be convergent is

lim[(I+L+I)'lljk=0 (31)

k3o

(31) holds if the spectral radius of I+L+D)U is
less than unity. In our case, because of the first order
displacements ipothesys, this condition is, by far,
ensured.

3 NUMERICAL EXAMPLE

Some results, were obtained analysing a three
block column The column is 1407 cm. high and has a
square section of 156 x 156 cm.. These dimensions
were taken from the " Colonna di Foca " an existing
column of the Imperial Forum in Rome. The Winkler
coefficients were assumed to be equal to 533 kg/cmd.
and the total weight was estimated in 81000 kg.. A step



by step analysis ( the time step assumed was:
At=10"%sec.), was carried out in order to investigate
the structural response. Two harmonic base
accelerations with amplitude of 0.05g and 0.1g
respectively were considered. Each analysis was
carried out assuming a different frequency in the range
0.25-10 hz. and lasted 20 seconds. The maximum
displacements at the top of each block are shown in
figure 3.

1000
1004
104
‘l-
4727
0%
0,011
frequency (Hz)
0,001 A Ll L) T Ll A L4 L] T L}
0123456789101
fig. 3

It is worthwile to notice that the maximum
displacements , with g= 0.05 are reached at 2 hz..
while in the other case for frequencies below the 2 hz.
the displacements are esponentially increasing.

4 CONCLUSIONS

The approach presented in the paper shows
some interesting aspects. As said before, it is
computationally less expensive than the others derived
from FEM there is no discontinuity in the displacement
derivatives and it is still possible to obtain some
information on the stress field at the contact area, that
the Housner approach.completely neglets.

Furthermore the monolateral bed can, to some
extent, simulate the deformation of the two bodies in
contact. Lastly, the numerical procedure, as shown in
the example, can be easily applied to existing
structures.
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