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Sliding response spectrum for the design of nuclear polar cranes

H.Noé & P.Labbé

EDF. Engincering and Construction Division, Basic Design Department, Villeurbanne, France

ABSTRACT : This paper deals with the seismic behaviour of sliding structures such as cranes. In industrial
facilities which have experimented strong earthquakes, this kind of equipment has demonstrated a rather good
behaviour, whatever the amplitude of the ground motion was.

In the present design practice of these equipments, sliding effects are not considered. Results obtained with
classical elastic analysis are consequently overestimated and some difficulties may arise when trying to meet basic

requirements for seismic loadings.

The aim of the study presented in this paper is to show that, considering the dynamic characteristics of the
structure, a simplified model may be defined to estimate the seismic response and to develop a design method

analoguous to the classical response spectrum analysis.

1 INTRODUCTION

In nuclear power plants large-size overhead
traveling cranes, such as the reactor polar crane, are
used to transfer heavy loads. Often installed on top of
buildings, the crane has then to be designed for strong
seismic loads.

In the classical design practice, using the elastic
response spectrum method, some difficulties may arise
when trying to meet basic requirements, due to
overconservative results.

Unlike other equipments anchored to the
buildings, the crane is able to slide on its supports
(runway rail) when seismic forces reach the yield
friction forces. The first consequence of this is a
substantial reduction of accelerations transmitted to the
crane.

Different works such as those done by Mostaghel
and Tanbakuchi (1983) or Constantinou and alii (1984)
in a seismic isolation purpose have shown that taking
account of sliding effect was very interesting to reduce
design seismic loads, even if the adverse consequence
of sliding is an increase of differential displacement
between the equipment and the supporting structure.

The aim of this paper is to present the main results
of a parametric study and to propose a sliding spectrum
for the design of nuclear cranes.

2 PROBLEM DEFINITION
2.1 Sliding oscillator model

The system, as shown in Figure 1, represents the
structural model used in this study. It is composed of a

primary structure (i.e. the building) and a secondary
structure (i.e. the sliding equipment).
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Figure 1 : Model of the sliding oscillator.

The primary structure is modelled by a linear
damped spring-mass oscillator characteristics of which
are chosen so that dynamics properties, natural

frequency f and damping ratio &y, be scaled on typical
values of nuclear building first eigenmode. By this
way, it is possible to take account for the well-known
filtering effect of supporting structures. In this model,
the value of mass mp is considered as sufficiently
higher than the one of the sliding equipment in order to
eliminate coupling effect between the primary and the
secondary structures.

The secondary structure, i.e. the sliding equipment
itself, is modelled by a 2 DOF system. It represents the
behaviour of the crane for a seismic motion in a
horizontal direction perpendicular to the beams of the
crane In that direction one may consider that the crane
may freely slide.



In this mode!l, masses mj; and mp are connected
through a linear spring-damper system accounting for
the properties of the first eigenmode of actual cranes.

Such a simplified model of a sliding equipment is
justified by the fact that nuclear traveling cranes usually
present a low-frequency first mode typically between 2
and 3 Hz. For this mode, the participation factor is
high (between 60 and 90 % of the total mass of the
structure).

2.2 Dynamic equations of motion

To derive dynamic equations in slip and non-slip
mode, different assumptions are made.

i) Static and dynamic friction coefficients are
assumed to be equal,

ii) No coupling effect between the sliding equipment
and the building,

iii) Effects of vertical seismic motion and effects of
horizontal seismic motion on support reactions are not
considered.

If T and N are respectively the tangential and
normal forces acting on mass mj, the non-sliding
condition for a Coulomb's law of friction writes :

T<uN 1

where N =mg =(m1+mp)g

In eq. 1, l represents the equivalent coefficient of
friction. It is often different from the physical value of
the friction coefficient at the contact point between the
wheels and the rail.It has to take account for the
effective number of sliding wheels and for the eventual
presence of a rated load.

Classicaly, the expression of the tangential force T
may be written as follows :

T =mX(t) + mp¥V (1) @

where X and Y are the absolute displacements of
masses mj and my respectively.

During non-slip mode, mass my is sticking to its
support. So,

YO =2Z@ ©)

Finally, the expression of the non-slip condition may
be derived and reads,

fock + 7] < g Q)

In this relation, x(t) is the displacement of mass m;
relatively to mass my, and o is defined as :

mj
mj + my

If the condition (4) is verified, the dynamic
equilibrium is provided by :

K(t) + 2E0@0x(t) + ix(t) = -Z(1) )

where wq and & represent the dynamic properties of
the fixed-base oscillator.

=k ——C
% m; and & 2wom

As soon as the tangential force T reaches the limit
value of friction, the mass my begins to slip on its
support and is only subjected to this force. Then,

M= uN
or

ax(t) +¥(v) = -ug sign(Y-2) ©

The dynamic equilibrium (5) still holds if, in the right
part of this equation, the absolute displacement Z of
mass my, is replaced by the absolute displacement Y of
mass my. Then,

(1) + 2E000x(t) + wdx(r) = ¥ (1) )
Mixing eq.(6) and (7) leads to,

K() + 284005%(1) + 0fx() = -ﬁ—iﬂign(Y Z) (8)

In the above equation, wg and §g respectively
represent the pulsation and damping ratio of the sliding
oscillator. They are defined as follows :

2
B SR <
m%—l-a ’ gg—ﬂ-a

2.3 Resolution

Considering the non-linearity due to the friction
interface, the time-history response of the sliding
structure is obtained by means of a step-by-step
algorithm developed for this purpose. During each
phase of the motion (slip or non-slip), the dynamic
equation of motion is such that the second part of the
equation is a linear function of time and Westermo and
Udwadia (1983) have proposed formal solutions that
we have used in this study. Validations have been
made by comparisons with analytical solutions in the
case of harmonic excitation.
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Figure 2 : ground motion accelerogram
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Figure 3 : Example of sliding spectra

3 SLIDING SPECTRUM
3.1 Definition

As previously said, it is possible to obtain the
response X(t) (relative displacement of mass mj) to a
given earthquake motion A(t) and for a sliding
oscillator characterized by the following parameters :

- the pulsation @y of the fixed-base oscillator ;
- the associated damping ratio &g ;

- the mass ratio @ =mj/m ;

- the equivalent friction coefficient p.

From the calculated response, only the maximum
value Xmax is retained. The same procedure is then
applied to a wide range of frequencies and for various
values of the abovementioned parameters.

This set of curves is named the displacement response
spectrum of sliding oscillators subjected to A(t).

As for the classical linear oscillator, the sliding
response spectrum may be defined in terms of its
absolute pseudo-acceleration A such that,

Figure 4 : Adimensional sliding spectrum

Ag = 0f Xmax 10)
In Figure 3 such a typical sliding spectrum is
represented. In this case, the ground motion is an
accelerogram which response spectrum fits the NRC
design spectrum. This ground motion is filtered by the
building characterized by its natural frequency and its
damping ratio, 3 Hz and 5% respectively.The level of
excitation of mass my, is scaled at 0.5 g. Parameters of
the sliding oscillator are : mass ratio o = 0.6,

damping ratio &g = 4% and y = 0.06, 0.1 and 0.17.

3.2 Adimensional sliding spectrum

It can be shown that the sliding spectrum may be
displayed in terms of adimensional coordinates and
that the sliding spectrum may be transformed into a
Adimensional Sliding Spectrum (ASS) in which the
coordinates are defined as follows.

The x-axis is defined by the ratio of the natural circular
frequency wq of the fixed-base oscillator and the
natural pulsation w; of the supporting structure. Then,

Vv = 0/t
The y-axis is defined as the ratio 6 between the
maximum acceleration Ag of mass m; and pg.So,
0=Ag/ug

The general shape of the ASS is represented in

Figure 4.
It has be shown by Westermo and Udwadia

(1983) that the response of the oscillator was

controlled by the adimensional parameter 7| defined as
the ratio between the maximum acceleration Ap = Zmax
of the supporting mass myp, and pig.

As indicated in Figure 4, the ASS exhibits an
asymptotical value when v goes to infinity. Because of
non-linear behaviour, it is difficult to speak of a cut-
off frequency over which no amplification appears. In
this case, the pseudo cut-off frequency has to be
regarded as the one over which the acceleration is
quasi constant, even with a small amplification.
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Figure 4 : influence of the adimensional level 1

1t has been demonstrated by Betbeder-Matibet &alii
(1992) that a closed-form expression of the pseudo
asymptotical value was :

Otimit =3 - 2n&; when v —o0

1mn

3.3 Sensivity analysis

Here we present the main results of a sensivity
analysis performed upon numerical simulations. As
shown in Figure 4, the interest is focused on the
variations of the two significant points of the ASS :

P(Vp,ep) and C(Vc,ec).

The values of the different paramieters are defined
as follows.
- the time-history ground motion is A(t) represented in
Figure 2 ;
- &p varies between 4 and 7% ;
- the adimensional level of excitation 1 varies between
1and 10;
- the mass ratio o varies between 0.1 and 0.9 ;
- the natural pulsation wy, of the supporting structure

varies between 2x and 12x.
The choice of these bound values has been determined
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to cover the practical domain in which the sliding
spectrum is expected to be used.

3.3.1 Influence of the adimensional level of
excitation 1

In Figures 5.a to 5.d are represented variation
curves of the coordinates of the two significant points
P and C for three values of the mass ratio o : 0.3, 0.5
and 0.8.

From these results, it can be seen that :
- in a general manner, for 1 sufficiently high ( >4) the
variations of the coordinates of P and C become almost
linear ;
- About the variations of 6 (Figure 5.d), it can be seen
that, for high levels of excitation, 6. tends to an
asymptotical value close to the theoritical estimation
provided by formula (11).
As an example, for &g and o equal to 5.5% and 0.3
respectively, eq. 11 provides a value of 2.6 close to
the simulation results.
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Figure 6 : influence of the damping ratio &

3.3.2 Influence of the damping ratio &g

In Figure 6 are represented the sliding spectra
calculated for 4, 5, 6 and 7% of damping. The
influence of the damping ratio &g of the fixed-base
oscillator may be summarized as follows :

- the general shape ot the sliding spectrum is not

modified when &g varies, i.e. principal and secondary
resonant peaks are maintained ;

- the pseudo-acceleration varies as the ratio 1/NEy with
good correlation ;

- for higher frequencies, the acceleration is still
damping ratio dependant and comfirm the fact that, in
this case, the cut-off frequency notion does not hold
anymore.

3.3.3 Influence of the pulsation

As shown in Figure 7, the general shape of the
ASS is practically unchanged when @y varies between

2% and 12x. This confirms that the sliding spectrum
can be presented in an adimensional form along x-
axis.

4 APPLICATION 1O THE DESIGN OF
NUCLEAR CRANES

From the parametric study which results have been
presented, a specific sliding spectrum can be derived
for the design of sliding equipment such as overhead
cranes.

For this purpose, some simplifications have been
introduced in order to provide an easy-to-use curve for
designers. Three steps have been defined to obtain this
design spectrum.

i) From the ASS presented in Figure 4, coordinates
of points P and C are calibrated for specific conditions
(site, buildings, friction interface and equipment). The
values of the coordinates of P and C are obtained by
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Figure 7 : Influence of the pulsation

using the results of the parametric study presented in
Figures 5.a to 5.d.

i) In the second step, the sensivity of both
frequential parameters Vp and V¢ to the variations of 1]

and « are interpreted in terms of spectral broadening.
Considering that for structures such as overhead

cranes, typical values of a lie in the range 0.6-0.8 by
comparison with the effective modal mass ratio of the

first mode, the ranges of variation of vp and V¢ can be
derived. This leads to the Adimensional Design Sliding
Spectrum (ADSS) such as the one presented in Figure
8. This last simplification tends to limit the control
parameters to Op and 6. and to account for
uncertainties involved in the ground motion
representation.

iiiy The last step consists in applying site and friction

interface conditions to finally obtain the design sliding

spectrum in physical coordinates by means of the

following transformations :
v*fs—>f and O*pug—>Ag

It is important to note the the resulting design sliding

spectrum is derived for a specific value of the model

friction coefficient L. This means that for any other

value of W, the same procedure has to be followed
again.

In the practical design of polar cranes, designers
have to pay particular attention to the influence of the
rated load. One possible way is to modify the friction
coefficient as follows :

, W,
= Y
p=p(l+ Wo ) (12)
where W and W; represent the dead weight of the
crane and the rated load respectively.

As in the classical response method, the
sliding spectrum as so defined may be used as the
seismic input in the direction where the sliding is
permitted.



A particular attention has to be made for the
choice of limit conditions at support points (sliding
and non-sliding wheels). The validity of the results
largely depends on it.

Ao-nys

Figure 8 : Adimensional Design Sliding Spectrum

5 CONCLUSIONS

In this paper, a simple oscillator model has been
used to analyse the behaviour of a sliding structure
submitted to a seismic ground motion filtered by a
building.

The main feature of this model is that it enables to
introduce the flexibility of the sliding structure, such
as a polar crane, which increases the reduction of
accelerations transmitted to the crane.

From the results presented in this paper, main
conclusions are as follows.

i) The response of a sliding oscillator may be derived
in an adimensional form (ASS). It only depends on
the adimensional level of excitation, the mass ratio and
the damping ratio of the fixed-base system.

i) For specific conditions (e.g. polar cranes), it i
proposed a design sliding spectrum (ADSS) to be
used in place of the classical elastic response

spectrum.

iif) To take account for the rated load, a possible way
is to define an equivalent friction coefficient.

Nevertheless, comparisons with actual sliding
structures have to be made to assess the validity of this
approach and to verify the existence of sufficient
margins.
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