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Wave dispersion in the discrete analysis and proposal of optimal mass modeling
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ABSTRACT: The discrete analysis methods are frequently used for the study of the structure and soil. However,
the assumption of the displacement interpolation function makes the waves dispersive, which means the numerical
dispersion. The wave dispersion induced by the discretization depends on the mass modeling. One dimensional pe-
riodic structure is adopted as an analysis model and the dynamic transfer matrix method is applied. A wave solution
and a finite element solution are used for the transfer matrix. The phase and group velocities in the structure are
explicitly represented. These values are compared among the continuum modeling and the discretization modeling in
which several consistent mass ratios are adopted. The optimal consistent mass ratio,which makes the wave velocity
of the discrete model same as that of the continuum model, is newly developed here. The validity of this mass
modeling technique is presented by examining the frequency response function.

1. INTRODUCTION

Beam-like structures consist of a sequence of identical
segments which are connected to each other. Such
structures, which are called periodic structures, are fre-
quently found both in high-rise buildings on earth and
large space structures (LSS's) in space. Then, the dy-
namic properties of periodic structures is a fundamental
research theme in structural dynamics.

On earth, disturbances due to traffic loads such as
train and mobile become important in the design of fa-
cilities enclosing precision machines or buildings near
station. In space, the impact loads such as an artificial
debris are critical ones in the design of LSS's. Since
these forces may have a wide band of frequencies, it is
necessary to study wave propagation in periodic, beam-
like structure at high frequencies.

This paper examines the effect of periodically spaced
masses on propagating waves, the validity of the finite
elements for the analysis in high frequency range, and
the new approach of mass modeling. A simple mathe-
matical model of the structure, composed of a continu-
ous rod with periodically spaced lumped masses, is
used. This model can represent super-high-rise build-
ings since the floors behave like lJumped masses and the
inter-story aseismic elements behave like shear beams.
Also, the beam-like trusses in space structures com-
posed of flexible pipes and rigid joints can be consid-
ered by the periodic model. Therefore, this fundamen-
tal study of wave propagation in one-dimensional peri-
odic structures may be useful in understanding both the
earthquake response of super-high-rise buildings and
the dynamic response of LSS's.

Since the work by Brillouin, many studies on peri-

odic structures have been presented. Periodic structures
have many interesting features. They have pass and
stop frequency bands, they act as wave guides that
propagate many kinds of waves. There are two analy-
sis approaches for periodic structures. One approach is
based on wave-propagation theory (Mead) and the other
is based on transfer-matrix methods (Lin, Yong et al.).
The former uses a series expansion on the wave num-
ber, and its application tends to be limited to periodic
structures with infinite length. The latter uses a transfer
matrix which is determined from the fundamental re-
peating element of the structure.

In this paper, the wave propagation characteristics of
arod with periodically spaced masses is examined over
a wide frequency range. The wave solution as well as
finite element solution are applied to the transfer matrix
method. Explicit expressions are developed for the
pass and stop bands, the phase and group velocities,
and an equivalent damping. These results give clear
physical insight into the wave propagation and dynamic
characteristics of the structure.

In order to grasp the effect of the discretization, wave
propagation in a discrete model is compared with that of
continuous model. The discrete model consists of
massless springs and discrete or consistent masses. By
examining the effect of mass modeling, it is clarified
that the discrete solution becomes dispersive and this
numerical dispersion depends on the mass modeling.
Then, by matching the discrete and continuous results,
an optimal discrete model is developed. This optimal
mass model drastically improves the discrete solution.
Many mass modeling techniques have been proposed
up to now (Goudreau, Hughes, Melosh et al.) while the
study on the wave propagation seems not to be exist.
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2. TRANSFER-MATRIX METHOD OF
CONTINUOUS MODEL

Consider the one-dimensional periodic structure com-
posed of a continuum body with n+1 equally spaced
lumped masses, as shown in Fig. 1. Denote the mass
of each lumped mass by m, the distance between
masses by /, and the elastic modulus, section area and
mass density of the continuum by G, A and p. A pre-
scribed displacement is applied to the left boundary.
The fundamental structural element of this problem is
a continuum body of length / attached to lumped
masses of mass m/2 at both ends. The dynamic stiff-
ness matrix S is obtained by using the wave solution of
the one-dimensional continuum:
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where the following quantities are introduced:
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Here, k; is the static spring constant, ¢ is the mass ratio
of the lumped mass to the continuum, § is a nondimen-
sional frequency and V is the body wave velocity.
The transfer matrix T is derived directly from S
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The transfer matrix gives the relationship between the
state vectors of node i and node i +1 as follows
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Here, i and /i represent the displacement and force at
node i. The eigenproblem of the transfer matrix is

A0

O =
0, [ D ‘Dz] ®

Td=0DA A:!:

where the eigenvalues A and eigenvectors @ yield
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Figure 1. Figure of analysis.

An important feature of the eigenvalues of the transfer
matrix is that they are reciprocals of each other, i.e., 4;
42 = 1. For the case of no material damping, the eigen-
values are real valued when the expression in the radical
in Eg. 6 is positive, and the eigenvalues form a complex
conjugate pair when this expression is negative. For
consistency, we assign mode numbers such that 11,I<1.
Then, 1) corresponds to a propagating wave and iy
corresponds to a reflecting wave. Since the eigenvalues
are reciprocals, we can denote ;=4 and 1=1/A.

From Eg. 5, the n-th power of the transfer matrix is
given by

Tr=dA" & )

Combining Eqgs. 4 and 7 yields the global equation of
the periodic structure

AR

One important property of Eq. 8 is that when A2=1/1>
1, the matrix A" may suffer numerical instability when n
becomes large. To avoid this instability, we introduce
generalized state vectors (Yong etal.) as

[uifiy=¢'[§,' T};T )
Substituting this relationship into Eq. 8 yields
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Then, Eq. 10 yields four equations from the boundary

conditions. When a displacement U is prescribed at
node 0, and node n is free, the equations are
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Equations 11 can be solved to obtain the state values at
nodes 0 and n. The results are
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These expressions avoid numerical instability, since
they do not contain the potentally large term 1™,

(13)

3. PHASE AND GROUP VELOCITIES, AND
EQUIVALENT DAMPING

Equation 10 shows that the eigenvalues of the transfer
matrix correspond to the amplification factors of the
propagating waves in the fundamental element. The
eigenvalues given by eq. 6 are either both real or com-
plex valued. When the eigenvalues are complex, their
absolute values are both unity and the wave propagates
with a phase delay without decay. On the other hand, if
the eigenvalues are real, the wave attenuates.

The condition for which the eigenvalues are complex
is examined next. Consider the expression in the radi-
cal in Eq. 6. The eigenvalues are complex when this
expression is negative. Let B; and 8, denote the fre-
quencies where this expression is zero. The closed-
form expressions for these frequencies are

sin f1 =0, m&:ﬂgz_ (14)
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Then, the eigenvalues are complex when

Bi=jr<f<fp<(+l)m forj=0,1,2,--- (15)

and become real for all other frequencies. Complex 4
indicates waves propagating without decay and real 1
indicates decaying waves. The frequency ranges which
correspond to complex 4 are called pass bands and all
other frequency ranges are called stop bands.

Next, the velocities of the propagating waves are ex-
amined. The phase velocity is given in terms of the

phase angle of the eigenvalue:
Vv,
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The corresponding group velocity is obtained from the
derivative of the phase angle:
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These velocities are defined only in the pass band. This
means that waves propagate only for frequencies in
pass bands and that their phase and group velocities de-
pend on the frequency and the mass ratio.

Finally, the attenuation of waves is examined. To
make an analogy with damped vibrations of an oscilla-
tor, an equivalent damping ratio is used. In a structure,
a wave decays as it propagates from one end of a seg-

ment to the next by the value I4l. Therefore, an equiva-
Ient damping ratio A, is obtained

he= élogh# (18)
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This result implies that wave attenuation occurs only in
the stop bands. The equivalent damping depends on the
frequency and increases with the mass ratio, . This is
physically explained by the fact that the added masses
cause reflections which attenuates wave through the
structure. When a = 0, there are no lumped masses,
the equivalent damping is zero, and no wave attenuation
occurs.

Figure 2 illustrates the main points of this section.
Plots are shown for the phase and group velocities and
the equivalent damping. In the pass bands, the phase
and group velocities show how the lumped masses
cause frequency dependence or dispersion. For non-
Zer10 ¢, the waves propagate with velocities less than

that of the body wave. The phase and group velocities
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Figure 2. Phase and group velocities and equivalent
damping of continuous model.
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are less than the body wave velocity by a factor of
1 /¥T+¢ at the beginning of the first pass band. At the
beginning of all other pass bands, the phase velocity is
equal to the body wave velocity and the group velocity
is equal to zero. Within each pass band, the phase ve-
locities decrease as the frequency increases. Both the
group and phase velocites become slower for increas-
ing mass ratios. In the stop bands, waves do not prop-
agate, and a decaying effect becomes important. The
equivalent damping increases with the mass ratio.

4. WAVE PROPAGATION OF DISCRETE MODEL

This section analyzes a discrete model of the periodic
structure. In the discrete analysis such as finite element
method, a structure is modeled by stiffness and mass
matrices. If consistent and discrete mass modelings are
combined, the dynamic stiffness matrix of the funda-
mental structural element becomes

B 2
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2 3 6

\ (19)
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Here, 6 is the mass ratio of the consistent mass to the
total mass of the continuum. For the discrete mass
model, 8 = 0. The analysis of the consistent mass

model requires re-evaluation of the eigenvalue problem.
The cormresponding transfer matrix is obtained as:
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The eigenvalues of this transfer matrix are
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Using the definitions in Eqgs. 16 and 17, the phase
and group velocities are determined from Eg. 21
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Equations 22 and 23 show that wave propagates in the
frequency range
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Finally, the equivalent damping ratio is given

he= Lcosh! $4301+e-6)
B 6+p%0

These results show that the wave velocities of the dis-
crete model vary with g, a and @ that is, the frequency,
consistent mass ratio and mass ratio of lumped mass.

Figure 3 shows the phase velocity, group velocity
and equivalent damping ratio for a homogeneous con-
tinuum (a = 0), modeled with various consistent mass
ratios. This case corresponds to a problem such as a
response of a homogeneous soil subjected to a vertically
incident S wave. Unlike the exact continuum model,
where the phase and group velocities are always equal
to the body wave velocity, the discrete and consistent
mass models show dispersion. In the discrete mass
model (8 = 0), the wave velocities decrease as the fre-
quency increases and waves propagate only in the fre-
quency range S<2. In the consistent mass model (8
=1), the wave velocities first increase, then decrease as
the frequency increases, and waves propagate for a fre-
quency range that is wider than that of the discrete mass
model (B<2Y3). If the average of the discrete and con-
sistent masses are used (6=1/2), the wave velocities
are nearly equal to the body wave velocity in the fre-
quency range < 1. Therefore, the consistent mass ratio
of 1/2, which has been recommended by Hughes and
Goudreau, seems to be a good choice for discrete mod-
els in case of the homogeneous continuum. Figure 4
shows the corresponding results for a continuum with
added masses (a=1). This case corresponds to prob-
lems such as a super-high-rise building and a beam-like
trusses in space structure. Unlike the homogeneous
continuum, the consistent mass model shows a good
correspondence with the continuum model. Only one
pass band exists for the discrete model while the pass
and stop bands emerges repeatedly for the continuum
model.

To improve the accuracy of the discrete model, the
consistent mass ratio 6,,, which satisfies that eq. 22
equals to eq. 16 is evaluated below.

ﬁ2-2+2cosﬂ -af s'mﬂ+a/32
ﬂ2(2-200s B+ apf sin ﬁ)

‘When the above consistent mass ratio is used, the pass
band is defined by

af B
2 ey

(25)

(26)
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O<B<m @7

This condition is identical to the second equation of eq.
14. At zero frequencies, eq.27 becomes

lim @, = -2&+1_
g0 7 2(a+1) 28)

In case of the homogeneous continuum model (a = 0),
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Figure 3. Phase velocity, Group velocity and
Equivalent damping of discrete model (o= 0.0)

this consistent mass ratio is equal to 1/2 at zero fre-
quencies and increase with frequency, as shown in Fig.
5. However, when the lumped masses are added (a >
0), the optimal consistent mass ratio becomes large.
Also, the optimal consistent mass ratio increases with
the nondimensional frequency B, and the frequency
range of pass band decreases when a lumped mass ratio
a increases. This implies that the consistent mass ratio
should be selected with respect to the structural property
and the frequency.

This section concludes by comparing the frequency
response function for different models of the periodic
structure. Results are computed for displacement re-
sponse at the right end of the structure resulting from a
unit harmonic displacement prescribed at the left end,
where n =10, material damping ratio £ =0.01 and a =0
and 1. Figure 6 compares the results of the continuous
model with those of the discrete models with consistent
mass ratios 6 =0, 1/2, and 1. The comparison shows
that the discrete model with 6= 1/2 gives results which
are closest to those of the continuous model when the
homogeneous continuum (e = 0) is considered. The re-
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Figure 4. Phase velocity, Group velocity and
Equivalent damping of discrete model (o= 1.0)
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Figure 5. Optimal consistent mass ratios.

sults of the discrete mass model gives response peaks at
lower frequencies compared with those of the contin-
uous model, and the peaks of the consistent mass model
are at higher frequencies. On the other hand, the dis-
crete model with 6= 1 gives the best result for the con-
tinuum with added masses (@ = 1). These can be ex-
pected from the behavior of the phase and group veloci-
ties, shown in Fig. 4. Figure 7 compares the results
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using the optimal consistent mass ratios defined by Eq.
26 with those of the continuum model. The results are
more accurate in wide frequency range than those of the
discrete models shown in Fig. 6. The pass band is also
extended when using optimal consistent mass ratio.

6. CONCLUDING REMARKS

Wave propagation in a one-dimensional periodic struc-
ture is studied using the wave solution of the continuum
and the transfer-matrix method. Wave propagation in a
discrete model is also examined. The main results and
conclusions of the study are:

1. The eigenvalues of the transfer matrix are used to
determine explicit expressions for the phase and group
wave velocities. Furthermore, to quantify wave atten-
uation, an equivalent damping ratio is developed.

2. The existence of lumped masses in the periodic
structure results in stop and pass bands and a dispersion
of the wave velocities.

3. For frequencies in the first pass band, the continu-
ous model can be approximated by a discrete model.
The discrete model shows a numerical dispersion which
depends on mass modeling. When a homogeneous
continuum such as a soil is considered, an average of
discrete and consistent mass shows good results while a
consistent mass model is adequate when the lumped
masses exist as in a case of building.

4. By fitting the discrete results to the continuous re-
sults, an optimal mass model is proposed. The result-
ing consistent mass ratios yield the most accurate dis-
crete model.
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