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Scattering of the anelastic response to simulated ground motions

S.Sorace & G.Terenzi

Institute of Energetics, Faculty of Engineering, Perugia, Italy

ABSTRACT: Three series of ten accelerograms were generated from the elastic normalized
spectrum of the G.N.D.T. Italian Recommendations using the SIMQKE stationary-modulated
procedure. The accelerograms were applied to seven different elasto-plastic S.D.O.F.
systems. The structural responses were statistically evaluated, showing a considerable
scattering. The scattering was attributed to various “dissymmetries" recognized in the
signal time-histories. Some techniques were proposed and applied to analyse the dissym-
metries. The main acceleration-impulse time-duration was individuated as the major cause
determining the behaviour of the most "anomalous" accelerograms. At the same time, a
statistical evaluation of the spectral composition of the simulated signals was perform-

.,ed, showing a limited influence on the overall

1 INTRODUCTION

The dynamic analysis of non linear systems
requires a probabilistic definition of
seismic excitation. Thus the use of
artificially generated ground motions is
necessary. Various techniques were defined
to this purpose. Every procedure is
characterized. by a different stochastic
definition of the intensity, frequency
containt and time-duration properties of the
generated signals.

A largely applied technique is the "“uni-
formly modulated” process which restricts
the non-stationarity to the only intensity
parameter. The generation of ground motion
is performed starting from a given power
spectrum density function S(w) of a
stationary Gaussian stochastic process, and
modulating the amplitude with an envelope
time-dependent function. This method, for
example, is applied by the well-known
automatic program SIMQKE (Gasparini &
Vanmarcke 1976). Such a simulation procedure
gives satisfactory resutts for linear-
elastic analyses but can cause considerable
scattering for non-linear applications
(Carli 1987, Cerami & Ricciardi 1989). At
the same time the great simplicity of the
above technique mekes it competitive
compared to "non-uniformly modulated"
processes (Kanai 1957, Priestley 1967,
Kiureghian & Crempien 1989). These last
methods take into account non-stationarity
also in terms of frequency, according to the
real nature of seismic ground motions.

The most general non-uniformly modulated
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non-linear response.

models are the "evolutionary” ones presented
by Priestley, where the acceleration time-
history is defined by:

+0

x(t) = | tmew, tre' ¥ty dzewy 1

where: d2(w) is a complex random process and
m(w,t) is a deterministic function,
representing the power spectral density
time-modulation in a given frequency band dw
centered on W, S(w)dw.

Experimental research (Pinto & Pegon 1991)
showed that the non-stationary character-
istics of ground motion can influence the
non-ltinear response of structures. The
values of the mean and of the maximum dis-
placements due to non-stationary inputs are
generally greater than the values obtained
with stationary inputs generated on the
basis of the same linear elastic response
spectrum. In an uniformly modulated process,
where the modulating function is only time
dependent, the acceleration time-history is
given by:

had
x(t) = mCt) | e'™% dz(w) (2.3)
-
or
X(ty = m(t)s(t) (2.b)

where: s(t) is a stationary gaussian zero



mean process.

The aim of this research is a critical
evaluation of the uniformly modulated
methods for the analysis of mechanically
non-linear structures, in view of design
applications. In particular, three series of
ten accelerograms generated with the SIMGKE
procedure were considered. The response of
various non-linear S.D.0.F. oscillators was
statistically evaluated, showing
considerable scattering. This phenomenon was
studied taking into account the specific
characteristics of every signal. Some
techniques of investigation were defined to
this purpose, mainly to show possible
"anomalies® of the single accelerograms
compared to the main values of the response
distribution.

2 THE ANALYSIS OF THE STRUCTURAL RESPONSE TO
THE SIMULATED ACCELEROGRAMS

The three series of ten artificial acceler-
ograms were generated according with the
three different intensity envelope functions
presented by the SIMQKE procedure: exponent-
jal, compound and trapezoidal.

The ground-type #s2" elastic-normalized
response spectrum of the Italian "G.N.D.T."
Recommendation (1984) was adopted as
reference spectrum for the signal generation
(Figure 1).

RESFONSE SPECTRUM Re(T)
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Figure 1. G.N.D.T. Italian Recommendation
elastic normalized spectra

The thirty accelerograms were applied to
seven different elastic $.D.0.F. systems,
characterised by the following vibration
periods: T = 0.4, 0.7, 1.0, 1.3, 1.6, 1.9,
2.2 s. Seven elasto-plastic oscillators were
then considered, defined by a bilinear
force-displacement kinematic hardening
constitutive law. The yield threshold "f "
of every system was fixed at the 20X of the
maximum force, "fem", globally registered
for the correspondent elastic oscillator.
The responses, in terms of maximum

displacements, of both elastic and elasto-
plastic oscillators were statistically
evaluated. Normal gaussian displacement
probability functions for the three
different serfes were defined. Figures
2.a,b, 3.a,b, 4.3,b, show the resulting
curves for the elasto-plastic filters,
respectively for the exponential (Figure
2.a,b), the compound (Figure 3.a,b) and the
trapezoidal (Figure 4.a,b) envelope
families.
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Figure 2. Displacement response probability
functions for the exponential family.

The figures show a trend to a progressive
flattening of the curves for increasing
values of the oscillator periods. This trend
is exactly followed for the three lowest
periods (Figures 2.8, 3.a, 4.a). Some
discrepancies can be observed for the
remaining four periods (mainly for T = 1.6
s, in the trapezoidal series, Figure 4.b)

On the whole, however, the probability
curves are quite smooth for all the oscil-
lators and the envelope families.

A considerable scattering is found in the
elasto-plastic responses, as witnessed by
the mean square root values, S _, of the
considered distributions, reported in Table
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Figure 3. Displacement response probability Figure 4. Elasto-plastic displacement

functions for the compound family.

1. Here are
root values
probability
the ratio R =’

also presented the mean square
of the elastic displacement
functions, Se, and the vatues of
Sp/Se.

This last is an Yndex that permits to
quantify the increase of the response
scattering which takes place passing from
the elastic to the elasto-plastic systems.
fFor example, in Figure 5 are represented, in
superposition, the displacement probability
curves for the elastic and elasto-plastic
osciltators with T = 0.4 s.

The difference between the narrow shape of
the elastic case and the smooth shape of the
elasto-plastic one is evident. The values of
S and of ratio R demonstrate the grest
statistical sensitivity of the non linear
structural response to artificial input
signals generated with frequency-stationary
procedures, as the SIMAKE one.

This aspect must be carefully considered
for design purposes. In particular, from a
technical point of view, a considerably
large number of such generated artificial
input accelerograms must be used to correct-
ly estimate the anelastic structural
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response probability functions for the
trapezoidal family.

input accelerograms must be used to correct-
ly estimate the anelastic structural
behaviour (Decanini & Parducci 1981). From a
theoretical point of view the major interest
is connected to the analysis of the causes
determining the “anomaltous®™ behaviour of
specific signals.

The main cause pointed out (Sorace & Te-
renzi) was constituted by the presence of
considerable dissymmetries between the
positive and negative parts of the signal
time-histories. The dissymmetries concern,
in particular, the distribution of the
amplitude peaks and the time-extension of
the acceleration impulses.

Some investigation criteria were proposed
(Sorace & Terenzi) to quantify the level of
dissymmetries. The most efficacious seems
to be the one using the “positive" and
“negative" power spectral density functions,
6*(w), 6 (W), defined as following:

' Cuy = Lim C1/T) RY(t) dt 3

T=o o



6 (W) = Lim (1/T) R7(t) dt (4) 0.08

T
(—) Elastic Oscillator

(==--) Elasto—~Plastic Oscillator

A direct evaluation of the different
"weight" of the positive and negative parts
of the time-histories, as a function of
frequency, can be obtained by comparing the
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Figure 5. Displacement response probability
0.7 8.49 32.40 3.8 functions for the elastic and the elasto-
plastic oscillators with T = 0.4 s.

1.0 11.70 48.00 4.1
1.3 26.20 67.70 2.6 diagrams of the two functions.
Figure 6 shows, for example, the G*(u) anc
1.6 11.26 82.70 7.3 G (w) functions calculated for the most
anomalous accelerogram of the exponential
1.9 26.50 94.40 3.6 femily. The interval considered for the
circular frequency w contains the three
2.2 10.55 84.80 8.0 dominant components of the signal spectral

composition.
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Figure 6. Positive and negative power

0.4 1.36 19.30 14.2 spectral density functions for the most
anomalous accelerogram of the exponential
0.7 8.00 36.10 4.5 family.
1.0 11.18 51.00 4.6
The separation between the two curves
1.3 14.68 54 .80 3.7 quantifies the dissymmetries existing in the
signal. Accelerograms giving responses near-
1.6 24 .90 32.50 1.3 er to the distribution mean values are
characterized by a much closer correspond-
1.9 19.23 99.60 5.2 ence between the two partial functions.
The analysis of the simulated signals by
2.2 22.64 145.40 6.4 the above techniques directly concerns the

acceleration time-history form. On the other
hand, the frequency containt is not ex-

Table 1. Mean square root values of the plicitly taken into account.
elastic and elasto-plastic displacement Thus, to complete the investigation about
distributions the elasto-plastic response, a statistical
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analysis of the signal spectral composition
was performed.

3 STATISTICAL EVALUATION OF THE~ACCELEROGRAM
FREQUENCY CONTAINT

Figures 7, 8, 9 show the frequency
probability curves pertinent to the four
signal dominant frequencies, respectively,
for the exponential, compound and trapezoid-
al families.

As a general result, quite large gaussian
distributions are registered for the second,
third and fourth frequencies. This is a
consequence of the specific generation
procedure followed by SIMQKE program.

Considerable differencies between the
three series can be found by directly
comparing the fundamental frequency curves
(Figure 10). The of randomness in the
frequency generation process is maximum for
the exponential series and minimum for the
trapezoidal one. Furthermore, a "trans-
reading of the various curves shows
a larger spectral containt for the exponent-
jal-shaped time-histories. In fact, this
particular envelope function tend to
simulate the second group-earthquake ground
motions of the well-known classification
proposed by Newmark and Roseblueth (1971).
This group is characterized by a substantial
equipartition of energy over a ®ide range of
frequencies.

An interesting aspect of the fundamental
frequency probability curves is represented
by the position of the distribution mean
values (Figure 10). These are very close for
the three envelope series, ranging from
about 0.9 Hz to about 1.0 Hz.

correspond to the descending branch of the
So,
due to

level

versal™"

These values

reference elastic response spectrum.
displacement amplification effects,
must not be

in correspondence

resonance-like phenomena,
expected, on the average,
with the maximum spectral ordinates.
statistical study of non-linear structural
problems this can lead to non-conservative
results.

Besides, the above frequency
not contain the first vibration frequency
values typical of "standard" reinforced
concrete and steel buildings. The statistic-
al study of the generated signals shows that
if a limited group of them is adopted in the
analysis, it is possible to obtain only low
frequency-dominated input time-histories.

A greater control on the frequency
generation process would permit to obtain
signals with dominant frequencies of real
interest for the specific structural problem
under study.

No any correlation between the anomalous
response to a signal and resonance effects
was found, as a general result of the
crossed statistical analysis between the

In a
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Figure 7. Frequency probability functions

for the accelerograms of the exponential
family.
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Figure 9. Frequency probability functions
for the accelerograms of the trapezoidal
family.

elasto-plastic response and the signal
spectral containt.
This confirms the lLeading role of the

time-domain characteristics of the simulated

accelerograms on the non-linear structural
response definition.
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G (w) = Lim C1/7) R (t) dt 4)

Te®

A direct evaluation of the different
"weight" of the positive and negntiws parts
of the time-histories, as a function of
frequency, can be obtained by comparing the

Oscillator Se Sp R=Sp/Se
EXPONENTIAL FAMILY
0.4 5.17 24.30 4.7
0.7 8.49 32.40 3.8
1.0 11.70 48.00 4.1
1.3 26.20 67.70 2.6
1.6 11.26 82.70 7.3
1.9 26.50 94.40 3.6
2.2 10.55 84.80 8.0
COMPOUND FAMILY
0.4 4.21 26.40 6.3
0.7 7.74 28.60 3.7
1.0 11.74 38.30 3.3
1.3 18.82 79.40 4.2
1.6 30.16 68.30 2.3
1.9 35.90 67.60 1.9
2.2 32.90 63.80 2.0
TRAPEZOIDAL FAMILY
0.4 1.36 19.30 14.2
0.7 8.00 36.10 4.5
1.0 11.18 51.00 4.6
1.3 14.68 56.80 3.7
1.6 24.90 32.50 1.3
1.9 19.23 99.60 5.2
2.2 22.64 145.40 6.4

Table 1. Mean square root values of the
elastic and elasto-plastic displacement
distributions
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(~=~) Elasto~Plastic Oscillator
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Figure 5. Displacement response probability
functions for the elastic and the elasto-
plastic oscillators with T = 0.4 s.

diagrams of the two functions.

Figure 6 shows, for example, the G’(u) and
6 (w) functions calculated for the most
anomalous accelerogram of the exponential
family. The interval considered for the
circular frequency W contains the three
dominant components of the signal spectral
composition.
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Figure 6. Positive and negative power
spectral density functions for the most
anomalous accelerogram of the exponential
family.

The separation between the two curves
quantifies the dissymmetries existing in the
signal. Accelerograms giving responses near-
er to the distribution mean values are
characterized by a much closer correspond-
ence between the two partial functions.

The analysis of the simulated signals by
the above techniques directly concerns the
acceleration time-history form. On the other
hand, the frequency containt is not ex-
plicitly taken into account.

Thus, to complete the investigation about
the elasto-plastic response, a statistical
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analysis of the signal spectral composition
was performed.

3 STATISTICAL EVALUATION OF THE.ACCELEROGRAM
FREQUENCY CONTAINT

Figures 7, 8, 9 show the frequency
probability curves pertinent to the four
signal dominant frequencies, respectively,
for the exponential, compound and trapezoid-
al families.

As a general result, quite large gaussian
distributions are registered for the second,
third and fourth frequencies. This is a
consequence of the specific generation
procedure followed by SIMQKE program.

Considerable differencies between the
three series can be found by directly
comparing the fundamental frequency curves
(Figure 10). The level of randomness in the
frequency generation process is maximum for
the exponential series and minimum for the
trapezoidal one. Furthermore, a "trans-
versal" reading of the various curves shows
a larger spectral containt for the exponent-
jal-shaped time-histories. In fact, this
particular envelope function tend to
simulate the second group-earthquake ground
motions of the well-known classification
proposed by Newmark and Roseblueth (1971).
This group is characterized by a substantial
equipartition of energy over a wide range of
frequencies.

An interesting aspect of the fundamental
frequency probability curves is represented
by the position of the distribution mean
values (Figure 10). These are very close for
the three envelope series, ranging from
about 0.9 Hz to about 1.0 Hz. These values
correspond to the descending branch of the
reference elastic response spectrum. So,
displacement amplification effects, due to
resonance-like phenomena, must not be
expected, on the average, in correspondence
with the maximum spectral ordinates. In a
statistical study of non-linear structural
problems this can lead to non-conservative
results.

Besides, the above frequency interval does
not contain the first vibration frequency
values typical of "standard" reinforced
concrete and steel buildings. The statistic-
al study of the generated signals shows that
if a limited group of them is adopted in the
analysis, it is possible to obtain only low
frequency-dominated input time-histories.

A greater control on the frequency
generation process would permit to obtain
signals with dominant frequencies of real
interest for the specific structural problem
under study.

No any correlation between the anomalous
response to a signal and resonance effects
was found, as a general result of the
crossed statistical analysis between the
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Figure 7. Frequency probability functions
for the accelerograms of the exponential
family.
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Figure 8. Frequency probability functions
for the accelerograms of the compound
family.
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for the accelerograms of the trapezoidal

family.

elasto-plastic response and the signal
spectral containt.

This confirms the leading role of the
time-domain characteristics of the simulated
accelerograms on the non-linear structural
response definition.
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Figure 10. Comparisons between the first
frequency probability functions for the
accelerograms of the three families.

4. CONCLUSIONS

The investigation criterias defined in a
previous work to study the dyssimmetries of
simulated accelerograms permitted to point
out the acceleration-impulse time-duration
8s the most influencing element on the
structural response.

This was verified also performing a cross-
ed statistical analysis between the
displacement response of the considered
elasto~plastic S.0.0.F. systems and the
signal spectral containt. In fact, as &
general result, the anomalous structural
response to a8 single signal cannot be at-
tributed to resonance-like effects.

The frequency composition statistical
analysis also put in evidence the particular
position of the first frequency-distribution
mean values. These are placed in correspond-
ence with the descending branch of the
reference elastic rekponse spectrum. As a
consequence, non-conservative evaluations of
the non-linear structural behaviour for
design purposes are possibte. A considerable
improvement to the SIMQKE uniformly-modulat-
ed generation procedure would be represented
by a form of control on the frequency-con-
taint definition.
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