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IDENTIFICATION OF ANTI-RESONANCE FREQUENCY IN BUILDINGS BASED
ON VIBRATION MEASUREMENTS
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SUMMARY

A method for  locating the anti-resonance frequencies (ARF) of existing buildings from modal
analysis was developed in this study . The application of ARF to protect nonstructural elements in
earthquake environments was proposed and found effective for shear type buildings in other
studies. Most of the seismic protection methods for nonstructural elements were designed after the
structures were  built. It is necessary to know the ARF of building floors for seismic protection
design. By using effective modal analysis and mode shape regression, the first few ARF modes in
existing buildings can be found based on vibration measurements. A forced vibration test was
designed to verify the sensitivity of the proposed method. The results show that a floor’s ARF can
be identified only by partial vibration measurements without much error.

INTRODUCTION

When  earthquakes attack a building, each floor vibrates according to its dynamic property and the
characteristics of the ground motion. Non-structural elements attached to a floor are therefore base-excited by
the floors’ vibration, which can be viewed as a filtered ground motion. The filter, in general, is a multi-DOF
system and its properties are described  by Frequency Response Functions (FRF). In an FRF curve, the
relationship between the responses at a certain DOF when excited at  other DOF is established. A typical FRF
curve, as shown in Figure 1, has peaks and valleys. The peaks correspond to the natural frequencies, while the
valleys correspond to the anti-resonance frequencies [Ewin, 1986]. If the excitation frequency is near an ARF,
the response diminishes to zero when the inherent damping approaches zero.

Figure 1:  FRF for a 2-DOF system
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ARF engineering applications to reduce vibrations at a certain locations in a system are versatile. Most of the
successful applications have been in the mechanical [Kajiwara, Agamatsu, and Seto, 1989] and aerospace
industries [Shepard, 1985]. Yao and Lien [Lien and Yao, 1997] proposed an idea to apply ARF theory in the
protection of nonstructural elements against earthquakes in a museum. The basic concept is to tune a flexible
nonstructural element’s natural frequency to the ARF of the supporting floor. When a building vibrates in an
earthquake, the frequency component at the ARF of the supporting floor is minimal and so is  the vibration of the
nonstructural elements. The sensitivity of the ARF protection method to variations in mass ratio [Yao and Lien,
1998] and column yielding [Lien and Yao, 1998] was small, as already discussed in several papers. It was found
that within a reasonable range, the ARF protection method could drastically reduce vibrations in nonstructural
elements in an earthquake.

Usually, the seismic  protection of nonstructural elements is designed after buildings were built.  Actual
structures are very complicated and have large amounts of DOF. It is very difficult to identify all of the dynamic
properties of a system. In this study , the authors attempted to derive the ARF from the  response measurements
in existing buildings.

ANTI-RESONANCE FREQUENCY IN EARTHQUAKE ENVIRONMENT

For an N-story shear type building, assuming a lumped mass stick model with a fixed base, as shown in Figure 2,
the equation of motion for this  building in vibration can be expressed as:

)()()()( tttt fKxxCxM =++ &&&   (1)

where }{ jx=x is the displacement vector, and each element represents the horizontal translation at each floor

for a shear type building. M�K is the mass and stiffness matrixes, and }{ jf=f is the forcing vector. In the

frequency domain this equation is expressed as:

)()()i( 2 Ω=ΩΩ−Ω+ FXMCK   (2)

where X and F are the Fourier transform of x and f, and Ω  is the excitation frequency.
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Figure 2: An N-story building model

Assuming a proportional damping system, the frequency domain response can be expressed as:

)()( Ω=Ω ZX ΦΦ   (3)

where }{ jZ=Z  is the modal displacement vector, and ]Ö[ j=ΦΦ is the mode shape matrix. Substituting

equation (3) into equation (2) and applying the orthogonal properties of the mass and stiffness matrix:
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where ]Ö[ j=ΦΦ  is the matrix consisting of normal mode shapes, jÖ  , jω  is the natural frequency of the  jth

mode and jξ  is the percentage of critical damping of the  jth mode, and ]diag[ ⋅  denotes a diagonal matrix.

Defining the modal structure transfer function as:
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Therefore the structural displacement can be solved from equation (3), (4) and equation (5) as
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where )(ΩH  is the diagonal matrix with corresponding  )(ΩjH  for Nj −= 1 .  )(ΩB  is the structural

transfer function matrix.

If the rth floor is to have a zero displacement, the rth element in equation (6) must  be equal to zero.
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rkB can be expressed as the ratio of two polynomials [3]:
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The numerator has a solution of 2(N-1) roots, but only the positive values comprise the meaningful frequency
value and therefore there are (N-1) ARF modes in an N-DOF system at every floor.
When  ground movements excite a building, the equation of motion is expressed as :

)()()( ttt gxM1KxxM &&&& −=+ **                  (9)

where *x is the relative displacement and 1 is a displacement vector of  unity in a shear type building due to unit
ground translation .

Substituting the right hand side of equation (9) into equation (2), the ARF of the rth floor can be found from the
solution of the following equation.
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where jrΦ  is the mode shape value of the rth DOF in the jth mode.

For a five-story building, whose basic properties are shown in Table 1, the FRF of the top and bottom floors with
respect to the excitation at the ground floor, are plotted in Figure 3. The fine solid lines indicate the calculated
locations of the ARFs’ from equation (10),and  the dotted lines depict the natural frequencies [5]. The successful
match with the ARF location shows that equation (10) is valid.
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Table 1. System parameters for the 5-story shear building

Element Section
(mm) Type Young’s Modulus

(KN/m 2)

Column H3085250510524 A3* 2.151010

Beam H2505118510513 A3* 2.151010

* PRC product

Natural Frequency
Mode

1st 2nd 3rd 4th 5th

Hz 1.85 5.37 8.38 10.63 11.96
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Figure 3: Frequency response functions for top and bottom floors

ANTI-RESONANCE FREQUENCY IN EXISTING BUILDINGS

Usually, the seismic  protection of nonstructural elements is designed after buildings have been built.  A real
structure is very complicated and has a lot of DOFs’. It is very difficult to identify all the dynamic properties of
such a system. In this section, derivation of ARF for building structures is demonstrated, and it can be modified
by modal superposition method to reduce computation effort.

In addition to uncoupling the equations of motion to solve the problem with SDOF oscillators at each mode, a
more attractive feature of the modal superposition method is that, in general, the response of a linear structure to
a seismic loading is dominated by first few lower modes of vibration. Even for complicated systems, analysis via
the superposition of only a few vibration modes usually produces satisfactory results, provided that the
governing system of equations can be decoupled. To do so, the structural frequency response is approximated by

)()( Ω≈Ω nnZX ΦΦ  (11)

where nΦΦ is the nN × matrix containing first n mode shapes of a structure and nZ is the 1×n column vector

containing modal displacements of the first n modes. So the structural displacements can be approximated using

)()()( T ΩΩ≈Ω gnnn X&&M1HX ΦΦΦΦ  (12)

Respectively, )(ΩnH is nn × diagonal matrix containing the modal structure transfer functions of the first n

modes.
The first n-1 ARFs of the rth floor can be found from the following governing equation.
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To demonstrate the proposed methodology, a modal superposition algorithm was  used to find the first few floor
ARF modes . When all five vibrational modes of a structure are considered, the ARFs obtained by equation (13)
are the same as the theoretical solutions using  equation (10). To evaluate the quality of the approximation  using
only a few lower modes of vibration, the first 2 to the first 4 normal modes were plotted in Figure 4 for
comparison. It is observed that the ARF with limited modes included has excellent agreement with the
theoretical values in each  mode. The errors and error ratios from Figure 4 are shown in Table 2. Most of the
errors are under 0.1Hz. Even using  the first 2 modes, the maximal error is 0.35Hz and the error ratio is only
6.03% . Therefore, using an efficient modal analysis method to calculate the ARFs is accurate enough when the
structural information is not complete.
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Figure 4. The ARFs of each floors with efficient modal analysis

Table 2. the sensitivity of ARFs with efficient modal analysis

1st ARF 2nd ARF 3rd ARFModes
Used Floor

Hz Diff. (%) Hz Diff. (%) Hz Diff. (%)
RF 0.02 0.44 0.03 0.45 0.05 0.49
5F -0.01 0.26 -0.01 0.15 0.08 0.75
4F 0.01 0.12 -0.05 0.58 -0.01 0.89
3F 0.00 0.05 -0.06 0.69 -0.06 0.69Fi

rs
t 4

M
od

es

2F -0.03 0.43 0.04 0.49 -0.05 0.46
RF 0.08 2.00 0.16 2.22
5F -0.03 0.67 -0.04 0.46
4F 0.00 0.02 0.04 0.48
3F -0.01 0.12 -0.34 3.60Fi

rs
t 3

M
od

es

2F 0.28 4.25 -0.33 4.51
RF 0.23 6.03
5F 0.01 0.24
4F -0.04 0.86
3F 0.01 0.23Fi

rs
t 2

M
od

es

2F -0.35 5.21

An efficient modal analysis method can locate the ARFs using only  the first few structural modes  from
equation (13).  A completed mode shape vector for  each of the lower modes is still required. In order to obtain a
complete mode shape vector,  massive  instrumentation is required, which is expensive and rarely done.
However, there were examples [ Lin,  Gau and Wang, 1995] [Loh and Yang, 1997] of the interpolation of
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complete mode shape vectors from limited instrumentation. This study  attempted to perform a similar
interpolation  to locate the ARFs.

One of the interpolation  methods involves  nX polynomial curve fitting. For each mode of a shear type
building, the mode shape equation can be expressed as

Ay Tφ=  (14)

where T2 ][ nhhh ,,, L=φ , h is the foundation to story height, T
21 ][ naaaA ,,, L= is the coefficient vector

of regression , y is the mode shape value with respect to h, and n is the power of the regression,  which must be
less than the amount  of data. If there are m sensors installed in  the structure, the error of the mode shape
equation can be determined using the  least mean square method.  The  coefficient vector estimate is then
determined using
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When the coefficient vector is determined, the first n mode shapes can be interpolated by introducing the height
of each floor. The mode shapes should be satisfied by the orthogonality conditions and  must be modified by

]1diag[T =nn ΦΦΦΦ M . The efficiency of this method is demonstrated below.

FORCED VIBRATION TESTING

A 5-story steel frame structure was constructed on the campus of the National I-LAN Institute of Technology by
National Center for Research on Earthquake Engineering (NCREE), as shown in Figure 5. The structure
consisted of frames parallel in two directions [Yeh and etc. 1996]. The  SAP90 program was used to identify the
modal dynamic properties including natural frequencies and mode shapes. The anti-resonance frequencies of
each floor could be determined from equation (10). All of these characteristics are shown in Table 3.

(a) X-direction                  (b) Y-direction
Figure 5: A 5-story steel frame structure
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Table 3: Dynamic characteristics of testing model in Y direction

Natural Frequency (Hz)
Mode

1st 2nd 3rd 4th 5th
(Hz) 0.82 2.71 5.14 7.64 9.37

Mode Shape
Floor

1st 2nd 3rd 4th 5th
Roof 0.0938 -0.0833 0.0610 -0.0370 -0.0167

5F 0.0817 -0.0056 -0.0667 0.0845 0.0523
4F 0.0629 0.0673 -0.0586 -0.0526 -0.0796
3F 0.0389 0.0869 0.0596 -0.0367 0.0839
2F 0.0143 0.0452 0.0766 0.0913 -0.0673

Anti-resonance Frequency (Hz)
Floor

1st 2nd 3rd 4th
Roof 3.40 4.50 7.97 9.25

5F 2.74 6.02 6.62 9.62
4F 2.34 5.53 8.50 ----
3F 2.04 4.79 7.85 9.87
2F 1.81 4.19 6.89 9.13

Forced vibration testing was designed to verify the sensitivity of the proposed method on anti-resonance
frequency in an existing building. A shaker was fastened to the top floor of the structure so that applied harmonic
exciting forces can be generated to excite the structure. The sensors are located on the top, the forth and the
second floor to measure the translation response of each floor. The frequency response curves of each measured
floor could be created in sine sweep tests. Because of the capacity limit of the shaker, the excitation frequency
must be less than 9 Hz.  This is too low to identify the higher modes of the structure. Only the first 3 modes
could be  excited.
According to the measured frequency response curves in the NCREE report[Yeh and etc., 1996], the mode shape
values were corrected as displacements related to the foundation. The measured  vibration characteristics of the
structure, via system identification, are shown in Table 4. The complete mode shapes of the first 3 modes can be
determined using a  polynomial and its orthogonality condition, as shown in Table 5 [Lien, 1999]. From equation
(13), combined with the mode shape and natural frequency verified by system identification, the first 2 anti-
resonance frequencies of each floor in an earthquake environment  could be determined.

Table 4. Dynamic characteristics of testing model by vibration measurements

Mode 1st 2nd 3rd
Natural

Frequency
(Hz)

0.82 2.68 5.01

Roof 0.998 1.007 0.774
4F 0.657 -0.936 -0.677

M
od

e
Sh

ap
e

2F 0.146 -0.571 0.987

Table 5. Mode shapes of First 3 modes with mode shape regression

Mode Shape
Floor

1st 2nd 3rd
Roof 0.998 1.007 0.774
5F 0.883 -0.348 -0.938
4F 0.657 -0.936 -0.677
3F 0.388 -0.947 0.363
2F 0.146 -0.571 0.987
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The error, with respect to the numerical analysis value and error ratio of the ARF to the partial measurements, is
shown in Table 6. The error ratio is defined as the percentage of the error divided by the baseline value. It is
shown in Table 6 that the maximal error is 0.72 Hz, and the maximal error ratio is 12.0%.  Most ARF errors  in
each floor are under 0.3Hz.  The error ratios are less than 10.0%.

Table 6. Variation sensitivity of ARF for each floor

Mode 1st ARF 2nd ARF
Modes

included Floor
Error
(Hz) (%)

Error
(Hz) (%)

RF 0.28 8.33 -0.09 1.91
5F -0.24 8.69 -0.72 12.00
4F -0.16 6.78 -0.33 6.06
3F -0.09 4.25 0.10 2.19Fi

rs
t 3

m
od

es

2F -0.09 4.75 0.32 7.70

CONCLUSIONS

The theoretical results illustrate that a Single Degree-of-Freedom system would experience minimal vibrations if
its fundamental frequency coincides with the supporting floor’s ARF. The ARFs of each floor in an existing
building could be determined based on vibration measurements. According to the vibration measurements, the
structural dynamic characteristics, including natural frequency and mode shape, could be determined by system
identification. Also, the ARFs can be identified using an efficient modal analysis and mode shape regression. A
forced vibration test  verified that the sensitivity of the ARF obtained from the proposed method is good. Even
only partial response measurements could produce acceptable results. The proposed seismic protection method
for  nonstructural elements could be applied easily when the ARFs of the floors are  identified.
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