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SUMMARY

This work aims at highlighting the steel properties influence on the behaviour of reinforced
concrete structures, by means of a simplified beam model loaded by bending moment and axial
force. The relationship between average strength and mean deformation is derived. Furthermore
the phenomenon of strain localization in the steel is pointed out.

New kinds of steels, now widespread in the whole Europe, and mainly the ones made with the
Tempcore process, are characterised by a low ratio between the ultimate and yield strengths, by a
reduced ultimate strain, and by yield strength values higher than the nominal ones. The use of
these steels can increase the local strength, but can reduce the local ductility, and the lack of plastic
deformation spread in the reinforcement can produce a global brittle behaviour of the structure.
The interest this problem has arisen is witnessed by the recent literature available on this subject,
and by the experimental studies, still in development, aiming at the definition of the minimum
ductility values to require for the reinforcing steels, with special reference to r.c. structure in
seismic zones.

INTRODUCTION

The quoted references show the scientific interest about the influence of the steel properties on the global
behaviour of r.c. structures, which has been caused, in these last years, by the need to state the minimum
requirement on the ductility characteristics of rebars. The hardening ratio is defined as the ratio between the
ultimate (fu

s) and yield (fy
s) steel strengths, the ultimate strain (εu

s) is a conventional mean strain at the maximum
testing load. These parameters define the ductility properties of the steel.

In particular a new process, named Tempcore, allows to obtain reinforced bars characterised by high strengths
(grade 500), with low carbon levels, and then weldable, but with reduced hardening ratio and ultimate uniform
strain values. This kind of production has been accepted by the more recent European codes [EC2 1993, EC8
1994, ENV 10080 1995] in which a steel degree named B500B has been introduced, with yield strength equal to
500 N/mm2. For structures in seismic zone these codes require the use of high ductility steels corresponding to a
minimum hardening ratio of 1.2 and a minimum ultimate strain εu

s = 9%

In this paper the steel properties influence on the ultimate behaviour of beam elements and simple framed
structures is pointed out. The strength and ductility characteristics of reinforced concrete members are strictly
related to the cracking phenomenon and to the materials behaviour. In fact, when in a cracked section the steel
reaches the yield strength, further load increments lead to an increase of the steel deformation as higher as lower
is the hardening ratio. Near the cracked zones localization of deformation in the rebars can occur, and then the
ultimate deformation and the failure of the bar can be quickly achieved. In order to evaluate the rotation capacity
of r.c. beams, many models, even much sophisticated, are available in literature and, for the great number of
parameters involved in the problem, quite often a numerical solution is used. In this paper a model is proposed
that allows to obtain an approximate, but simple evaluation of the mean curvature and of the plastic rotation. The
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model is applied to simple statically determined and undetermined structures, aiming at analysing the influence
of the steel properties on the structural behaviour.

BEAM MODEL BEHAVIOUR

The evaluation of the ductility capacity has been firstly developed with reference to a beam element, with a
length (l) equal to the cracks distance, subjected to tensile load. A similar analysis has been performed for a
beam model under bending and axial forces. The mean strain applied at the element is the loading parameter and
the behaviour is analysed up to the failure.

After the initial elastic behaviour (Fig. 3 - Phase 1), cracking in the concrete and slip occur with a stress and
strain redistribution (Fig. 3 - Phase 2). The mean value of the axial strain or the mean curvature is considered as
the deformation parameter. By increasing the applied strain, the steel yield is reached in the cracked middle
section firstly, then the plastic deformations spread along the element (Fig 3 - Phase 3) up to the ultimate strain
in the steel or in the concrete. Simple material constitutive relations are used in the analysis, as given in Fig. 1 in
order to point out the parameters which influence the behaviour of the model.

Fig. 1 - Beam model and constitutive relations

The tensile behaviour of the element (Fig 1 – a ) is analysed by increasing the applied mean deformation εm=δ/l,
and by taking into account the slip between the concrete and the steel. This model has been already studied both
theoretically than experimentally [Marti et al. 1998]. At the first crack, in the middle section the tensile strength
in concrete vanishes and a slip between the two material occurs. In this phase the model assumes a constant
value of the bond stress along the bar, equal to τo. The equilibrium condition gives the linear stress distribution in
the steel and in the concrete.

After the stabilization of the cracks formation, the bond strength and the cracks distance are related to the tensile
concrete ultimate strength (σu

ct in Fig. 1) reached in the edge section of the element. This condition corresponds
to the hypothesis of maximum cracks spacing. As well known a minimum cracks distance can be evaluated
according to the fracture energy criteria [Bazant et al., 1983]. It is pointed out that in the model equation the
product τl appears as a parameter depending only on the ultimate tensile concrete strength.

The model allows to highlight the localization of the steel deformation near the cracks, during the yielding phase.
Such phenomenon leads to a considerable increase of the strain in the rebar in the cracked zone, as higher than
the average one, as lower is the hardening ratio of the steel. At the rebar yielding, firstly reached in the cracked
section, small increments of the applied deformation can lead to the failure of the steel bar due to the reaching of
its ultimate strain. The phenomenon is particularly relevant when the steel behaviour is quite an elastic-perfectly
plastic one, i.e when (fu

s/f
y
s) ≈ 1. In this case when the yielding is achieved, the steel strain in the cracked zone

rises instantaneously up to the ultimate one. The relation between the local strain increment in the cracked zone
(∆εs,1) and the average one (∆εm), at the steel yielding (εy

s) is [Rinaldi, 1998]:
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The steel properties also affect the ultimate behaviour of the analysed r.c. element. The evaluation of the ultimate
plastic strain, in fact, can be expressed by [Rinaldi, 1998]:
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being ∅  the bar diameter. The equation points out the influence of the steel characteristics on the plastic ultimate
deformation and furthermore the localization phenomenon is confirmed. In particular, due to the lack of
plasticization spread along the element, the plastic deformation vanishes when the steel behaviour is elastic
perfectly plastic.

The analysis developed for the element loaded by increasing the tensile deformation, has been then applied to a
beam member loaded by constant bending and axial actions. For the evaluation of the stress and strain
distribution inside the element, and for then the definition of the local and mean curvatures, a beam element with
rectangular cross-section and a length l equal to the cracks distance, is considered. The classical hypothesis of
plane sections is used only for the middle cracked section, where the tensile concrete stress vanishes; the
assumption of perfect bond between steel and concrete is removed, and the slip between the two materials is
taken into account.  In all the cross-sections of the element the concrete strain pattern is assumed as a bilinear
one, (Fig.1), as also proposed in [Gambarova et al., 1998], and as shown by experimental works, [Giuriani et al.,
1979] and numerical analyses [Plauk et al., 1981, Ngo et al., 1967]. Also in this case the cracks are supposed to
be diffused at constant spacing. The ultimate concrete strength has assumed at the edge of the element. The
constitutive relations for the materials are given in Fig. 1.

The element behaviour is analysed increasing the mean curvature up to the failure, defined as the achieving of
the limit strain in the steel or in the concrete. The aim is the formulation of a simple relationship between the
bending moment and the mean curvature. At the concrete cracking a slip along the whole element occurs and
according to the bond rigid-plastic behaviour the bond stress distribution is constant and the steel one is linear
from the middle to the edge section of the element. The neutral axis (xc) and concrete stress patterns, instead, are
not linear with z along the element. The first step of the procedure is the solution of the equilibrium equations in
the cracked section, where the tensile concrete stress is assumed to vanish. The parameter τl can be derived in a
simple way by the equilibrium condition of the rebar, at the first crack formation. The value of this parameter is
assumed to be constant, increasing the mean deformation, and this allows to solve the equilibrium equations of
the edge section. This analysis is then repeated in all the intermediate sections and the stress and strain
distributions in steel and concrete are obtained. After the yielding, the steel stress is always linear along the
rebar, while the strain pattern is bilinear along the element according to the steel constitutive model.

Of particular interest is the analysis of the intermediate section where the rebar strain is equal to the yield one.
The distance (m) between this section and the middle cracked one defines the length of the yielded steel, and is
related to the deformation level and to the steel and concrete properties, according to the relation:
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In this expression the parameter τl/∅  is related to the ultimate concrete tensile strength. The steel ultimate strain
affects the plastic zone length only when the collapse occurs with concrete failure. On the contrary, the steel
deformation in the cracked section ε1

s is equal to the ultimate steel strain εu
s.

The procedure can be summarised as follows:
1) Analysis of the cracked middle section (Known: εc; εct):  evaluation of the strain distribution (εs; xc) by solving

equilibrium equations;
2) Evaluation of the τl/∅  parameter by equilibrium condition along the steel bar;
3) Analysis of the edge cross section (known εs; εct = εo

ct): - evaluation of the strain distribution (εc; xc) by
solving equilibrium equations;

4) Analysis of the yielded cross section (known εs = εy
s; xc): - evaluation of strain distribution (εc; εct) by solving

equilibrium equations.
The local curvature is defined, according to the European Model Code 90 [CEB-FIP, 1991] as the ratio between
the sum of the deformation in the tensile steel and compressed concrete and the effective depth (d). The mean
curvature has been evaluated assuming the curvature ρ(z) as a linear function from the middle cracked section to
the intermediate yielded one and still linear to this section to the edge one.



11764

An example of moment-mean curvature (ρm) relationship is plotted in the Fig. 3. The cross section geometry and
the materials parameters are given in the Fig. 2; different values of steel hardening ratios but constant ultimate
steel stress ad strain are considered.
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Fig. 2 – Geometrical and materials
characteristics

Fig. 3 - Moment – mean curvature

It is worth noting the relevant influence of the hardening ratio on the element behaviour; the reduction of this
parameter from 1.2 to 1.05, leads to small increments of the bending moment, but produces a large ductility
reduction.
Finally, we observe that the mean curvature ρm can be evaluated with reference to the steel strain according to
the approximate relation:
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When the element failure corresponds to the ultimate strain in steel bar, then the mean ultimate curvature can be
simply expressed as:
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where ( x ) is a mean value of the neutral axis depth inside the element The difference between this simplified
formulation and the more exact procedure is practically negligible.

STRUCTURAL DUCTILITY EVALUATION

The proposed formulation has been applied first to a single beam element under constant bending moment, then
to simple models subjected to bending moment with linear distribution. Finally the frame models in Fig. 10 have
been examined. The results concerning the beam element under constant bending moment, given in Fig. 4 and
Fig. 5, are discussed. The hardening ratio (varying from 1.05 to 1.20), the tensile steel percentage µ  (from
0.13% to 1%) and the steel amount in compression, expressed as a percentage of the tensile one, are the model
parameters. In the next pictures the ratio between the ultimate and the yield mean curvatures (curvature ratio
ρu

m/ρy
m) is plotted versus the steel tensile percentage for two values of the compression steel; the curvature ratio

is then represented versus the steel ultimate strain, in the case of rebar failure, for two values of the hardening
ratio. The different behaviour of the element is well highlighted in Fig. 5. A sharp tip (µcr ≈ 0.3%) separates the
range corresponding to the steel failure (µ <µcr), to the one related to the concrete collapse (µ >µ cr). These
results agree with the experimental and theoretical ones [Eligehausen et al., 1987]. The influence of the
hardening ratio is relevant particularly in the case of steel failure, when a variation of fu

s/f
y
s from 1.05 to 1.2 gives

a very large curvature ratio decrease.
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Fig.  4 Mean curvature versus steel percentage Fig. 5 – Mean curvature versus
ultimate steel strain

In the case of compression steel bars the structural behaviour is modified (Fig 5.b), and the hardening ratio
effects are relevant also for tensile steel percentage of about 1%. In Fig. 5 the influence of the ultimate
deformation on the curvature ratio is shown. The relation between ρu

m/ρy
m and εu

s is almost linear, and the
ultimate steel deformation effects are particularly evident for steels with higher hardening ratio. A ultimate steel
strain variation from 2% to 12% gives a ductility increase of about 200% for steel hardening ratio fu

s/f
y
s=1.05,

and of about 400% if fu
s/f

y
s=1.20.

The procedure, then, has been applied to a beam element subjected to combined bending moment and axial force
and the obtained results have been compared with the available experimental and numerical data, with satisfying
agreements. The model formulation and the related examples are given in [Rinaldi, 1998].

Next the models in Fig. 6 have been considered, i.e. a simply supported beam subjected to linear bending
moment, and a cantilever beam subjected to bending and compression. The plastic rotation of the end section
(θpl) has been assumed as a plastic deformation parameter. The previous results obtained for the beam-element
are now used for the plastic rotation calculation. The θpl, parameter has been defined as:

∫ −=
Mu

My

ypl dMM
Mu

L
])([ ρρθ

and evaluated according to the bending moment-mean curvature relationship, approximated with a piecewise
linear relation defined by the cracking, first yielding and ultimate bending moments, as given in Fig. 7.

Fig.  6 – Beams and column models Fig. 7 – Simplified moment –mean curvature
relation

Numerical examples and parametric studies have been developed for a simply supported beam with a length of
6.00 m and a rectangular 30x60 cm cross section. The steel hardening ratio, and the bars percentage are the
parameters, while the ultimate steel strength is constant. The concrete behaviour is given Fig. 1. Some of the
obtained results are given in Fig .8 and Fig. 9, where the plastic rotation versus the steel percentage is plotted, for
three hardening ratio and  for two values of reinforcement in compression.
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Fig. 8 – Plastic rotation versus steel percentage Fig. 9 – Plastic rotation versus
ultimate steel strain

The obtained patterns are similar to those already discussed for the single beam-element. Once again in the
absence of compression steel bars, the ranges related to the failure of the two materials are well evident. The
influence of the steel properties is relevant when the collapse is due to the steel, and the plastic rotation can be
reduced of a factor ten when the ratio fu

s/f
y
s varies from 1.20 to 1.05. The rotation capacity reduction is not

relevant only for steel percentage higher than 1%. When the compression reinforcement is considered the
ductility is mainly related to the hardening parameters and quite independent from the tensile steel percentage.
The influence of the ultimate steel strain on the plastic rotation, in the case of the steel failure, has been finally
analysed, with reference to the hardening ratio fu

s/f
y
s equal to 1.05 and 1.20.

In Fig. 9 the results related to µ = 0.4% are plotted. When fu
s/f

y
s = 1.05 the plastic rotation is reduced of a factor

three when the ultimate strain varies from 12% to 2%. For the same range of εu
s variation,  the ductility

parameter is reduced of a factor five when the hardening ratio is equal to 1.20.

Finally some simple framed schemes have been analysed. The behaviour of these structures is more complex and
governed by the plastic hinges number and location, and by the rotation capacity they are able to exploit. The
present design criteria aim at obtaining structures able to grant a ductile ultimate behaviour, and to dissipate the
energy in a plastic field. The adoption of steel with low values of hardening ratio and ultimate strain could lead
to a brittle collapse due to an untimely failure of a single section. In order to study this aspect a first parametric
analysis has been performed for the schemes in Fig. 10. The considered steel (named Feb44 e B500 Tempcore)
properties are shown in the same figure. The frames are subjected to a constant uniform vertical load and to
horizontal forces, with a linear distribution, increasing up to the collapse of the structure. The model correspond
to the case of framed structures under seismic static forces. The schemes have been analysed with a numerical
analysis according to a finite element discretization of the beams and the columns. The previous given beam
model has been applied to the single element, assumed to be loaded by constant bending moment and axial force.

Fig. 10 – Frame models

The results obtained for the frames characterised by equal beams and columns sections (30 cm x 50 cm)
symmetrically reinforced with As = A’s = 6 cm2 are summarised in Fig. 11. For each scheme and for the two
analysed steel properties the base shear (V) is plotted versus the top displacement δ.
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Fig. 11 – Base shear force versus top displacement

The single-storey frame (Fig. 10) reinforced with Tempcore bars, compared with to the same scheme with
FeB44 steel, shows a large ultimate displacement reduction, of about 1/3, but a similar ultimate strength. When
the number of storeys increases, the ultimate load for the two frames is almost equal, but the ultimate
displacement is reduced of about ¼ for the B500 reinforced schemes. In these cases the untimely collapse of one
section (at the base of the first column), does not allow the formation of an adequate number of yielded zones
with sufficient rotational capacity, and therefore a ultimate failure with a global collapse mechanism is not
attained.

The obtained results have been interpreted according to a traditional limit analysis, by introducing plastic hinges
in which the yield effects are concentrated. Since the sixties the problem of the plastic hinge length has been
studied leading to simplified formulations [Baker, Amarakone 1964, Sawyer 1964, Corley 1966, Mattock 1967,
Riva, Cohn 1991, Cosenza et al. 1993, Manfredi, Pecce 1997]. The proposed model allows the evaluation of an
equivalent plastic hinge length (lp), based on the material properties, and on the bending moment distribution. In
particular, when the moment variation is linear along the beam the length (lp) can be expressed as:
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where z is the distance between the sections with zero and maximum bending moment, fy
s the yield steel stress

and σu
s the steel stress related to the ultimate curvature (equal to fu

s in the case of steel failure). The τl/∅
parameter, related to the ultimate tensile stress in the concrete, to the section geometry and to the amount of axial
forces, can be easily evaluated by means of simple expressions [Grimaldi et al. 1997, Rinaldi, 1998]. The
obtained results have been compared with the formulation developed by [Riva e Cohn, 1994], showing a good
agreement. [Como et al., 1999]

The ductility differences in the examined frame schemes, can be explained on the base of the plastic yield length.
In the case of frames reinforced with more ductile steels the failure mechanism is characterised by plastic hinge
length comparable with the section depth. When using rebars with low values of hardening ratio, a brittle
collapse occurs due to the failure of one section. In this case the plastic hinge lengths are smaller, with values
equal to 1/4 - 1/5 than the one corresponding to more ductile steels (Feb 44).

CONCLUSIONS

The developed analysis and the numerical studies have pointed out and confirmed the relation between the
ultimate behaviour of r.c. structural elements and the steel mechanical properties.

The basic model is a beam element loaded by axial force and constant bending moment, with length
corresponding to the distance between stabilised cracks.

The model allows to point out that at yielding a relevant strain increment in the steel bar can occur, near the
crack, and this strain concentration is high dependent on the hardening steel modulus. In particular, in the limit
case of elastic-perfectly plastic behaviour of the steel, at yielding, strain localization occurs causing rebar crisis
and a global brittle collapse.

The steel properties strongly affect the element behaviour, also increasing the applied deformation up to the final
failure of the structure.

The influence of the hardening ratio and the ultimate steel strain on the structural ductility has been emphasised
by numerical studies on single elements.
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Similar analyses have been developed for simple beams and framed models. The obtained results show mainly
the influence of the hardening ratio on the rotation capacity or on the global ductility of the structures, and
therefore the necessity, particularly in the case of seismic actions, of requiring suitable minimum values of the
steel ductility parameters.
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