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ABSTRACT

The objective of this paper is to propose an evaluating equation for deformation capacities determined by flexural
failure, which is caused by the compressive failure of the core concrete. The effects of the compressive failure of
the core concrete become significant in case of corner columns subjected to varying high axial load. Therefore,
these problems are discussed paying special attention to the effects of the varying axial load. Core sections with
the same amount of longitudinal reinforcement both in tension and compression were studied. The rigid-plastic
relation was assumed for steel bars and the stress block relation without energy dissipation under cyclic loading
was assumed for concrete. Under these assumptions the evaluating equation of ultimate curvature ¢u of columns
subjected to not only constant axial load but varying axial load was developed. The idea of equivalent axial load
was introduced to apply the evaluating equation to specimens with varying axial load. Deformation capacity was
defined as the deformation when the restoring force degraded to o (¢=0.7 - 1.0 ) of the maximum strength. The
evaluating equation of ¢u for each degradation ratio o was developed using 104 specimens with constant axial
load and 22 specimens with varying axial load. Note that only specimens whose deformation capacities were
determined by flexural failure were used. Consequently, the proposed equivalent axial load ratio and the
evaluating equation for deformation capacities determined by flexural failure were found to be effective.
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INTRODUCTION

Recent earthquake resistant design concept of structures places explicit emphases on the inelastic deformation



capacity in addition to the previously accepted resisting capacity. Deformation capacities of reinforced concrete
members are determined by shear failure, bond failure, flexural failure or buckling of main bars after flexural
yielding of the sections. In the design guidelines for earthquake resistant reinforced concrete buildings based
on ultimate  strength concept proposed by Architectural Institute of Japan (ALJ, 1990), practical design
equations for ductility are presented for the first two failure mechanisms. However, only ambiguous specification
for arranging methods are regulated for the last two failure mechanisms.

The objective of this paper is to propose an evaluating equation for deformation capacities determined by flexural
failure, which is caused by the compressive failure of the core concrete. The effects of compressive failure of the

core concrete become significant for corner columns subjected to varying high axial load. Therefore, these
problems are discussed paying special attention to the effects of the varying axial load.

DEFORMATION CAPACITY DETERMINED BY FLEXURAL FAILURE

Evaluating equation of deformation capacity determined by flexural failure

An evaluating equation for deformation capacities determined by flexural failure, which is caused by the
compressive failure of the core concrete, is discussed in this section. The compressive failure of the core concrete
become significant for corner columns subjected to varying high axial load. Therefore these problems are
discussed paying special attention to the effects ofthe varying axialload.
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Figure 1 shows the studied sections and the assumptions of material models. Core sections with the same amount
of longitudinal reinforcement both in tension and compression (at=ac) were studied. The rigid-plastic relation
was assumed for steel bars and the stress block relation without energy dissipation under cyclic loading was
assumed for concrete. The symbols k and m denote the coefficients of the stress block for stress and strain,
respectively. Figure 2 shows the transitions of strain and stress distributions of the section subjected to varying
axial load and moment reversals. Figure 2(a) shows the condition at the curvature of ¢pr with monotonic loading.
The strain and stress distributions at the curvature of —¢pr after the reversed loading are shown in Fig. 2(b) by
solid lines. The dashed line in this figure represents the imaginary condition with monotonic loading, which
indicates that the axial strain of the section is increased by reversed loading. Figure 2(c¢) illustrates an ultimate
condition at the curvature of ¢cy after one moment reversal at the curvature of +¢pr (Figs. 2(a)(b)). The
accumulated strain of the compressive concrete in the section can be observed. The ultimate curvature ¢u can be

expressed as Eq. (1) on asuppositionthat ¢pr=¢pcy(=¢u).

k/mp (k/(1+y)>np>0)
¢u/(mep/Dc)={ 1)
k/((3+2y)np-2k) (k>mp>k/(1+y))
Mp=Np/(DcBc op) nn=Nn/(Dc¢Bc op) y=mn/np (y>0)

where, Np and Nn denote the maximum and minimum axial loads (positive value for compression). Other
symbols are showninFig. 2. The term "normalized ultimate curvature" refers to ¢ u/(ep/Dc) in this report.

Figure 3 shows calculated relations between normalized ultimate curvatures and maximum varying axial loads
using Eq. (1) (k=2/3, m=1). Three values 0, 0.5 and 1.0 for y were chosen for examples. This figure indicates that
no effects of varying axial load on ultimate curvature are expected when the axial load ratio is lower than 0.33. On
the other hand, effects increase with the increasing value of the axial load ratio after that of 0.33. The symbols np
and en) in Fig. 3 represent the maximum axial loads of two members with the same normalized ultimate curvature.
Considering that the ultimate curvature of the member with varying axial load (y =0), the maximum value of
which is mp, is as same as that with constant axial load of en ( y=1), it is concluded that the two members have the
same deformation capacity. Namely the axial load ratio en can be used to calculate the deformation capacity of
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the member with varying axial load, the maximum value of which is np. The term "equivalent axial load" refers to
e in this study.

The equivalent axial load is expressed by Eq. (2), which was derived using Eq. (1)

np 1/3>mp>0
en={ mp/5+4/15-ns 1/3)  2/3/(1+y)>np>1/3 2)
np 3+2y)/5-ns >1/3) 2/3>np>2/3/(1+y)

where, ms denotes the contribution of the axial load ratio supported by longitudinal reinforcement located at the
center of the section. Figure 4 shows the relations between equivalent axial load and maximum varying axial load.

Concrete model used

In this study the concrete model proposed as a result of the New RC Projects was used for core concrete confined
by square hoop reinforcement. This model was developed to match with a variety of experimental data
conducted not only during the New RC Projects but by overseas researchers. The maximum strength of concrete
and transverse reinforcement used in examined specimens was 132 and 1109 MPa, respectively. The maximum
stress op and the strain at the maximum point ep of confined square core concrete are expressed as follows.

op = oc + K pwh owy (owy <687MPa) 3)

gc(1+4.7(K-1)) (K<1.5)

ep={ (4)
ec(3.35+20(K-1.5)) (K>1.5)

OC=0jp
k=11.5(¢pw/C)(1-0.5Sw/Dc)
£¢=0.93(0,)"*10°

K=op/oc¢

where, 0, denotes concrete strength (MPa), C denotes length between effective supports of hoop, ac denotes
maximum strength of plain concrete (MPa), ec denotes axial strain at maximum point of plain concrete, pwh
denotes volumetric ratio of reinforcement to concrete core, Dc denotes core depth (mm), owy denotes yielding
strength ofhoop (MPa), ¢w and Sw denote diameter and spacing of hoop (mm).

DEFORMATION CAPACITY DETERMINED BY SHEAR FAILURE

Figure 5 shows anassumed relation between load and deflection angle of a member whose deformation capacity
is determined by shear failure. Thick dashed line in the figure represents the potential shear strength calculated
using Eq. (5) shown below, which was proposed by Architectural Institute of Japan (1990). The potential shear
strength 1s the function of the deflection angle of the member (Rp) and the point A in Fig. S represents the
deformation capacity defined as the deflection angle when restoring force degrades to calculated flexural strength
Qf Assuming Qf to be 80% of the maximum strength Qmax, the point A represents the deformation capacity
defined as the deflection angle when restoring force degrades to 80% of the maximum strength. In the same way
deformation capacities can be obtained for arbitrary strength degradation ratios o.

Qs=b jt pw owy cot¢ + tan8 (1-8)bD v o, /2 (pwowy < vo,/2) (5)



tan = V{(H/D)*+ 1} - H/D

B = {(1+cos'dp)pw owy}/(v O) (owy <25 o)
(1-15 Rp) vo (0<Rp <0.05)

v={
0.25 vo (0.05<Rp)

vo=172 ¢;°% (unit of oy : MPa)

cot¢ = min {cotdl,cotd2, cotd3 }
cotpl =3t/ (D tan 0)
cotdp2 = Vv o/(pw owy) - 1
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2-50Rp (0<Rp<0.02)
cotd3 = {
1 (0.02<Rp)

where, b, D, jt and H represent width, depth, distance between longitudinal main bars and span length and pw
denotes shear reinforcement ratio.

The calculated flexural strength Qf was obtained using Eq. (6) expressed as follows.
0.8atoyD+05SND(1-N/(bDo, )) (N<04bD ay)
Mf= { (6)
0.8 at oy D+ 0.12 bD* o, (N>04bD ay)

where, at and oy denote area and yield strength of tensile longitudinal main bars, N denotes the axial load.

EXAMINATION WITH TEST RESULTS

Examined specimen and evaluation of plastic curvature

104 specimens with constant axial load and 22 specimens with varying axial load, shown by Kato et.al. (1995)
were used for this study. The ranges of variables are shown in Table 1. Figure 6 shows the assumption of plastic
deformation and plastic curvature distribution. The plastic deformation Ru was obtained by subtracting yield
deformation Ry from total deformation as shown in Fig. 6(a) and expressed as Eq. (7). The degradation ratio of
yield stiffness to elastic stiffness oty was derived as an experimental equation and popularly used in Japan.

R=Ry + Ru @)
Qmax/Ry =ay Ke
ay =(0.043 +1.64 npt + 0.043 rs + 0.33 o ) ( d/D)’

where, Ke is the elastic stiffness, n, pt, rs, no and d denote young modulus ratio of steel to concrete, area ratio of
tensile longitudinal main bars to gross section, shear span ratio to section depth, axial load ratio to gross section

and effective depth of the section.

The plastic curvature ¢pu was obtained supposing the plastic curvature inside the hinge region was constant as
shown inFig. 6(c) and expressed as Eq. (8).

Table 1. Range of properties of examined 126 specimens

concrete strength 227 - 122 MPa
main bar strength 338 - 999 MPa
hoop strength 274 - 1766 MPa
maximum axial load ratio -0.26 - 1.10




du=Ru/{D(1-D/H)) (D <H/2) (8)

Comparison between calculation and observation

Figure 7 shows the relations between observed ultimate curvatures and axial load ratios of core sections. The
coefficient of the stress block k was assumed to be 2/3 in this study and the coefficient m was chosen to match the
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analytical results with the observation. The observed ultimate point was defined as the point when the restoring
force degraded to 80% of the maximum load (o =0.8). Figure 7(a) shows relations with maximum axial loads and
Fig. 7(b) shows that with equivalent axial loads. The curvature was normalized by ep/Dc in these figures. It must
be noted that only specimens whose deformation capacities were determined by flexural failure was illustrated in
the figures. In other words, specimens whose deformation capacities calculated using Eq. (1) were smaller than
those calculated using the philosophy shown by Fig. 5 were chosen. However, because the coefficient of the
stress block m in Eq. (1) was unknown and would be obtained to match with the observation, some iterative
procedures were necessary.

In Fig. 7(a) calculated relations using Eq. (1) are illustrated with two different values of y; y=1(constant axial
load) and y=0(varying axial load, the minimum load =0). The coefficient of the stress block m was chosen to
match the analytical results with the observation by the method of least squares using the data subjected to
constant axial load ratio from 0.33 through 0.66. The dashed line, which was calculated with the same coefficient
m as the solid line, represents the relation of specimens with varying axial load and roughly predict the ultimate
curvatures of these specimens shown by solid circles. On the other hand, in Figs. 7(b) the tick solid line represents
the calculated relation using the value y of 1, which means specimens with constant axial load. Solid circles,
which represent the equivalent axial load of the specimens with varying axial load, are also roughly predicted by
these thick solid lines, which may lead to the conclusion that the equivalent axial load by. (2) is effective.

The same procedures were applied to obtain coefficients m varying definition of deformation capacity. In other
words, the coefficients m were evaluated varying strength degradation ratio o from 0.7 through 1.0. Figure 8
shows relations between strength degradation ratios and coefficients m. Consequently the design equation to
calculate the ultimate plastic curvature ¢u is expressed as Eq.(9), which is a function of strength degradation ratio
a. Note that ultimate deflectionangle R can be obtained with Eqs. (7) and (8).

2m gp/Dc/(3 en) (1/3>en>0)

bu = { &)
2m ep/Dc(S en-4) (2/3>en>1/3)
m=31-29 a

where, e is the equivalent axial load ratio and can be obtained with Eq. (2). The maximum stress op and the strain
at the maximum point ep of confined square core concrete can be obtained using Eqs. (3) and (4). The coefficient
k was assumed to be 2/3.

CONCLUDINGREMARKS

The evaluating equation for deformation capacities determined by flexural failure was expressed as Eq. (9). The
equivalent axial load ratio by Eq. (2)was found to be effective to apply Eq. (9) to columns with varying axial load.
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