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ABSTRACT

Kupfer (1991) proposed a shear model for calculating the shear capacity at the ultimate limit state of slender
RC or PC beams. The compatibility of strains and the equilibrium of stresses of the cracked concrete and
shear reinforcement were applied to the shear model using constitutive laws of materials taking into account
the effect of aggregate interlocking. In this study an analytical method to predict the shear strength of RC
beams is proposed with some modifications using incremental analysis based on Kupfer’s model . A new
proposal for the effective compressive strength of concrete and a method to classify theoretically the shear
failure modes are included. The beam ductility is also predicted based on the degradation of diagonally
compressed concrete due to the axial elongation of beam plastic hinges in post yield range.
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INTRODUCTION

In the early 70th, M. P. Nielsen (1971) proposed a method to predict shear strength of RC beams based on
the lower bound of the theory of plasticity. The shear design method recommended in the AlJ (Architectural
Institute of Japan) Design Guidelines (1990) is also based on the lower bound theory. These methods have
been used for the prediction of shear strength of RC beams and considered to be more theoretical than
empirical design equations proposed in the past. However the experimentally observed physical phenomena
do not necessarily correspond to the predicted behaviors. For example, some tests (Watanabe et al., 1991;
Iwai et al., 1991) indicated that the stress of shear reinforcement did not reach its yield strength even in case
of beams which had the amount of shear reinforcement less than the upper limit in these methods. In this
study an incremental analytical method to predict the shear strength and failure modes of RC beams are
proposed based on the Kurfers' model (1991) with some modifications. An analytical model to predict the
limit deflection of ductile beams under bending and shear is also proposed.

PREDICTION OF SHEAR STRENGTH

Basic Concept of Analysis

Kupfer (1991) proposed a shear model for calculating the shear capacity at the ultimate limit state of slender
RC or PC beams. The compatibility of strains and the equilibrium of stresses of the cracked concrete and
shear reinforcement were applied to the shear model using constitutive laws of materials taking into account



the effect of aggregate interlocking at the cracked concrete surface. Figures 1 and 2 show the shear model
proposed by Kupfer et al. The stress state in diagonally cracked RC beams is characterized by a biaxial
stress field in the concrete and a uniaxial tension field represented by the shear reinforcement.

Fig. 1. Stress state in the cracked concrete. Fig. 2. Stress state of concrete
element A in Fig. 1

1,, O, shear stress and normal stress at cracked surface due to aggregate interlock, ©,:normal stress in
concrete parallel to the crack inclination, ©,, G, :principal stresses in concrete itself, T, horizontal shear
stress of concrete element, G, vertical compressive stress of concrete element induced from shear reinforce-

ment, ¢: diagonal crack inclination, 8:inclination of principal compressive stress, 3:angle between ¢ and
0, a:average spacing of diagonal cracks, j;:distance between upper and lower stringers.

Kupfers’ model only gives the shear capacity at the ultimate limit state. Figure 3 indicates the shear failure
process of RC beams considered in this study. Horizontal axis indicates the strain of shear reinforcement
and, vertical axes indicate resisting shear and principal compressive stress of concrete itself. According to
Fig. 3, shear failure can be classified into three modes as,

STF : just after the yielding of shear reinforcement the beam shows its maximum strength due to excessive
widening of diagonal crack without crushing of diagonally compressed concrete,.

SYCEF: after the yielding of shear reinforcement, the resisting shear increases due to aggregate interlocking
and then the beam reaches its maximum shear strength showing crushing of diagonally compressed
concrete and

SCF : after forming diagonal cracks beam arrives at the maximum shear strength due to the crushing of
diagonally compressed concrete without yielding of shear
reinforcement.
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In this study, the shear failure process is analysed by incremental R TP
method until the beam reaches its maximum shear capacity. § §
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Equilibrium condition of stresses = _
Strain|of Stirrup
From the equilibrium conditions 6,, T and G, are expressed as S
2 \ Effective Compressive Strength
=- -21.cot29+0C 1 . .
sin2¢ ¢ ¢+ ) Fig. 3 Failure modes
1=1,+(6,—0C,)cotQ 2) o, = —Pwtus 3,

where, p,,, f,, : ratio and yield strength of shear reinforcement. The principal stresses of concrete 6, and
o, are given by Eq.(4). The crack inclination ¢ can be given as Eq.(5) by the use of axial stress 0,, and



shear stress T, due to load effect at the beginning of crack formation (n=0,/7, ). In case of beams ¢
becomes 45 degree.

o1 =%{od+cc J_r\/(od -¢,) +4r§} ) cot(p=—§+ /1+(%)2 5)

The angle 3 between ¢ and 0 is calculated by Eq.(6).

tan28=—21:c— (6 0

-3 )

Compatibility condition of strains

In any considered direction the smeared strain of the web concrete results from the strain of concrete itself ,
g, » and the smeared strains , €,, and €, , due to crack opening , w , and crack shear displacement , v.

e=¢,+¢, +¢, ®
Then the smeared strains , €, and €, , in the considered directions , x and y , can be expressed as
€, =¢,,+¢&,, +€, &) €, =€, +€,, +€, (10).

The strains of concrete itself , €,, and €, , can be driven from the principal strains , €, and €,, , of the
concrete.

€,, = €05in> O +&,,c0s° 6 (11) £,, = €19 C0S” 8 +€55in’ O (12)

The smeared uniaxial and shear strains due to diagonal crack in the directions x and y are expressed by
Eqgs.(13) through (16).

g, =sin’Q-w/a (13) €, =C0s’@-w/a (14)

g,, =—sin@-cos@-v/a (15) g,, =sin@-cos@-v/a (16)

where, a is average crack spacing.

By the use of the preceding Egs. (9) through (16) the smeared strains due to diagonal crack , w/a and v/a ,
follow as Eqs.(17) and (18)

.2 2 2 . 2
w v sin“ @ —sin“ 0 cos“ @—sin“ 0
— =€, +€,— €€y (17) —=¢g,tan@—¢€,cotP—€;o— b + €59 — @

a a sin@cos @ sin @ cos

(18)

Constitutive Laws

The resulting principal concrete strains , €, and &,, , which correspond to the stresses , ¢, and o, , are
calculated according to the reference (Kupfer et al, 1973).

07 9k 6G,
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(20)

(19) €5

where, the secant compressive modulus K, and shear modulus G, are given as follows.

K, =17000(1-1.6(t,/vf' .)'®) (MPa) (2) G, =13000(1-3.5(t,/ vf' .)**) (MPa) (22)



Where, T,,: octahedra shear stress.

In this study it is assumed that the compressive 150

failure of concrete occurs when the principal
compressive stress , G, , in the cracked concrete
attain to the effective compressive strength vf’ .

—— e =

—e— (Collins
Hsu

Past researches by Nielsen (1984) , Collins (1982)
and Hsu (1991) indicated that the coefficient v
decreases as the increase of the compressive
strength of concrete , ., and the increase of
smeared strain , w/a , due to crack widening.
Considering their findings the effective strength
of concrete is given by Eqs 23-1 and 23-2 based

on the analysis on the past test results. Figure 4 0 40

shows the Vvf'_,- f'., relationship of Egs. (23-1)

and (23-2) when w/a takes 0.002 and 0.01. In
Fig. 4, equations proposed by Collins and Hsu

(@ =6 =45") are also indicated.
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Fig. 4. Comparison of Eq. 23 to Collins and
Hsu equations

vf = §60w 7 (MPa) f .<70MPa (23-1)
1.0+ o1 )
vf, 70 (=70 (MPa) f.>70MPa (23-2)

T (1.0+230w/a)  (1.0+170(w/a)V™' )

The shear and normal stresses due to aggregate interlock at cracked surface , T, and o, are given by Eqgs.
24 and 25 by Walraven (1979), and Egs. 26 and 27 by Li-Maekawa (1991).

v, = —Jate 4 (1,800 1 (0234w 07 ~0.2)f Jv

c 30
o, = ng_ - (1.35w“°~63 +(0.191w™03%2 _ 0.15)fwbe)v

T, =3.83- f .V (W +17)

6, =-3.83- f (0.5-m—tan~'(w/v) — wv/(w® +v*))

(24)

(25)

(26)

27

The average spacing of shear cracks a in beams is given by Eq. 28 (Kupfer et al, 1972; Kupfer et al, 1986).

1/a=5p,/d;,+2j, (28)
Stress strain relation of stirrup is assumed as shown in Fig. 5 taking into
account the tension stiffening effect due to surrounding concrete The
solid line shows average stress strain relation of stirrup over its whole
length. Stirrup stress and strain at the point A , which corresponds to
the diagonal cracking , are given by Eqgs. 29 and 30.

Saia = Qs /Py, b j, - cOtO) (29)

edia = fdiaAsw /(Ecb s+ EsAvw) (30)

where, Q,:the shear at diagonal cracking, E, :elastic modulus of concrete,
and E; :elastic modulus of shear reinforcement.
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Fig. 5 Stress-strain curve of
shear reinforcement



Y O Y A N M

Longitudinal strain at the centroidal beam axis, €, , is given by Eq. 31.

T-b-j,-cot®
- 31
b 2h-d)+EA,) )

$°Osw

where, €, :axial strain, T: shear stress, b:width of
section, j,: distance between upper and lower
stringer, ©: inclination of principal compressive
stress, E,: elastic modulus of concrete, h: total

depth of section, d: effective depth of section,
(h—d): distance from extreme tension fiber to
centroid of tensile reinforcement, E : elastic
modulus of shear reinforcement, A, :sectional area
of shear reinforcement.

Calculation procedure of shear strength

The strain of stirrup is gradually increased with an
increment of Ae, until the resisting shear becomes

maximum as shown in Fig. 6.

Comparison between predicted and observed shear

strengths

Fig. 7 shows the comparison between theoretically
predicted shear strength and experimentally ob-
served shear strength. In the figure predicted shear
strength by ACI Code (1989) is also indicated. In
Fig.7, Y axis indicates the experimentally observed
shear strength , V,,, , and X axis the predicted
shear strength , V,,,, where both axes were nor-
malized by the shear force , V, , at which the

bending moment at critical section could reach
the theoretical flexural capacity. In these data only
the beams which showed shear failure are useful
for the evaluation of the prediction method. There-
fore the mean value, the standard deviation, and
the variance indicated in the figures were calculated
only for the data points which have V, /V, <0.9
in order to avoid the beams failing in flexure. From
Figs. 7-b and 7-c it is seen that the shear strength
of RC beams can be predicted with enough accuracy
by applying the method proposed in this paper.
Figures 7-b and 7-c also show that the Li-
Maekawas’ equations for aggregate interlocking
action give better results than Walraven’s equa-
tions. It is noted that when Li-maekawas’ model
was used the STF failure mode did not appear in
the analysis. This is due to the higher agregate
interlocking action of Li-maekawas’ model than
Walraven’s model.

EVALUATION OF BEAM DUCTILITY
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Fig. 6 Calculation procedure




1'5|l||l|lll|||

LARLANL AN I Y L L B LA Ty T T T e T T T

o ACICode ] F oposed Method| [ Proposed Method3
S ®» ° 1E § O iE o © oo E
- 4F Jo 0083 oo 1 E OOO o %:ooo nOo 1E 8 80 Qo o 1
2 F o s El: 5
>5 - 1E Walraven,s model was usedq F Lee-Maekawas' model was
E 1E i 1 E sed f te interlocks
st e ol [ s ] el amene
: Std.. Deviation 0.2205 - Std. Deviation 0.167 J E Std. Deviation  0.124
of (a) l Var 1?nce Valu(le 0.1697 ¢ (b) | . Variance Value 0.141 3 (c) | Variance Value (0.111]

0 1 2 3 40 1 2 3 40 1 2 3 4

VanaNf VanaNf Vana/vf

Fig. 7 Comparison between predicted and experimentally observed shear strength

Basic concept

Shear 4
When a beam is subjected to cyclic load in post Force Potential Shear Strength reduces
yield range of deformation, it sometimes shows the \Y 2 the Change of R due to Hinge Extension

reduction of resisting shear at a certain deflection Viax -
limit due to crushing of diagonally compressed web 0.8 Vinax
concrete. This can be explained that the diagonally |
cracked concrete degrades due to the axial elongation Actual Behavior i

|

ey ) . . of a Beam Hinge Rotation
of beam plastic hinge in post yield range. That is, Angle (R)
the effective compressive strength of concrete ‘ >
decreases as the increase of axial strain. Fig.8 shows —\‘
the above concept where X axis indicates the hinge Axtal \\\ "
rotation angle , R , and Y axes indicate the decrease Strain l L:a"(}t,-’:;%fyc,e ®
of potential shear strength due to hinge elongation (&) Y |

and the increase of axial strain of hinge , €, , (hinge
elongatipn). In !he figure the enve}op curve of beam Fig. 8 Concept of the degradation of
hysteretic restoring for.ce gharactcrlstlcg is glso shf)wn shear capacity in post yield range

and at a point which indicated by solid circle gives

the deformation limit of the beam. To calculate the

potential shear strength at a certain hinge rotation angle, the axial strain of hinge , €, is given as the
function of the hinge rotation angle and the number of loading cycles up to the considered hinge rotation
angle. Then obtained value of &, is substituted into Eqs. 17 and 18 for the calculation of potential shear

strength.

Axial strain £_and hinge rotation angle R

The axial strain ,€, , changes as the increase of the number of loading cycles and the amplitude of hinge
rotation angle , R. In this paper the axial strain of hinge region is given by following equations based on the
flexural analysis on several types of beam sections. Equation 31 is for monotonic loading and Eq. 32 for
cyclic loading.

2
Q- R-j, Rn'jt . R,],
£, = =— 31 E = + TF; 32
=T 31) "2lhi=212lh , (32)
where R:hinge rotation angle, ¢:curvature of hinge, [,:hinge length j,:distance between upper and lower
stringer R, :hinge rotation amplitude at last loading cycle R;:hinge rotation amplitude at i-th loading cycle

F:number of loading cycles with hinge rotation amplitude of R;

Experimental verification




To verify the proposed evaluation method of ductility, three RC beams tested by the authors. These beams
were designed according to the ALJ Guidelines (1990). Details of beams are indicated in Tab. 1. Beams B2
and B4 had non-uniformly distributed shear reinforcement (larger amount of shear reinforcement was provided
within hinge regions). Beam B3 was designed to have same amount of shear reinforcement in hinge and
outside hinge regions. In the test shear failure due to crushing of diagonally compressed concrete in plastic
hinge region was expected. Therefore, supplemental cross ties were arranged in outside hinge regions of
beams B3 and B4 to avoid the splitting bond failure. Sectional dimension of beams was 20 X 30 cm and
three 16 mm in diameter deformed bars with yield strength of 435 MPa were arranged both in tension and
compression side of the beam. Compressive strength of concrete at the time of loading tests was 70 MPa.
The ratio of shear span length to beam total depth was 2. One full loading cycle at diagonal cracking load
was first applied to each beam spec-
imen. Second loading cycle consist-

ing two full cycles with the deflection Table 1 List of Tested beams

amplltude of R=%1/200 was followed W—_——
by a series of deflection controlled Shear reinforcement (D8 , fy,~267 MPa)

cycles comprising two full cycles to Specimen Hinge region Outside hm%_rm;
each of the deflection amplitude of n [sm [ py(%) | n | sm | py(%)
R=+1/100, R=%3/200, R=%1/50, 22 2+ 2 2522 2 1 88 3o
R=£1/40 and R=13/100 where R is B4 > 1 68 | 0625 | 3 | 136 | 0470

the rotation angle of beam. In the tests,
loading was stopped when the max-
imum load after flexural yielding

n: number of legs of shera reinforcement, py,: shear reinforcement ratio
s: spacing of shear reinforcement

200 T R T | R T [ U T
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Fig. 9 Load deflection curves and reductions of potential shear strength due to hinge elongation

dropped to the 80% of maximum load. This point was defined as the ductility limit of the beam. In the
analysis, Li-Maekawas' equations were used for the aggregate interlocking action because it showed better
results than Walraven's equations in the strength analysis mentioned earlier. Fig. 9 shows the experimentally
observed load deflection curves of tested beams. In the figure theoretically predicted reduction of shear
strength due to beam elongation is also indicated. Fig. 9 clearly
indicates that the proposed method can be used to predict the Predicted

ductility of beams under bending and shear. As a reference, an

example of axial elongation of the beam plastic hinge is shown in \:\ i ’
Fig. 10, where the dotted line gives theoretically predicted one I Y AN
using Eq. 32 and the solid line gives experimentally observed one. — ——7 !
—
CONCLUSIONS "Measured \——77"" " B3 |
i

Shear strength of RC beams can be predicted by the incremental -20 -10 0 10 20
analysis proposed in this paper, where three failure modes are Deflection  (mm)

automatically distinguished. When evaluating shear strength of
RC beams by proposed method, Li-Maekawas’ equations for Fig. 10 Observed and theoretically
aggregate interlocking action gave better results than Walraven’s predicted hinge elongation



equations. Effective strength of concrete proposed in this study covers high strength concrete and it gives
good results for shear strength evaluation. For the ductility evaluation of beams the key is the elongation of
plastic hinge region. Based on the strength degradation of concrete due to hinge elongation, beam ductility
can be evaluated with enough accuracy.
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