
1320

1 Department of Civil Engineering,Tamkang University, Taipei, Taiwan, email: jcwu@bridge.ce.tku.edu.tw
2 National Center for Research on Earthquake Engineering, Taipei, Taiwan,email: lohc@email.ncree.gov.tw
3 Department of Civil and Environmental Engineering, University of California, Irvine, U.S.A., email: jnyang@uci.edu

ESTABLISHMENT OF MATHEMATICAL MODEL FOR AN EXPERIMENTAL
FULL-SCALE BUILDING WITH ACTIVE BRACING SYSTEM
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SUMMARY

Recently, the application of active control to seismic-excited buildings has attracted international
attentions.  To demonstrate the practical applicability of active control, we have conducted
experimental tests using a full-scale three-story building equipped with active bracing systems on
the shake table at the National Center for Research on Earthquake Engineering (NCREE), Taiwan.
Experimental results indicate that the control-structure interaction (CSI) effect is significant.  A
state-space analytical model of this actively controlled building taking into account the CSI effect
is established in this paper using a system identification technique based on the curve-fitting of
transfer functions.  To verify the accuracy of the analytical model for simulating the controlled
response, five sets of Linear Quadratic Gaussian (LQG) controllers using acceleration feedbacks
are designed and further experimental tests are conducted.  It is demonstrated that the correlations
between the simulation and experimental results are remarkable.  The construction of an accurate
analytical model is important for active control, and such an analytical model can be used for
future benchmark studies of different control algorithms based on numerical simulations.

INTRODUCTION

Considerable research efforts have been made in the last two decades for the application of active control to civil
engineering structures, including analytical studies or experimental verifications [e.g., Kobori (1998)].  Several
well-developed algorithms in control engineering have been successfully introduced to active control of civil
structures, such as optimal control [e.g., Yang (1975)], sliding mode control [e.g., Yang et al (1995, 1997), Wu
et al (1998b)], 2H [e.g., Spencer et al (1994)] and ∞H [e.g., Wu et al (1998a, b)], just to name a few.  The

performances and applicabilities of these control methods to civil structures have been verified by numerical
simulation results and/or experimental tests on the shake table using scaled models.  Experimental verifications
on the shake table using a full-scale model are particularly desirable because of the complexity involved in
implementing active control systems.  In the past, experimental tests on the shake table have been conducted
using small scaled models equipped with active control devices and the results have been presented in the
literature [e.g., Chung et al. (1989), Dyke et al. (1994a,b,c), Yang and Wu et al. (1996a, b), etc.].  Through
experimental research, important experience has been gained toward the implementation of active control
systems on full-scale structures.

Traditionally, the nominal system for active controller design is identified without considering the control-
structure interaction (CSI) effect, i. e., the dynamics of the structure and the dynamics of control device are
identified individually [Chung et al. (1989), Yang and Wu et al. (1996a, b)].  Then, a constant time delay is
observed from the active device (actuator), and different time delay compensation techniques are used to
improve the control performance [e. g., Chung et al (1995)].  The significance of CSI effect in actively
controlled civil structures was first demonstrated by [Dyke et al. (1994c)] using a small scaled building model.
It was shown that the transfer function of the actuator installed on the structural model contains more complex
dynamics than just a constant time delay.  By incorporating the CSI effect in the nominal system, the 2H

controllers using acceleration feedbacks are shown to be successful [Dyke et al. (1994a,b)].   However, the
significance of CSI for full-scale structures is yet to be demonstrated experimentally.
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In this paper, we have conducted experimental tests using a full-scale three-story building equipped with active
bracing systems on the shake table at the National Center for Research on Earthquake Engineering (NCREE),
Taiwan.  The objectives of this paper are : (1) to demonstrate the significance of CSI effect on this full-scale
building based on the experimental results on the shake table, (2) to construct an analytical model incorporating
the CSI effect using a system identification method based on the curve-fitting technique, and (3) to verify
experimentally the accuracy of the analytical model for simulating the controlled response of the building using
Linear Quadratic Gaussian (LQG) controllers based on acceleration feedbacks.  It is demonstrated that the
correlations between the simulation and experimental results are remarkable.  This is the first attempt in the
literature to demonstrate experimentally the CSI effect using a full-scale building and to provide an accurate
analytical model of the building for future benchmark studies of different control algorithms.

EXPERIMENTAL SETUP
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Fig. 2: Transfer Function of Hydraulic Actuator;
         (a) Amplitude, and (b) Phase Angle

Fig. 1: 3-Story Full-Scale Building on
           Shake Table of NCREE, Taiwan

A full-scale three-story building made of spatial steel rigid frame was constructed at the National Center for
Research on Earthquake Engineering (NCREE) in Taiwan for experimental tests on the shake table, as shown in
Fig. 1.  The building has a rectangular shape with a floor area of 4.5 m by 3m in each floor and a total height of 9
m (3m for each story).  Earthquake excitations were applied in the direction of weaker axis x, that is the axis
along the length of 4.5 m as shown in Fig. 1.  The dead loads are represented by three lumped masses of concrete

blocks on the top of each floor.  These masses are 1144.16 m/skgf 2⋅  for the first two floors and 1113.62

m/skgf 2⋅  for the top floor.  An active bracing system consists of a highly stiffened steel tube connected in

series with a hydraulic MTS dynamic actuator.  The capacity of the hydraulic actuator is 2.5 ton force and the
servo-controller is programmed to track a command signal of force (force control).   The transfer function of the
output/input relation of the hydraulic actuator was carefully tested before the installation of active bracing
systems on the building, and the results are presented in Fig. 2.  As shown in Fig. 2, the actuator performs quite
well except the existence of a slight constant time delay (about 0.8 msec).  Two of such an active bracing system
were installed diagonally between the ground and first floor, one on each side of the building along the x
direction.  To prevent the undesirable motion in the transverse (y) direction, a few stiffeners were added to the
bracing system to ensure the building motion in the x direction.

During experimental tests, eight response quantities of the building are recorded.  These include (i) the relative
displacements ix  (w.r.t. the ground) and absolute accelerations aix  of each floor which are measured by the

LVDT sensors and accelerometers, respectively, (ii) the stroke fx  of actuator which is measured by the build-in

LVDT probe inside the actuator, and (iii) the internal force f  in the bracing which is measured by the load cell

on the bracing.  In what follows, these quantities are denoted by a vector z =

[ 1x , 2x , 3x , fx , ax1 , ax2 , ax3 , f T] . Since the displacement sensors are not quite practical and are most

expensive, the displacements are not considered herein as the measured quantities for feedback control.  For the
purpose of comparison, the shake table tests for the bare frame building and the building equipped with active
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bracings (but zero command) are first conducted using the 1940 El Centro (100 seconds) and 1995 Kobe (60
seconds) earthquakes with a 0.1g PGA.  The preliminary study shows that the three natural frequencies and
damping ratios of the building itself are about 6.673, 21.783 and 37.506 rad/sec, and 0.81%, 0.25% and 0.34%,
respectively, whereas the frequencies and damping ratios of the building with active bracing systems (zero
command) are about 7.363, 22.933 and 37.966 rad/sec, and 1.38%, 2.46% and 1.32 %, respectively.

SYSTEM IDENTIFICATION

The control-structure interaction can be investigated by analyzing the output/input transfer function of the active
bracing system in the building.  By using a 0-30 Hz banded white noise signal for the actuator command, the
transfer function is obtained by measuring the corresponding active bracing force as shown in Fig. 3. The result
shown in Fig. 3 illustrates that it is difficult for the actuator to generate active force in the bracing at the three
natural frequencies of the building, i.e., the structural pole becomes actuator zero.  A similar conclusion has been
reported for two scaled models presented in [Dyke et al. (1994a, b)].  Therefore, the system identification
procedure taking into account the CSI effect was conducted in the following where the resulting analytical
system equation is continuous in time and discrete in space.
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Fig. 3: Transfer Function of Actuator Installed in the Building; (a) Amplitude, and (b) Phase Angle

Since the actively controlled building has two input sources, i. e., the earthquake excitation and the actuator
command, it is expediently assumed that the total responses of the eight recorded quantities in z are the
superposition of those induced by each individual input source.  The validity of this assumption will be verified
by the experimental results later.  With the input of a 0-10 Hz banded white noise earthquake excitation, the
transfer functions of eight recorded response quantities are computed using the FFT technique.  For instance, the
transfer functions of 3x  and ax1  are shown in Fig. 4 by dotted curves.  Then, each transfer function can be

curve-fitted by a rational ratio of two polynomials,
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Fig. 4: Transfer Functions of the Building due to White Noise Earthquake; (a) Amplitude of 3x  ,

(b) Phase Angle of 3x , (c) Amplitude of  ax1 , and (d) Phase Angle of   ax1

In Eq. (1), the superscript * represents complex conjugate and transpose.  In Eq. (2), 1-=i ; jg  is the value of

the jth data point in the recorded transfer function corresponding to the frequency jw ; N is the total number of

data points in the recorded transfer function; and jλ  is the adjustable weighting parameter for the jth data point

in the least-square-error method.  We use 6th order polynomials (i.e., m=n=6) for the denominator and numerator
of each transfer function.  Further, in order to maintain the same denominator for such a single-input-multiple-
output case, Eqs. (1) and (2) are first used for curve-fitting the transfer function of the recorded 3rd floor
absolute acceleration to compute the coefficients 011011 ,,,,,,,, a a ... a b b ... b b mnn −− .  Then, the resulting

coefficients 011 ,,, a a ... a m−  (common denominator polynomial) are used for curve-fitting other recorded

transfer functions to obtain their individual 011 ,,,, b b ... b b nn −  by solving the upper equation in Eq. (1).  Due to

space limitation, only the curve-fitted plots of 3x  and ax1  are shown in Fig. 4 , denoted by the solid curves, for

demonstrative purpose.  Consequently, the eight transfer functions can be converted into a set of state-space
equations in the time domain expressed by

WBZAZ 1111 += ;               WDZCz 1111 += (3)

in which 1Z  is a state vector; W is the earthquake acceleration; 1z  is a vector containing the eight recorded

quantities; and 1A , 1B , 1C , 1D  are constant matrices with appropriate dimensions.  In Eq. (3), the eigenvalues

of 1A  are found to be –0.110±7.275i, -0.545±22.846i and –0.468±37.939i where the real and imaginary parts

represent the damping effect and frequency, respectively.  It is observed that these three frequencies are close to
what is obtained in the preliminary study.  Since the transfer functions are curve-fitted well, the response time
histories obtained from numerical simulations using Eqs. (3) under the excitation of 0.1g El Centro and Kobe
earthquakes correlate remarkably well with the experimental results as expected.

In the same manner, the transfer functions of eight recorded response time histories can be computed when a 0-
30 Hz banded white noise of actuator command is used as the input (e. g., see Fig. 5 for 3x  and ax1 ).  For this

situation, two cases are considered for curve-fitting, first for ax1 , ax2 , ax3  and second for 1x , 2x , 3x , fx

and f .  In the first case, since the accelerations ax1 , ax2 , ax3  contain more high frequency components, a 12th

order polynomial (m=n=12) is used for the denominators and numerators of the transfer functions of ax1 , ax2 ,

ax3 .  In this case, the common denominator is obtained from the 3rd floor absolute acceleration ax3 .  The

curve-fitted results of ax1  is shown in Figs. 5 (c) and (d).  The three curve-fitted transfer functions are converted

into a state-space equation given by

UBZAZ 2222 += ;    UDZCz 2222 += (4)



13205

In Eq. (4), 2Z  is a state vector; U is the actuator command; 2A , 2B , 2C  and 2D  are constant matrices; and

2z  is a vector containing the same eight quantities as in z , where the coefficients in 2C  and 2D  for

1x , 2x , 3x , fx , f are zeros.  2A  has 12 eigenvalues as follows: -0.111±7.254i, -0.481±23.316i, -0.448±37.896i,

-0.696±56.549i, -0.532±105.277i and –8.263±134.815i.  It is observed that 2A  not only contains 6 eigenvalues

that are very close to those of 1A  representing the building dynamics, but also contains 6 additional eigenvalues

that come from the dynamics of control devices and the CSI effect.  Therefore, the control-structure interaction is
implicitly involved in Eq. (4).  Likewise, the response time histories obtained from numerical simulations using
Eq. (4), under the same input of white noise actuator command, correlate well with the experimental results..

Fig. 5: Transfer Functions of the Building due to White Noise Actuator Command;
(a) Amplitude of 3x , (b) Phase Angle of 3x  , (c) Amplitude of   ax1  , and

(d) Phase Angle of  ax1
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In the second case, since the transfer functions of 1x , 2x , 3x , fx  and f  have only three peaks (three poles), the

first three pairs of the eigenvalues of 2A  is used to construct the common polynomial denominator (m=6) for

curve-fitting the transfer functions of 1x , 2x , 3x , fx  and f with n=6.  The results of curve-fitting for 3x  are

shown in Figs. 5 (a) and 5 (b).  The resulting state-space equation is given by

UBZAZ 3333 += ,            UDZCz 3333 += (5)

 In Eq. (5), 3Z  is a state vector; 3A , 3B , 3C  and 3D  are constant matrices; 3z  is a vector containing the same

eight quantities as in z ,  where the coefficients in 3C  and 3D  for ax1 , ax2 , ax3  are zeros.  Again, the

response time histories obtained using Eq. (5) for 1x , 2x , 3x , fx  and f  , under the same input of white noise

actuator command, correlate well with the experimental results.

With the presence of both input sources (earthquake and actuator command), the recorded response vector z can
be obtained by the superposition of 1z , 2z  and 3z , i.e.,

[ ] 132321 ;;; DFDDDCCCCWFUDZCz zzzzzz =+==++=             (6)

and the overall state equation can be expressed by
















=
















=
















=
















=++=

0

0;

0

;

00

00

00

;;
1

3

2

3

2

1

3

2

1 B

E

B

BB

A

A

A

A

Z

Z

Z

ZEWBUAZZ                (7)

Since the CSI effect in this full-scale building is significant as previously mentioned, it is desirable to design the
active controllers based on Eqs. (6) and (7) that include the effect of control-structure interaction.  In designing
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the active controller, z in Eq. (6) can be used as the controlled output for the control objective, whereas the
measured output y, that is used as the feedback quantities, can be constructed from z and expressed as

WFUDZCy yyy ++= (8)

System Reduction for Controllability and Observability

To ensure the controllability and observability, a minimal realization to be used as the nominal system should be
constructed for controller design.  A well-known system reduction technique, referred to as the balanced state
reduction method [Moore 1981], is used herein.  An 8-dimensional reduced-order system to be used as the
nominal system is obtained as

WEUBZAZ rrrrr ++= ;      WFUDZCz zrzrrzrr ++= (9)

The measured output in the reduced-order system can be constructed from the control output rz  and written as

vWFUDZCy yryrryrr +++= (10)

in which v is the measurement-induced noise.

LQG CONTROL STRATEGY

To demonstrate the accuracy of the analytical model constructed above for predicting the controlled building
response, 5 sets of  controllers have been designed based on the nominal system, Eqs. (9)-(10), using the Linear
Quadratic Gaussian (LQG) method.  These LQG controllers were used in the shake table experimental tests for
the full-scale building.  The LQG controller is derived based on the assumption that the excitation W and the
measurement noise v are uncorrelated Gaussian white noise processes. The control objective is to minimize a
quadratic objective function

{ }∫τ
∞→τ

′+′
τ

= 0 )(
1

 lim   t d                               J URUzQzΕΕΕΕ (11)

in which UDZCWFzz zrrzrzrr     +=−=  (see Eq. (9)), and Q and R are weighting matrices.  Due to space

limitation, the detailed derivation is referred to [Skelton (1988), Wu et al (1998b)].  For the on-line computation
of the control command U, the dynamic output feedback equation is obtained as follows

yBqAq cc   += ;     yDqCU cc   += (12)

in which q is a state vector to be computed on-line in real time from the measured output y, and

cA , cB , cC , cD  are constant matrices obtained from the LQG design.  For control implementations, the

dynamic output feedback controller, Eq.(12), is further discretized into a discrete form using a sampling rate of
0.002 sec, i.e.,

)()()1( n n n yBqAq dd +=+ ;    )()()( n n n yDqCU dd += (13)

CORRELATION BETWEEN EXPERIMENTAL AND SIMULATION RESULTS

Five sets of LQG controllers, denoted by LQG1, LQG2, LQG3, LQG4 and LQG5, are designed and
implemented on the full-scale building for the shake table experimental tests.  The first three controllers measure

ax1 , ax2 , ax3  as the feedback quantities, whereas the last two measure ax1  only.  The earthquakes used are the

1940 El Centro (100 seconds) and 1995 Kobe (60 seconds) earthquakes with a PGA of 0.1g.  To verify the
accuracy of the analytical model constructed above for predicting the controlled response, numerical simulations
using the analytical model, Eqs. (6)-(8), are conducted, and the simulation results are compared with those of the
shake table experimental tests.  Due to space limitation, only the correlation results under 0.1g El Centro
earthquake for the LQG3 controller (larger control command) are presented in Fig. 6 and Table 1.  The
correlation results for other controllers are similar.  As observed from Fig. 6, the correlations between the
simulated response time histories and the experimental results are quite remarkable.  Table 1 presents the peak
and rms values of the building response quantities, the actuator stroke fx , the active bracing force f and the
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actuator command U.  It is observed from Table 1 that the correlations between the experimental and simulation
results are quite remarkable for the building response quantities as well as the actuator stroke fx , the active

bracing force f and the actuator command U.

Fig. 6: Correlations of Experimental and Simulated Response
Time Histories of the Building under 0.1g El Centro
Earthquake Using LQG3 Controller; (a) 3x , and (b)  ax1

Table 1 : Comparisons of Experimental
and Simulated Responses of the Building
under 0.1g El Centro Earthquake Using
LQG3 Controller

Experiment Simulation
peak rms peak rms

1x  (cm) 1.104 0.159 1.339 0.166

2x  (cm) 1.969 0.292 2.239 0.319

3x  (cm) 2.488 0.371 2.652 0.384

fx  (cm) 0.885 0.127 1.167 0.154

ax1  (g) 0.106 0.010 0.101 0.013

ax2  (g) 0.127 0.014 0.133 0.017

ax3  (g) 0.196 0.019 0.170 0.021

f  (kgf) 1556 195.3 1725 221.0
U (kgf) 1457 185.8 1657 205.8
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CONCLUSIONS

Shake table experimental tests using a 3-story full-scale building equipped with active bracing systems have
been conducted in this paper.  Experimental results show that the control-structure interaction (CSI) effect is
significant for the design of dynamic output controllers.  A state-space analytical model of the actively controlled
building taking into account the CSI effect has been constructed using a system identification technique that is
based on the curve-fitting of transfer functions.  To verify the accuracy of the analytical model for simulating the
controlled response, five LQG controllers using acceleration feedbacks have been implemented on the full-scale
building and further shake table tests have been conducted.  It is demonstrated that the correlations between the
simulation and experimental results are remarkable.  The state-space analytical model established herein
provides opportunities for future benchmark studies of different control algorithms.  The information of the
analytical model presented is available on the web site URL: www.ce.tku.edu.tw/~jcwu/research/earth.html.
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