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SUMMARY

This paper presents an alternative approach to the formulation and solution of frame structures
involving inelastic-nonlinear distributed-parameter structural systems. The response of the
structure, which is spatially discretized, is completely characterized by a set of state variables
which represent global nodal displacements and velocities, and local element quantities such as
forces and strains at seleced sections used as the integration points. The evolution of the global
state variables is governed by physical principles, such as momentum balance or dynamic
equilibrium. The evolution of the local variables is governed by constitutive behavior. The essence
of the proposed approach is to solve the two sets of evolution equations simultaneously in time
using direct numerical methods, in general as a system of differential-algebraic equations. This is
in contrast to the common approach of formulating the equations of motion and the constitutive
equations in an incremental form and solving them separately using finite-difference methods with
iterative correction. The proposed methodology results in a more consistent formulation with a
clear distinction between spatial and temporal discretization. A nonlinear beam element based on
force interpolation functions and a constitutive macro-model is developed and presented  in this
framework. The state-space formulation and the nonlinear bending element, in particular, are
compared witht benchmark solutions using commonly used  approaches.

INTRODUCTION

The most commonly used strategy for nonlinear analysis is based on formulating the equations of motion and the
constitutive equations in incremental form and using finite difference methods for integration in time. The
governing differential equations are linearized over a time step by using the tangent properties of the system.
Methods such Newmark’s are used to obtain the equivalent tangent properties for dynamic systems.  Iteration
within an analysis increment is necessary to reduce the error introduced by the use of the tangent properties.

Another approach is to solve simultaneously the equations of motion and the constitutive equations. For a
dynamic problem involving elements whose nodal force-deformations relationships are known directly,
separating the linear and nonlinear components of the resistance force and introducing velocities as additional
unknowns results in a set of explicit first-order ordinary differential equations (ODE). The system can be solved
using any appropriate numerical method.  This approach has been extensively employed in the solution of purely
dynamic linear and non-linear problems especially in structural control and non-deterministic analysis. However,
in the general case, when there are quasi-static degrees of freedom (i.e., the mass matrix is singular) and
elements for which only stress-strain (and not force-displacement) relations are known, the resulting system of
equations not only consists of explicit ODE’s but also contains implicit ODE’s and algebraic equations. The
numerical solution of such systems of Differential-Algebraic Equations (DAE) is more complex than the
solution of ODE’s and reliable methods for this purpose have been developed only recently (Brenen et al.
(1996).  The state-space approach (SSA) involving DAE’s has been used extensively in multi-body dynamics of
aerospace and mechanical assemblies. A detailed review of the previous applications is presented by Simeonov
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(1999).   The objective of this paper is to formalize this approach using state variables for complex inelastic
structures subjected to earthquakes and other dynamic and static

CONSTITUTIVE MODELS FOR STATE-SPACE ANALYSIS

Numerous constitutive models have been developed based on the internal-variable theory of inelastic material
behavior Sivaselvan et al (1999). One such model developed originally by Bouc and Wen, subsequently
modified by Sivaselvan et al. (1999) is used here for its simplicity and numerical tractability. The generalized
resistance force R is modeled as a combination of elastic and hysteretic components.
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where K0 = initial stiffness; a = ratio of post-yield to elastic stiffness; KH = hysteretic stiffness; u = total

generalized displacement, and  where  uKaRR*
0−=  is the force in the hysteretic spring; ( ) y

*
y RaR −= 1

is the yield force of the hysteretic spring; Ry = total yield force; n = parameter controlling the transition between
the elastic and plastic range; η1 and η2 = parameters controlling the shape of the hysteretic loop, which must
fulfil the condition η1 + η2 = 1.
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(a) Schematic Representation of Constitutive Model (b) Dynamic System with Hysteretic Restoring  Force

Fig. 1 - Inelastic Nonlinear Systems

STATE VARIABLES AND EQUATIONS OF A SINGLE-DEGREE-OF-FREEDOM SYSTEM

A nonlinear single-degree-of-freedom (SDOF) system, subjected to dynamic and quasi-static forces, will be used
to illustrate the state-space formulation. The model in Fig. 1(a)  has three variables therfore three state equations:

uy =1   ,  uy =2   ,  Ry =3   (2a)

Then, for the dynamic problem (Fig (1b)) the response is described by, 

0312 =−++ Fyycym ;              012 =− yy ;      ( )[ ] 01 103 =−+− yKaKay H  (2b)

For this system, y3 is the local and y1 and y2 are the global state variables. Correspondingly Eq. (2b) provides
global and the local state equation.  The hysteretic stiffness is obtained by reordering Eq (1):

R* = y3 - a K0 y1;             ( )[ ]
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In contrast with the dynamic system Eq. (2b) a quasi-static system subjected to identical force history, has only
two state variables, hence, two state equations.

Then, the response of quasi-static SDOF system is described by: 

uy =1  , … Ry =2 ;      02 =− Fy ;        ( )[ ] 01 102 =−+− yKaKay H    (3)

In this case, the constitutive Eq.(3) has an implicit differential equation (latter) with equation of equilibrium (the
formar) being algebraic. Therefore, a set of differential-algebraic equations must be solved to obtain the quasi-
static response of SDOF system with nonlinear restoring force.
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DIFFERENTIAL-ALGEBRAIC SYSTEMS (DAS)

A DAS is a coupled system of N ordinary differential and algebraic equations, which can be written in the form:

( ) 0yyΦ =,,t    (4)

where ΦΦΦΦ, y and y  are N-dimensional vectors; t is the independent variable; y and y  are the dependent variables

and their derivatives with respect to t.

Some of the equations in (4) however, may not have a corresponding component of y . Consequently, the matrix
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may be singular. A measure of the singularity is the index (Brenan, 1996)]. This, is equal (for simplicity) to the
minimum number of times Eq. (4) must be differentiated to determine y  explicitly as functions of y and t.

The explicit ODE system , ( )ygy ,t= , has an index of 0.   For example,Eq. (2b) can be converted to the

standard form without additional differentiation.      
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Eq. (3) modeling the quasi-static response of SDOF system, however, is index 1, because the algebraic equation
must be differentiated once to obtain:

Fy =2 ;         
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The numerical solution of DAE is more involved than the solution of ODE.  A summary of the integration
method in comercial libraries such as DASSL is provided by Simeonov (1999)

STATE VARIABLES AND EQUATIONS OF A MULTI-DEGREE-OF-FREEDOM SYSTEM

The equations of equilibrium of a multi-degree-of-freedom (MDOF) system can be written as:

( ) ( ) ( ) ( )tttt FRuCuM =++    (8)

where, M = mass matrix; u(t) = displacement vector; C = damping matrix; R(t) = resistance force vector; F(t) =
forcing vector and ‘⋅’ denotes time derivative.

Global State Variables:  In the general case, the set of global state variables of the system consists of three
parts:   (i) Generalized displacements along all free nodal degrees of freedom. Displacements along constrained
generalized coordinates are excluded by virtue of imposing boundary conditions;  (ii) Generalized displacements
along degrees of freedom with imposed displacement histories. This occurs, for example, when support
displacements due to settlement or earthquake motion are prescribed and in displacement-controlled laboratory
testing; (iii) Velocities along mass degrees of freedom. The number of velocity state variables may be less than
the number of displacement variables because often, rotational and even some translational mass components,
are ignored if their effect is presumed negligible.
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Local State Variables:  The local state variables describe the evolution of individual elements. These consist of
(i) Independent element end forces;  (ii) Constitutive variables, such as stresses or strains at the integration
points, which may be required to characterize inelasticity;  (iii) Any other internal variable that may govern the
behavior of the element (e.g. yield stresses, back-stress, etc.)

Force Vectors:  The element end forces, which are state variables, are transformed to global coordinates by
regular local-to-global transformations to obtain their contributions to the global resistance vector. This is
assembled by using node-number and element connectivity information. The forcing vector is assembled from
the applied nodal forces. In this context, the formation of a global stiffness matrix becomes unnecessary.

State Equations  The three sets of global state equations can be summarized as follows:

( ) ( ) 0FRyCyM 12 =−++ :ND:ND 11 ; ( ) ( ) 0dy1 =−++ :NDHNDH:NDND 11 ;…………

…………. ( ) ( ) 0yy 12 =−++++ :NVNVNDHND:NDHND 11 (9)

where, ( )tuy1 = , ( )tuy 2 = , d = prescribed displacement history vector, ND = number of unconstrained

DOF, NDH = number of DOF with specified displacement histories, NV = number of DOF with mass and NDOF
= total number of DOF. The mass and damping matrices in Eq. (28) have been condensed from their original
dimensions (NDOF×NDOF) to (ND×ND), while y2 has been expanded from NV to ND.

The state of each nonlinear element is defined by evolution equations involving the end forces, displacements
and the internal variables used in the formulation of the element model.  These equations are of the form:

( )eeeeee zzuuRGR ,,,,= ;                ( )eeeeee uuRRzHz ,,,,=     (10)

where, G and H are nonlinear functions, Re are the independent element end forces, ue are the displacements of
the element nodes and ze are the internal variables. The formulation of these equations for a beam element is
illustrated in the next section.

FORMULATION OF A FLEXIBILITY-BASED PLANAR BEAM ELEMENT

Constitutive Relations

Direct relationships between the end force and displacement rates are not typically available for line elements
subjected to a combination of bending, shear and axial load.  In the present formulation, the nonlinear moment-
curvature relationships of cross sections at discrete locations along the element axis are chosen to represent
constitutive laws for bending response. Eq. (1) is used to represent this constitutive macro-model. This model
can simulate smooth transition from elastic to inelastic behavior due to distributed yielding of the section as well
as cyclic degradation behavior Sivaselvan et al. (1999). Detailed treatment of axial force-bending moment
interaction in 2D and biaxial moment interaction in 3D space is presented by Simeonov (1999)..

State Variables and State Equations

The beam element, like any other frame element, is internally statically determinate. Therefore, a flexibility
formulation using force interpolation functions is utilized here.  The displacement interpolation functions used in
the regular stiffness-based formulations are exact only for elastic prismatic members. In contrast, the force
interpolation functions, which are statements of equilibrium, are always exact. The state variables of the beam
element are defined as the independent end forces and the curvatures at sections located at the quadrature points:

( ) ee Ry =31:  ;        ye (4:3+NG) = ϕϕϕϕ  (11)

where ye = element state vector, { }T
jii MMF=eR  = independent end forces, including the axial force at one

end and the bending moments at both ends; ϕϕϕϕ = {ϕ1  ϕ2 … ϕNG}T = section curvatures at NG quadrature points.

The state equations define the constitutive laws of the element and the individual sections:

eee uRF = ;        ( )[ ]φKaIKaM H0 −+=  (12)

where, Fe = element flexibility matrix of size 3×3, the derivation of which is described later,
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{ } T

jiu θθ=eu  = axial deformation and chord rotations at the ends, I = NG×NG identity matrix, a =

diag[a1  a2 … aNG] = ratio of post-yield to elastic stiffness, K0 = diag[K0,1  K0,2 … K0,NG] = elastic stiffness, KH =
diag[KH,1  KH,2 … KH,NG] = hysteretic stiffness and M = {M1  M2 … MNG}T = total bending moments at the
quadrature locations.

The latter are given by

( )[ ]φKaIKaMb H0eG −+= (13)

where { } T
ji MM=eM  = element end moments and bG  = moment interpolation matrix.

The element end displacements, which are global state variables, are transformed to the element deformations:
g
egee uTTu = (14)

where Te, a 3x6, Tg = 6×6 global to local displacement transformation matrices and g
eu  = {ui vi θi uj vj θj}T =

element end displacements in global coordinates.
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Fig. 2: (a) Element End Displacements and Deformation,  (b) Element Coordinates

Combining Eqs. (12) and (14) renders the formulation of the element force-displacement relation:

( ) 0uTTKy g
egeee =−3:1 ;               ( ) ( )[ ] ( ) 0yKaIKayb eH0eG =−+− +NG:: 3432 (15)

These equations establish one of the necessary links between local and the global state variables. The other link
is the contribution of the element end forces to the global resistance vector. The full set of end forces, Re, is

generated by equilibrium transformations of the independent forces eR : eee RTR T= , where Re = {Fi  Vi  Mi

Fj  Vj  Mj}
T.  The element contribution g

eR  to the global restoring force vector R is obtained by local-to-global

transformation of the end forces.

eeg
g
e RTTR TT=  (16)

Element Flexibility Matrix

Compatibility of deformation within the element may be expressed in weak form using the principle of virtual
forces as,

( ) ( )∫ δ=δ
L

TT dxxx
0

εRuR eee  (17)

where, εεεε(x) = {ε(x)  γ(x)  φ(x)}T = section axial strain, shear strain and curvature and eRδ = virtual forces. The

forces at any section may be obtained from equilibrium using the force interpolation functions as,

( ) ( ) ee RbR xx =                                                                                     (18)

where, Re(x) = {F(x)  V(x)  M(x)}T = section forces and b(x) = interpolation matrix.
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The rates of deformation at a particular location x are related to the respective stress resultant rates through the
matrix of section flexibility distributions f(x):

( ) ( ) ( )xxx eRfε =  (19)

where ( ) ( ) ]
1

1
,

1
,

1
[
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The flexibility matrix F of the element is derived from Eqs. (17), (18), (19) as:

( ) ( ) ( )∫=
L

T dxxxx
0

bfbFe  (20)

Gauss-Lobatto quadrature is used to integrate eq. (20) numerically, rather than the commonly used Gauss-
Legendre type rules because the former has integration points at the ends of the interval and hence can detect
yielding immediately. A Lobatto rule with n integration points integrates exactly a polynomial of order (2n-3).

NUMERICAL EXAMPLES

To illustrate the method, the system of state equations of an simple portal frame structure is solved quasi-static
and dynamic excitations. The response of the state space model is ompared with solutions of ANSYS (1992),
which uses a conventional incremental algorithm and stiffness-based beam elements.

Model Description

The example structure is shown in Fig. (3).  The stress-strain curve of the material is assumed bilinear : E =
199955 kN/mm2, σy = 248.2 kN/mm2. The section constitutive model of Eqs. (1) and (2) require definition of
four parameters: (i) the initial bending rigidity K0, (ii) the post-yield bending rigidity aK0, (iii) the parameter n
controlling the smoothness of transition and (iv) a discrete yield point My. These are listed in Fig 3.
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Fig. 3: Portal frame and properties of sections

State Space Macro-Model   The macro-element model for the proposed state-space solution consists of three
elements. Results of analyses with gradually increasing number of quadrature points reveal a consistent trend of
convergence. Finally, the columns are assigned 12 integration points (Fig. 4(a))

ANSYS Finite Element Model   The finite-element model in ANSYS (Fig 4 (b) was created using the plastic
beam element BEAM 24 (ANSYS, 1992). The cross sections of the frame members were divided into 10 fibers..
All analyses were performed using a 1% relative tolerance for force unbalance and a line search technique.

Node 43 Node 44

Node 86Node 1

20 elements

1 element

1 element

20 elements

(b)

Node 2 Node 3

Node 4Node 1

1 element
12 integration points

1 element
3 integration points

(a)

(b) "Beam 24" Element of ANSYS ( a) State-Space Approach Element

Fig  4: Differences between Beam Element Formulations
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State Variables and Equations

Quasi-static Analysis with Displacement Input

The structure is subjected to displacement-controlled loading (Fig.6) applied at node 2.  Fig (5) maps: (i) the
nodal displacements of the structure into the global state variables and (ii) the independent end forces and
curvatures at the quadrature points of each element into the local state variables. The indices indicate position in
the state vector.

Global u4 u5 u6 u7 u8 u9

State Variable y1 y2 y3 y4 y5 y6

Element 1 FI Mi Mj φ1 … φ12

State Variable y7 y8 y9 y10 … y21

Element 2 FI Mi Mj φ1 … φ12

State Variable y22 y23 y24 y25 … y36

Element 3 FI Mi Mj φ1 … φ12
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u5

u6
u7

u8

u9

State Variable y37 y38 y39 y40 … y51

Fig 5 Quasi-Static Analysis - Global and Local State Variables (y11 to y20, y26 to y35 and y41 to y50 represent
curvatures of quadrature sections)

The global state equations involve only active DOF and DOF with known displacement histories.  The local state
equations of the three elements are listed below (Eqs. 21-26), with the parenthesized superscript referring to the
element number.  The response of the frame is shown in Fig 6.

{ } ( )[ ] ( ) ( ) { } 0TTF gee =− − TT yyyyyy 321
1111

987 000 (21)

( ) { } ( ) ( ) ( )[ ]{ } 0KKab H0G =+− TT y...yyyy 211110
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98
1 (22)

{ } ( )[ ] ( ) ( ) { } 0TTF gee =− − TT yyyyyyyyy 654321
2212

242322 (23)

( ) { } ( ) ( ) ( )[ ]{ } 0KKab H0G =+− TT y...yyyy 362625
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2423
2 (24)

{ } ( )[ ] ( ) ( ) { } 0TTF gee =− − TT yyyyyy 000654
3313

393837 (25)

( ) { } ( ) ( ) ( )[ ]{ } 0KKab H0G =+− TT y...yyyy 514140
333

3938
3

(26)

Dynamic Analysis with Ground Acceleration Input

A ground acceleration record from the 1994 Northridge earthquake (Fig. (6b)) was used as input for the
nonlinear dynamic analysis. The masses, m1 = m2 = 24.9626 kN.s/m2, are lumped at the two joints of the frame
and the horizontal velocities of nodes 2 and 3 are added to the global state variables. A mass-proportional
damping coefficient, α = 0.8378, is chosen to provide a 5% damping ratio. The resulting global state equations
(28) and (29).have the state variables and equations the same as those in quasi-static case, Fig.5, but translated
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by: s
n

d
n yy =+2 , for n ≥ 7. where, ( )tug  is the base acceleration.  The results are shown in Fig (6b).

( )
( )

( )
( )

0=





























−

−

−





























+
−+−

++−
+
++−

++−

+





























α

α

+





























0

0

0

0

0

0

0

0

0

0

0

0

2

1

4026

3922625

3414024

2511

226259

2411110

42

11

82

71

g

g

um

um

yy

yLyy

Lyyy

yy

Lyyy

yLyy

ym

ym

ym

ym

 (27)

{ } { } 0=− TT yyyy 4187 (28)
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Fig. 6:  Quasi-Static Analysis: Shear Force vs Displacement of Element 1

CONCLUSIONS

A general formulation for state-space analysis of frame structures has been applied to both quasi-static and
dynamic problems. Using a macromodel approach with a flexibility-based nonlinear bending element the
solution is obtained using iterative procedures applied to the differential-algebraic equations. The global state
equations of equilibrium and the local constitutive state equations are solved simultaneously.  The accuracy of
this macro-element can be refined by increasing the number of quadrature points, at which the constitutive
equations are monitored, in contrast to increasing the number of elements in conventional finite element analysis.
The former is computationally more economical. The state-space approach has good correlation with results
from a finite element program, using a conventional incremental solution with densely meshed beam elements.
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