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SUMMARY 
 
This paper presents a strut-and-tie model for evaluating deformation of reinforced concrete interior beam-
column assemblages limited by shear failure of joint region. The effect of plastic hinge deformation of 
beams on shear strength of joint region is defined in terms of bond deterioration and softening of concrete 
compression. The strength and the limited deformation calculated by the proposed model are compared 
with available test results, showing good agreement. Since this proposed model depicts the stress flow not 
at ultimate, but at a required deformation level selected by practitioner, it can provide a clearer 
understanding of the relationship between the response of beam-column assemblages and the strength of 
the joint regions. 
 

INTRODUCTION 
 
Under lateral loading like seismic attack, beam-column joint is generally subject to many times higher 
shear forces than those of beams or columns adjacent to the joint. To insure the ductile response of beam-
column assemblage, the shear strength of the joint should be guaranteed till the plastic hinges form at the 
beams and deform to the required level. Traditional design objective for reinforced concrete beam-column 
joint has been to treat it as though it were brittle. And the objective of capacity design philosophy is to 
design a beam-column joint that is stronger than the frame beams. An overstrength factor is used to create 
the probable demand and thereby attain a conservative design criterion for the beam-column joint. Current 
ACI code provisions [1] for beam-column joint provide the limitations for shear force and impractical 
details of reinforcement so that the joint shear failure may not curtail ductile response of structural frame. 
These limits of shear stress are also conservatively approximated values. Much of this apparent 
conservatism is caused by the uncertainty and complexity of load transfer mechanism within the joint.  
 
It is generally admitted that the joint shear force is transferred by diagonal strut mechanism (Fig. 1(a)) and 
truss mechanism (Fig. 1(b)) [2]. However, there is some confusion with the determination of the 
contributions between two mechanisms. To validate the truss mechanism, bond resistance of the 
reinforcing bars of beam passing through the joint should be secured. Bond resistance, however, is likely 
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to decrease with plastic deformation of the bars. Modeling with only the diagonal strut mechanism 
induces a conservative solution for the shear carrying capacity of beam-column joint.  
 
Hwang and Lee [3][4] proposed softened strut-and-tie models for exterior and interior beam-column joint, 
which determined the fractions of diagonal strut mechanism and truss mechanism according to the 
geometries of the joint, and considered the softening of diagonal strut. But, these models where truss 
mechanism depends on the joint geometries, could not explain the reduction of truss mechanism by the 
bond deterioration. 
 
Shear strength of the joint region decreases as the deformation at the adjacent beams increases. The 
increase of plastic deformation of beam bars causes bond deterioration at the joint region and increases 
shear deformation of the joint resulting in the softening of concrete compression in the joint core. In this 
paper, the effects of plastic hinge deformation on the shear strength are considered for strut-and-tie models 
of interior beam-column joints. These proposed models provide a rational tool to determine the shear 
strength of interior beam-column joint related to the deformation of plastic hinges at the adjacent beams, 
and to estimate the system ductility limited by shear failure of the joint with that model vice versa. 
 

CONSTRUCTION OF STRUT-AND-TIE MODEL 
 
Shear force acting on interior beam-column joint 
Forces acting on the interior beam-column joint under lateral loading are shown in Fig. 2 and the 
horizontal joint shear force acting on the joint core can be postulated as: 
 

1 2jh b b cV T C V= + −          (1) 

 
where Vjh is the horizontal shear force on joint; Tb1 is the tensile force of beam reinforcement at the right 
face of column; Cb2 is the compressive force of beam flexural compression block at the left face of 
column; and Vc is shear force of column above the joint. 
 
For the interior beam-column assemblage, plastic hinges are desired to form at beams near the column 
faces. Thereby, the yielding of reinforcing bars in the beams is assumed. Then, equilibrium conditions of 
the left-side beam at the column face allow compressive force Cb2 to be substituted by tensile force Tb2.  
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Fig. 1 Shear transfer mechanisms of internal beam-column 
joint (a) Diagonal strut mechanism (b) Truss mechanism 

Fig. 2 Forces acting on interior 
beam-column joint 
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where As1 and As2 are the areas of tension reinforcement of right-side and left-side beams, respectively; fy 
is the strength of reinforcing bars; Mu1 and Mu2 are the moment capacities of the beams; and h is inter-
story height, that is the distance between the contraflexural points of upper and lower columns. 
 
Definitions of deformation in joint 
As a factor representing the plastic hinge deformation of beam, a required strain (εreq) of main bars of 
beam at the column face is taken. The required strain is supposed to be a value postulated from the 
demand of plastic hinge deformation at design of beam (εreq ≥ εy).  
 
Under the different state of the required strain of bars, distributions of strain along the horizontal chord 
within the joint region are proposed as shown in Fig. 3. Linear strain distributions of bars at tensile region 
are assumed and the ratio of strain change along the bar direction is calculated from the bond strength. 
Correlated distributions of bar stress and bond forces are demonstrated. In addition, expected stress fields 
of concrete compression are also depicted in accordance with the bond stress distributions. These are 
divided into three states that are before bond stress reaching the strength (State I, see Fig. 3(a)), after bond 
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Fig. 3 Distributions of strain along the horizontal chord within the joint I 



stress reaching the strength (State II, 
see Fig. 3(b)), and after bond force 
being lost (State III, see Fig. 3(c)). The 
slope of strain distribution along the 
horizontal chord (regard x-axis) is 
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dx E d

ε ≤           (3) 

 
where the sign of equality is given at 
state II and state III (bond stress 
reaching the strength); fb is bond 
strength; Es is Elastic modulus of the 
reinforcing bars; and db is bar 
diameter.  
 
From the horizontal strain distributions 
illustrated in Fig. 3, horizontal deformation of the joint can be calculated, and the average strain of joint 
core is determined. Fig. 4 shows the horizontal strain distribution of (a) top chord, (b) joint core, and (c) 
bottom chord. The average strain of top chord is 
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where, ac is the depth of the compression zone in the column; and εc is the strain of beam compression 
block, which can be calculated from the tensile strain εreq and neutral axis of the beam as follows:  
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where, ab is the depth of the compression zone in the beam; d is the distance from the top of compression 
zone to the centroid of tensile reinforcement at the beam. The average strain of bottom chord is calculated 
in the same manner, the average strain of the joint core is determined as the mean of the average strains of 
the top and the bottom chord. 
 
Geometries of strut-and-tie model 
A stress field for an interior beam-column joint is proposed as shown in Fig. 5(a) representing all the 
states of the required strain level, the strut-and-tie model is developed based on this stress field (See Fig. 
5(b)). Though the compression force Cb2 is not actually coincided with tensile force Tb1, the location of 
compression force is assumed at the location of main bars for simplicity. Strut angles of inclination α1 and 
α2 are defined as: 
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where ch′  and bh′  are the distance between the longitudinal reinforcement in the column and beam, 
respectively. Regarding that beam near the column face reaches the flexural capacity (Mu), the depth of 
beam compression zone (ab) is calculated as follows: 
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where As is the area of tensile reinforcement of the beam; and bb is the beam width. For the depth of 
compression zone of column (ac), the equation approximated by Pauley and Priestley [5] is used as 
follows: 
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where N is the axial force acting on the column; hc and bc are the thickness and width of column, 
respectively. 
 
Effective strength of components  
For determining the strength of the strut-and-tie model, the effective strength of components, involving 
struts, ties, and nodes should be defined based on the required strain level.  

                  (a)                                                                                (b) 
Fig. 5 (a) Stress field of interior beam-column joint and (b) strut-and-tie model 
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Struts and ties 
Transversely cracked concrete in compression has been observed to have lower strength and stiffness than 
uniaxially compressed concrete. Constitutive equations of uniaxially compressive concrete have been 
derived considering the softening [6][7], and those have applied to the shear problems in reinforced 
concrete. The shear strength of joint is certainly governed by such softening of concrete in compression. 
For the strength of diagonal struts within the joint, the strength of compressed concrete with tensile strain 
in transversely direction, which is proposed in Modified Compression Field Theory, [6] is used. For  
simplicity, the direction of diagonal strut is assumed as the principal direction of compression.  
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where ε1 is an average principal tensile strain of cracked concrete. The principal tensile strain ε1 can be 
obtained considering the horizontal strain εh, the vertical strain εv, and the principal compressive strain ε2 
based on the two-dimensional compatibility condition. 
 

1 2 h vε ε ε ε+ = +              (11) 
 
The principal compressive strain ε2 reaches 0.002 from the assumption that the diagonal strut reaches the 
strength. The horizontal strain εh is in Eq. (4) and the vertical strain εv is 
 

2tanv t cV hε α ′=              (12) 
 
The strengths of horizontal tie (Fh) and vertical tie (Fv) are taken as the strength of the joint hoop bars, and 
column bars in joint core, respectively.  
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T-T-C nodal zone 
Considering the bond deterioration within the joint, the effective strength of the T-T-C node (N1) is 
determined in accordance with the deformation states in Fig. 3. The bond stress (u) and the length of nodal 
zone (ln1) resisting the shear can be determined. At each state, the bond stress and nodal zone length are 
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Accordingly, the shear transferring capacity of the T-T-C node (N1) is 
 

1 1N b n bV n d l fπ=       (17) 
 
where n is the number of tension reinforcing bars of beam passing through the joint; db is bar diameter.  
 
C-C-C nodal zone 
Basically nodal zone of C-C-C node (N2) is 
taken as triangular region surrounded by the 
compression zone of beam, column (ab and 
ac) and diagonal strut of the joint. For 
estimating the strength of C-C-C node (N2), 
it is considered that load path in the joint is 
divided into direct diagonal strut (D1) and 
horizontal tie aided diagonal strut (D2). Note 
that the indirect mechanism by strut (D2) 
can be regarded as the confining effect of 
diagonal strut (D1) by joint core 
reinforcement. Fig. 6 shows the C-C-C 
nodal zone to be composed of the end of 
strut D1 and the end of D2. The compression 
force caused by bond force along the beam 
bars within the C-C-C nodal zone is also 
included in the strut D2. The bond strength 
(fbc) in C-C-C node is assumed to be twice 
of the bond strength in T-T-C node (fb). 
Regarding the stress of the strut D2 as the capacity that is ( )2 0.85str ca b f ′  at the border of C-C-C node and 

strut D2, simultaneous equations with diagonal strut depths and the length carrying the bond stress within 
the C-C-C node are derived as: 
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1 1 2 2 2sin sinstr str c ta a a lα α+ = −              (19) 
 

1 1 2 2cos cosstr str ba a aα α+ =            (20) 
 
From the simultaneous equations above, the depths of diagonal struts and bond length within the C-C-C 
node can be calculated as: 
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where bond length (ln2) is limited by ( )1tanc ba a α− . Thereby, the effective strength of C-C-C node is 

expressed as: 
 

( )( )2 1 1 2 2 2cos 0.85 cosN str cd str c b n bcV a bf a b f n d l fα π α′= + +       (24) 

 
Equilibriums and shear strength of joint 
From the equilibrium condition of the forces joined at nodes within the upper chord, the horizontal shear 
force from the strut-and-tie model is found. 
 

1 1 2 2cos cosu TV D D Vα α= + +               (25) 
 
where, the first and second terms of the right side mean the shear force transferred by diagonal strut 
mechanism including the confining effect of joint reinforcement, while third term means that of the truss 
mechanism.  
 
Using the effective strengths to be defined above, the limit of each component (D1, D2, and VT) can be 
determined. Firstly, the shear force resisted by the truss mechanism is limited by the strength of T-T-C 
node (N1) and the strengths of horizontal and vertical ties. 
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The limit of direct diagonal strut D1 force is determined by the effective strength of cracked concrete as: 
 

1 1str cdD a b f=               (26) 
 
The maximum of strut D2 is limited not only by the effective strength of cracked concrete but also by the 
remainder of horizontal tie force and the effective strength of C-C-C node (N2).  
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VERIFICATION 
 
Test specimens described in literatures 
[8][9][10][11][12][13][14] are investigated to 
verify the proposed model. All specimens are 
designed to have the column strength higher than 
the beam strength to cause the plastic hinges at the 
beams. Fig. 7 shows definitions of geometries of 
the specimens of internal beam-column joints for 
the analysis with the proposed strut-and-tie model. 
Geometries of specimens, material properties and 
axial loading above column are summarized in 
Table 1.  
 
In all the test data, the deformation of beam-column 
assemblage is represented as inter-story drift (∆) or 
drift angle (R). To compare the calculated results 
by the proposed model with test data, it precedes to 
find the relationship between the main bar strain of 
the beam (εreq) representing the plastic deformation 
in the proposed model and the inter-story drift shown in test. Fig. 8 shows the deformation of interior 
beam-column assemblage comprising (a) elastic deformation of beams and columns, (b) plastic 
deformation of beam plastic hinge, and (c) shear deformation of joint itself. Accordingly, inter-story drift 
(∆) and drift angle (R) of interior beam-column joint are 
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h
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l
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R h= ∆            (29) 

 
where, ∆C1, ∆C2, ∆Be1 and ∆Be2 are elastic deformations of columns and beams, respectively; ∆Bp1 and ∆Bp2 
are plastic deformation of right and left beams; h and l are the height and length of beam-column 
assemblage, respectively; γJ is average shear strain of the joint.  
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                      (a)                                                (b)                                               (c) 
Fig. 8 Relationships of Inter-story drift and member deformations (a) elastic deformation of 
beam and column (b) plastic hinge deformation (c) Joint shear deformation 
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Table 1. Test parameters of interior beam-column joint 

Authors 
Spec-
imens 

l (1) 

(mm) 
h (2) 

(mm) 
hb 

(mm) 
bb 

(mm) 
hc 

(mm) 
bc 

(mm) 
cf ′  

(MPa) 
As1fy 
(kN) 

As2fy 
(kN) 

Ashfy
 

(kN) 
Asvfy

 

(kN)_ 
N (3) 
(kN) 

HH 3000 1750 350 200 300 300 25.6 161 161 457 322 353 
HL 3000 1750 350 200 300 300 27.4 161 161 457 322 353 
MH 3000 1750 350 200 300 300 28.1 161 161 107 322 353 

Joh et al. 
[8] 

LH 3000 1750 350 200 300 300 26.9 161 161 64 322 353 
A1 2000 1500 250 160 220 220 40.2 257 257 49 513 147 
A2 2000 1500 250 160 220 220 40.2 257 257 49 308 147 
A3 2000 1500 250 160 220 220 40.2 257 257 49 513 441 

Fujii et al.
[9] 

A4 2000 1500 250 160 220 220 40.2 257 257 132 513 441 
J1 2700 1470 300 200 300 300 25.7 426 213 62 319 176 
C1 2700 1470 300 200 300 300 25.6 302 151 55 336 176 
B1 2700 1470 300 200 300 300 24.5 394 394 53 590 176 

Kitayama 
et al. [10] 

B2 2700 1470 300 200 300 300 24.5 293 293 140 389 176 
BCJ2 2134 1464 305 203 254 254 30.3 227 128 53 341 0 
BCJ3 2032 1464 305 203 254 305 27.4 227 128 53 341 0 Leon.[11]
BCJ4 1930 1464 305 203 254 356 27.2 227 128 53 227 0 

A1 4000 2500 600 300 300 900 32.3 506 303 0 0 0 
A2 4000 2500 600 300 900 .300 32 880 452 301 1355 0 
M1 4000 2500 600 300 300 900 32.5 506 303 0 0 0 

Li. et al. 
[12] 

M2 4000 2500 600 300 900 300 30.3 880 452 301 1355 0 
S1 3920 3500 500 400 400 400 39 565 283 126 754 670 Filiatrault 

et al. [13] S2 3920 3500 500 400 400 400 46 565 283 503 754 670 
Unit

1 3190 2450 550 300 390 390 33.3 475 475 480 417 1800 

Uni2 3190 2450 550 300 390 390 33.3 475 475 721 417 1800 
Unit

3 3190 2450 550 300 390 390 37 356 356 320 417 450 

Unit
4 3190 2450 550 300 390 390 37 475 238 320 417 450 

Lin. 
[14] 

Unit
8 3190 2450 550 300 390 390 33.2 475 475 556 417 450 

(1) overall beam length (l1+l2)  
(2) overall column length (h1+h2)  

(3) Axial force acting on column 
 
Elastic deformations of beams and columns can be calculated with effective stiffness (EcIeff) of RC 
flexural members suggested by ACI [1]. 
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V l h
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where, subscript i takes 1 in upper column and 2 in lower column; EcolIcol is effective stiffness of column; 
subscript j takes 1 in left beam and 2 in right beam; EbeamIbeam is effective stiffness of beam; and Vc and Vb 
are shear force of column and beam, respectively at the flexural yielding of beam. 
 
The plastic deformation of beam is determined with plastic strain (εp) and plastic hinge length (lp). 
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Table 2. Verification of proposed model with experimental results 

Test results Results from proposed model 
Authors 

Spec- 
imens Vc (kN)(1) Rmax

(2) Vc (kN)(3) Vjh (kN)(4) Vu,ini(kN) (5)
max,calR  (6) 

Vc 
(cals/test) 

Rmax 
(cals/test

) 
HH 63.5 0.032 59.9 262 396 0.035 0.94 1.09 
HL 64.8 0.025 59.8 262 398 0.036 0.92 1.44 
MH 62.9 0.025 59.9 262 318 0.014 0.95 0.56 

Joh et al. 
[8] 

LH 65.4 0.029 59.7 262 298 0.013 0.91 0.45 
A1� 66.7 0.030 72.8 441 332 - 1.09 - 
A2� 61.5 0.046 72.8 441 332 - 1.18 - 
A3 66.7 0.031 72.8 441 423 - 1.09 - 

Fujii et al. 
[9] 

A4 68 0.031 72.8 441 463 0.018 1.07 0.58 
J1� 108 0.040 108.5 530 365 - 1.00 - 
C1 98 0.029 80.8 372 326 - 0.82 - 
B1� 128 0.037 125.2 663 456 - 0.98 - 

Kitayama 
et al. [10] 

B2� 118 0.041 98.6 488 455 - 0.84 - 
BCJ2� 49.1 0.039 41.5 313 221 - 0.85 - 
BCJ3� 55.5 0.034 41.5 313 210 - 0.75 - Leon. [11]
BCJ4� 67.4 0.031 41.8 313 210 - 0.62 - 

A1� 162.4 0.013 176 632 307 - 1.08 - 
A2 322.1 0.016 333 998 1161 0.013 1.03 0.81 

M1� 188.7 0.012 176 632 308 - 0.94 - 
Li. et al. 

[12] 
M2 389.7 0.015 331 1000 1133 0.012 0.85 0.8 
S1 151 0.02 138 922 820 - 0.91 - Filiatrault 

et al. [13] S2 158 0.028 139 922 1020 0.021 0.88 0.75 
Unit1 225 0.026 204 746 1144 0.033 0.91 1.27 
Unit2 225 0.028 204 746 1227 0.05 0.91 1.78 
Unit3 170 0.02 156 556 655 0.015 0.92 0.75 
Unit4 175 0.025 155 557 610 0.015 0.89 0.6 

Lin. [14] 

Unit8 220 0.04 204 746 824 0.025 0.39 0.63 
(1) maximum shear force of column loaded in test  (2) story drift angle at maximum shear force in test 
(3) column shear force after beam plastic hinge occurring, third term of right side in Eq. (2)  (4) 
horizontal joint shear force after beam plastic hinge occurring, calculated by Eq. (2)  (5) horizontal 
shear strength of joint at R=0  (6) story drift angle at Vu=Vjh 
� means the specimen shows failure before beam plastic hinge occurred in test. (Vu,ini<Vjh) 

 



where subscript j takes 1 in left beam and 2 in right beam; plastic hinge length (lp) is taken as the simple 
approximated value (lp = 0.5hb) by Pauley and Priestley [2].  
 
Shear deformation of the joint is simply approximated with the strain of horizontal tie and diagonal strain 
as shown in Fig. 9. 
 

2
1cos

c
J h

εγ ε
α

= +   (33) 

 
Finally, the required strain of beam bars at column face (εreq) is 
 

req p yε ε ε= +            (34) 

 
The shear strength of an interior beam-column joint (Vu) 
decreases as the story drift angle (R) increases, while the 
internal horizontal shear forces within the joint (Vjh) 
remain constant after both beams yield. A conceptual 
relationship between the joint strength and the system 
ductility is illustrated in Fig. 10. The intersection point 
of the two curves (Rmax) indicates the system ductility 
limited by the shear failure of beam-column joint. 
 
Test results and the calculation from the proposed model 
are listed in Table 2 with the comparisons of column 
shear (Vc) and story drift angle at failure (Rmax). Some of 
the joints show the failure before their beam plastic 
hinges are developed, which are identified from the 
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Fig. 9 Shear deformation of joint 
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Fig.10 Behavior and strength of interior beam-column joint involving a plastic hinge 



comparison of Vjh (horizontal joint shear strength under the assumption of beams yielding) with initial 
strength of joint Vini (shear strength of joint when the story drift has zero value). The results calculated 
from the proposed model show good agreements with test results. 
 

CONCLUSIONS 
 
Strut-and-tie models for determining the shear strengths of interior beam-column joints dependent on the 
deformation conditions are proposed. To determine the strength of the proposed strut-and-tie models, the 
effective strengths of the components that comprise struts, ties, C-C-C nodes, and T-T-C nodes, are 
postulated in accordance with the bond deterioration and the concrete softening, which depend mainly on 
the plastic hinge behavior of beams.  
 
Since the proposed models are dependent on the deformation conditions, they can provide a clearer 
understanding of the loading path within the interior beam-column joints, which varies with the plastic 
response of the system. These deformation dependent strut-and-tie models can be used as rational tools for 
evaluation of existing joints and for the design not only in high seismicity zone but low- or mid- seismicity 
zones where fully ductile behavior is not required. 
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