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SUMMARY 
      
Strength reduction factors have been extensively studied in the past for firm ground, and even for soft 
soils considering site effects, but always excluding soil-structure interaction. In this work they are 
investigated for a single elastoplastic structure with flexible foundation excited by vertically propagating 
shear waves. The concepts developed earlier for fixed-base yielding systems are extended to account for 
soil-structure interaction. This is done by use of the simplified reference model and a nonlinear 
replacement oscillator recently proposed by the authors. The latter is defined by an effective ductility 
together with the effective period and damping of the system for the elastic condition. Numerical 
evaluations are conducted for typical system configurations, using the great 9 October, 1995 Manzanillo 
earthquake recorded at the surface of a sand deposit in near field. Results are compared with those 
corresponding to the fixed-base case. Finally, it is shown how a site-dependent reduction rule proposed 
elsewhere for fixed-base systems should be adjusted for interacting systems using the information 
presented. 
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INTRODUCTION 
 
To account that structures experience nonlinear response under strong earthquake motions, the current 
practice of earthquake resistant design is based on the use of strength reduction factors, µR , which relate 

the structural resistance for elastic behavior to that required for a given ductility. Following this well-
established design approach, the yield resistance of nonlinear structures are estimated from the 
corresponding values of linear structures. Perhaps, the most widely accepted reduction rule for design is 
the one originally proposed by Veletsos and Newmark [1] and after improved by Newmark and Hall [2], 
based on the fact that the maximum elastic and inelastic displacements are equal in the long-period region 
of the response spectrum. As a consequence of site effects, the shape of µR  for soft soil can be very 

different from that applicable to firm ground, depending essentially on the ratio between the fundamental 
period of the structure and the predominant period of the site (Miranda [3]. A recent work by Ordaz and 
Pérez-Rocha [4] presented a site-dependent reduction rule that is more general than others previously 
published. It can be applied to a wide variety of soft sites but, as other similar rules, does not account for 
soil-structure interaction. These authors have shown that, if the structure period is close to the site period, 
the value of µR  may be significantly higher than that would be predicted by the Veletsos-Newmark 

design rule, equal to the structural ductility. For soft soils, a design reduction rule should include the 
effects of interaction, in addition to those induced by site conditions. Nevertheless, none of the µR  factors 

developed so far explicitly account for such effects. 
 

The aim of this paper is at extending the well-known concept of strength-reduction factor developed long 
ago for fixed-base systems in order to account for soil-structure interaction. To this end, an interaction 
model formed by a single yielding structure with embedded foundation in a soil layer over elastic bedrock 
is investigated. To easily assess the µR  factor with interaction, the solution for a nonlinear replacement 

oscillator recently proposed by Avilés and Pérez-Rocha [5] is used. This equivalent oscillator is defined 
by an effective ductility together with the effective period and damping of the system for the elastic 
condition. These authors have demonstrated that modifying both the ductility factor as well as the relevant 
natural period and damping ratio of the fixed-base structure is a reliable way of expressing the interaction 
effects in nonlinear systems. By using this information, the site-dependent reduction rule developed by 
Ordaz and Pérez-Rocha [4] for fixed-base systems is suitably adjusted for interacting systems. This is a 
more rational way to assess in practice the yield resistance of flexibly supported structures. Conclusions 
from this study are expected to be applicable to more complex interacting systems. 
 
 

DESCRIPTION OF MODEL AND BASIC EQUATIONS 
 
The effects of kinematic and inertial interaction in nonlinear systems are evaluated by use of the relatively 
simple axisymmetric model shown in Fig. 1. The former effects are produced by the scattering and 
diffraction of the incident waves from the foundation, while the latter are caused by the inertial forces 
generated in the structure and foundation. This model is similar to that formulated by Avilés and Pérez-
Rocha [5] to investigate the effects of interaction on the structural ductility. It consists of a single 
elastoplastic structure placed on a rigid foundation that is embedded in a homogeneous viscoelastic layer 
of constant thickness overlying a uniform viscoelastic half-space. The structure represents either a one-
story building or, more generally, the first-mode approximation of a multi-story building. In the latter 
case, the parameters eH  and eM  are the effective height and mass of the structure when vibrating in its 

rigid-base fundamental mode. The natural period and damping ratio of the structure for the elastic and 
rigid-base conditions are given by 
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where eC  and eK  are the viscous damping and initial stiffness of the structure when fixed at the base. 

The foundation is assumed perfectly bonded to the surrounding soil; it is defined by the radius r , depth 
of embedment D , mass cM , and mass moment of inertia cJ  about a horizontal centroidal axis at the 

base. The stratum of thickness sH  is characterized by the Poisson's ratio sν , mass density sρ , shear 

wave velocity sβ , and hysteretic damping ratio sζ . Similarly, the corresponding material properties of 

the underlying half-space are defined by oν , oρ , oβ  and oζ . 

 
The interacting system is excited by vertically incident shear waves with particle motion parallel to the x-
axis, as illustrated in Fig. 1. The horizontal free-field displacement at the ground surface is denoted by 

gU . In view of the characteristics of this wave excitation, the input motion for the foundation consists of 

the horizontal component oU  at the center of the base and the rocking component oΦ  about the y-axis. 

The response of the building is described by the relative horizontal displacement eU  at the center of the 

deck, whereas the response of the foundation is described by the horizontal displacement cU  at the center 

of the base and the rocking cΦ  about the y-axis, both measured with respect to the corresponding 

horizontal and rocking input motions. Providing the foundation is rigid and the soil behaves linearly, the 
simplified analysis of interaction can be performed in three steps as follows: (1) elastic determination of 
the motion of the massless foundation when subjected to the seismic excitation, resulting in the horizontal 
and rocking input motions at the base; (2) elastic determination of the springs and dampers by which the 
supporting soil is replaced for the horizontal, rocking and coupling modes of the massless foundation; and 
(3) non-linear analysis of the structure, including the mass of the foundation, supported on the springs and 
dampers of step 2 and excited by the input motions of step 1. In accordance with this substructure 
technique, the governing equations of motion in the time domain for the coupled soil-structure system are 
given by 
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where the overdot denotes differentiation with respect to time t . Also, )()()( tVtUCtP eeee += &  is the 

internal force of the structure, )(tVe  being the restoring force. The interaction force )(tPs  and moment 

)(tM s  of the soil acting on the foundation are defined by a convolution integral discussed by Avilés and 

Pérez-Rocha [5]. In this work, the authors explain their scheme of solution of the equation system given 
in (3). 
 
 

 
 
 

Fig. 1. Single nonlinear structure placed on a rigid foundation that is embedded in a stratum overlying a 
half-space, under vertically propagating shear waves. 

 
 
 

NONLINEAR REPLACEMENT OSCILLATOR 
 

Let us call eT
~

 and eζ~  to the effective period and damping of the system. They can be determined using 

an analogy between the interacting system excited by the foundation input motion and a replacement 
oscillator excited by the free-field motion. The mass of this equivalent oscillator is taken to be equal to 
that of the actual structure. Under harmonic base excitation, it is imposed that the resonant period and 
peak response of the interacting system be equal to those of the replacement oscillator. Introducing some 
permissible simplifications, Avilés and Suárez [6] have deduced the following expressions: 
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where 21)(2 hheh KMT π=  and 212 ))((2 rreer KDHMT +π=  are the natural periods if the structure 

were rigid and its base were only able either to translate or to rock, and hhhheh KC 2~ω=ζ  and 

rrrrer KC 2~ω=ζ  are the damping ratios of the soil for the horizontal and rocking modes of the 

foundation. As the natural periods hT  and rT  must be evaluated at the effective frequency of the system, 

ee T
~

2~ π=ω , an iterative process is required for calculating the system period from (4). Once this is done, 

the system damping is directly calculated also from (5). It should be mentioned that the factor 

reh QDHQ )( ++  represents the contribution of kinematic interaction to the energy dissipation in the 

interacting system. This effect is taken into account by considering the base excitation to be unchanged, 
equal to the free-field motion, while the system damping is increased. By this means, the same overall 
result is achieved. 

 
To account for the inelastic interaction effects, an equivalent ductility factor that fully characterizes the 
replacement oscillator requires to be defined. We shall call eµ~  to this factor, also referred to as the 

effective ductility of the system. The force-displacement relationships for the resisting elements of the 
actual structure and the replacement oscillator are assumed to be of elastoplastic type. By equating the 
yield strengths and maximum plastic deformations developed in both systems under monotonic loading, it 
has been found that (Avilés and Pérez-Rocha, [5]) 
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Note that the values of eµ~  vary from 1 to eµ , so that the effective ductility of the system is lower than the 

allowable ductility of the structure. The effective ductility eµ~  will be equal to the structural ductility eµ  

for infinitely-rigid soil (for which ee TT =~
) and to unity for infinitely-flexible soil (for which ∞=eT

~
). It 

has been demonstrated by Avilés and Pérez-Rocha [5] that, under seismic excitation, the yield strength of 
the replacement oscillator for the effective ductility eµ~  remains in satisfactory agreement with that 

required by the interacting system for the allowable ductility eµ . 

 
 

STRENGTH-REDUCTION FACTOR 
 
Contemporary design criteria admit the use of strength reduction factors to account for the nonlinear 
structural behavior. It is indeed common practice to make use of these factors for estimating inelastic 
design spectra from reducing elastic design spectra. For the interacting system subjected to a given 
earthquake, let us call the strength reduction factor, β−µR , to the ratio between the strength required to 

have elastic behavior, )1(mV , and the strength for which the ductility demand equals the target ductility, 

)( eyV µ : 
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It should be noted that this factor depends not only on the structural period eT , but also on the ductility 

factor eµ  and the soil flexibility measured by the shear wave velocity sβ . To a lesser degree, this factor 

is also influenced by the structural damping eζ . It is evident that determination of β−µR  allows estimation 

of inelastic strength starting from their elastic counterpart. Next we are to show the extent to which the 

β−µR  factor are influenced by soil-structure interaction. 

 
 

RESULTS 
 
A free-field control motion, defined by the 9 October, 1995 Manzanillo earthquake recorded at the 
surface of a sand deposit in near field, was used for computations. In left side of Fig. 2 are depicted the 
normalized strength ( gMV ey ) spectra for constant ductility ( =µe 1, 2 and 4) and 5% of critical 

damping, at the exclusion of soil-structure interaction. Here g  is the acceleration of gravity. Also shown 

in this figure are the corresponding strength-reduction ( ∞−µR ) factor. According to the one-dimensional 

wave propagation theory, the predominant period of the site is given by sss HT  4 β= , where =sH 15 m 

and =βs 80 m/s for the site considered. So, we have that =sT 0.75 s, equal to the second resonant period 

observed at the elastic acceleration spectrum. The first one is related to the source in near field. It can be 
seen that the values of ∞−µR  are close to eµ , the value predicted by Veletsos and Newmark's rule. To 

show the influence of foundation flexibility on the β−µR  factor, the =βs 80 m/s shear wave velocity value 

was considered. For a representative story height of 3.6 m, the ratio ee TH  is approximately equal to 25 

m/s, assuming the effective height as 0.7 of the total height and the translational period as 0.1 s of the 
number of stories. By considering this empirical relationship, the relative stiffness of the structure and soil 
takes values within the range 5010 .TH. ese ≤β≤ . Note that for a given value of eT , the value of eH  

is obtained from the constant ratio ee TH . With this, the foundation radio is determined from a fixed 

value of the ratio 3==δ rH er , and then the foundation embedment is determined from a fixed value 

of the ratio 50.rDd ==δ . This implies that the structure considered changes in height as a function of 

the period but has a constant slenderness ratio. At the same time, the foundation dimensions vary when 
the structure height changes, as happens with many types of buildings. The remaining system parameters 

were fixed constant at typical values for building structures: =ec MM 0.25, =+ 2)( DHMJ eec 0.05 

and =πρ ese HrM 2 0.15. In right side of Fig. 2 are depicted the normalized strength spectra for constant 

ductility ( =µe 1, 2 and 4) and 5% of critical damping, and the corresponding strength-reduction factor, 

for this interaction scenario. The validity of (4), (5) and (6) is also verified. It is clear that the strength 
spectra obtained for the interacting system are well predicted by using the replacement oscillator.  



 
 
 

Fig. 2. Top: normalized strength spectra without (left) and with (right) interaction for =µe 1 (dotted 

line), 2 (dashed line) and 4 (solid line), considering a 9 October, 1995 Manzanillo earthquake 
near field record. Exact solution for the interacting system (thick line) and approximate solution 
for the replacement oscillator (thin line). Bottom: Comparisons of real strength-reduction factors 
(thick line) for =µe 2 (dashed line) and 4 (solid line) with those obtained by the proposed 

reduction rule (thin lines) for =µe 2 (dashed line) and 4 (solid line). Results on right column 

correspond to an interacting system with =rHe 3, =rD 0.5 and =rHs 3. 

 
 
 
 

 
 



DESIGN REDUCTION RULE 
 
Ordaz and Pérez-Rocha [4] observed that, for a wide variety of soft sites, the shape of ∞−µR  depends on 

the ratio between the elastic displacement spectrum and the peak ground displacement as: 
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where ≈α 0.5. It is a simple matter to show that this expression has correct limits for very short and long 
periods of vibration. Contrarily to what happens with available reduction rules, the values given by (8) 
can be larger than eµ , which indeed occurs if gm UU > . Following the replacement oscillator approach, 

this reduction rule may be readily implemented for elastically supported structures by merely replacing in 

(8) the relationships 22~
)1~(1 eeee TT−µ=−µ  and meem UTTU

~
)

~
( 22=  , with which we have: 
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It should be pointed out that (8) will yield the same result as (9) if the elastic displacement spectrum 

without interaction is replaced by that with interaction. The two spectra ),( eem TU ζ  and )
~

,
~

(
~

eem TU ζ  are 

used to emphasize the fact that the former corresponds to the actual structure, whereas the latter to the 
replacement oscillator. Comparisons are made in Fig. 2 (bottom) between real strength-reduction factor 
and that obtained with the proposed reduction rule, for =µe 2 and 4. It is seen that, although the 

representation is not perfect, the approximate rule reproduces satisfactorily the tendencies observed in 
reality. In view of the many uncertainties involved in the definition of β−µR , it is judged that such an 

approximation is appropriate for design purposes. The differences between the results with and without 
interaction are noticeable, specially for =µe 4. It is apparent that structures on soft soil designed 

assuming rigid base may experience significant changes in their intended strength if soil-structure 
interaction plays an important role. Note that, as required by structural dynamics, =β−µR 1 for =eT 0 and 

→β−µR eµ  as →eT ∞, irrespective of the foundation flexibility. For other natural periods, there are no 

theoretical indications regarding the values of this factor. The steps involved in the application of (9) can 
be summarized as follows: 
 

1. By use of (4), (5) and (6), compute the modified period eT
~

, damping eζ~  and ductility eµ~  of the 

structure whose rigid-base properties eT , eζ  and eµ  are known. 

 

2. From the prescribed site-specific response spectrum, determine the elastic spectral displacement mU
~

 

corresponding to eT
~

 and eζ
~

, just as if the structure were fixed at the base. 

 
3. The value of β−µR  is then estimated by application of (9), provided the peak ground displacement gU  

is known. 



CONCLUSIONS 
 
The influence of foundation flexibility on strength-reduction factor has been investigated, using a 
simplified reference model representative of code-designed buildings. Results were given for an 
earthquake characteristics and geotechnical conditions prevailing Mexican subduction zone. It has been 
found that the shape of this factor is primarily a function of the period ratio of the structure and site. This 
is in agreement with earlier findings by other authors for the fixed-base case. The main differences 
between the factors with and without interaction arise when the structure period is close to the site period. 
Furthermore, the site effects observed for the rigid-base condition tend to be canceled by soil-structure 
interaction. Therefore, the use of factors derived assuming rigid base may lead to strength considerably 
different from that actually developed in structures with flexible foundation. 
 
Based on the solution for a nonlinear replacement oscillator, an available site-dependent reduction rule 
has been adjusted to include soil-structure interaction. As a result, a period-, damping- and ductility-
dependent rule was implemented, which permits the use of standard free-field elastic spectra. The 
efficiency of this approximation was validated by comparison with results obtained rigorously. The new 
rule should be useful to assess, in the context of code design of buildings, the yield resistance of flexible-
base inelastic structures from the corresponding values of rigid-base elastic structures. There is still a 
practical necessity of modifying this rule to take into account the multi-degree-of-freedom effects and the 
uncertainties involved in real buildings. 
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