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SUMMARY 
 
A review of experimental data obtained from slender reinforced concrete wall tests was conducted to 
assess the contributions of flexural and shear deformations to inelastic lateral displacements. Evaluation of 
the test results indicates a significant coupling between inelastic flexural and shear deformations, even at 
shear force levels of about one-half of the nominal shear strength of the specimens. Common column-type 
analytical models for walls, such as the Multiple-Vertical-Line-Element-Model (MVLEM) incorporate 
uncoupled deformation components for shear and flexure, which is inconsistent with the experimental 
observations. Therefore, the MVLE model was modified to allow coupling of the flexural and shear 
deformation components based on membrane behavior, via adaptation of the Modified Compression Field 
Theory (MCFT). Results from two different wall tests, for a slender wall and a short wall, were compared 
with the model results. In the case of the slender wall, experimental and model results compare favorably, 
although shear deformations are underestimated. The overall lateral load versus top displacement response 
was captured for the short wall test, although additional studies are needed to address observed 
discrepancies. 
 

INTRODUCTION 
 
Reinforced concrete structural walls are commonly used to resist the actions imposed on buildings due to 
earthquake ground motions. To resist such actions, properly proportioned and detailed slender walls are 
designed to yield in flexure, and to undergo large flexural deformations without loss of lateral load 
capacity. Therefore, the ability to model the cyclic behavior and failure modes of structural walls is an 
important aspect of engineering design, particularly as the profession moves forward with design and 
evaluation approaches that emphasize performance based seismic design.  
 
Recent research has shown that the lateral force versus deformation response of slender walls in flexure 
can be captured reasonably well using simple analytical models (e.g., Thomsen [1]), and improved 
predictions can be obtained using more detailed models (e.g., Orakcal [2]). However, such models usually 
consider uncoupled shear and flexural responses, which is inconsistent with observations, even for 
relatively slender walls (Massone [3]). 
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Accordingly, this paper provides a review of experimental data obtained from select slender reinforced 
concrete wall tests for determining the relative contributions of inelastic flexural and shear deformations 
in wall lateral displacements, and summarizes a proposed modeling approach to incorporate coupling of 
wall flexural and shear responses. Preliminary model results are presented and compared with test results 
obtained from tests on a slender and short wall to evaluate the modeling approach. 
 

EXPERIMENTAL EVIDENCE OF FLEXURE-SHEAR INTERACTION 
 
Deformations associated with flexure and shear were determined for two, well-instrumented, 
approximately quarter-scale slender wall specimens with rectangular cross sections (RW2 of Thomsen [1], 
and SRCW1 of Sayre [4]) to assess their relative contributions to displacement responses. An overview of 
this effort is provided in the following section; additional information is available in the paper by Massone 
[3]. 
 
Test overview  
The two slender wall specimens used to assess the relative deformations associated with shear and flexure 
were proportioned and detailed using capacity design and displacement-based design approaches, 
respectively. The wall specimens were tested in an upright position. An axial load of approximately 
0.10Agf’c was applied to the wall specimens using hydraulic jacks mounted on top of the load transfer 
assembly. The axial stress was held constant throughout the duration of each test. Cyclic lateral 
displacements were applied to the walls by a hydraulic actuator mounted horizontally to a reaction wall at 
12.5 feet (3.81 m) above the base of specimen RW2, and to a reaction frame at 16 ft (4.88 m) above the 
base of specimen SRCW1. 
 
Specimen RW2 was 12 ft (3.66 m) tall and 4 in. (102 mm) thick, with a web length of 4 ft (1.22 m). The 
longitudinal reinforcement at wall boundaries consisted of 8 - #3 (Ab = 0.11 in2 = 71 mm2) bars, whereas 
web reinforcement consisted of two curtains of deformed #2 (Ab = 0.049 in2 = 32 mm2) bars placed 
horizontally and vertically, with a spacing of 7.5 in. (189 mm) on center. Specimen SRCW1 was a 
structural steel reinforced concrete wall; 16 ft (4.88 m) tall, 6 in (152 mm) thick, and 4 ft (1.22 m) long. 
Vertical reinforcement at wall boundaries consisted of a W6x9 section (Ab1 = 2.68 in2 = 1729 mm2) 
surrounded by 8 - #4 (Ab2 = 1.60 in2 = 1032 mm2) bars.  The web reinforcement consisted of two curtains 
of horizontal and vertical #3 bars with a spacing of 6 in. (152 mm) on center. 
 
Design concrete compressive strengths were 4,000 psi (27.6 MPa) for specimen RW2 and 5000 psi (345 
MPa) for specimen SRCW1. Grade 60 (414 MPa) bars were used for longitudinal and web reinforcement 
of the specimens. For SRCW1, A572, Grade 50 (345 MPa) W6x9 sections were used. 
 
Instrumentation was used to measure displacements, loads, and strains at critical locations for each wall 
specimen. Wire potentiometers (WPs) were mounted to a rigid steel reference frame to measure lateral 
displacements along the height of the wall (Figure 1). Linear potentiometers (LPs) were mounted 
horizontally and vertically on the wall foundation to measure any horizontal slip of the pedestal 
along the strong floor as well as rotations caused by uplift of the pedestal from the strong floor. 
Measurements from the WPs used to record lateral displacements were corrected to remove the 
contribution of pedestal slip and rotation to lateral displacements.  
 
Axial (vertical) displacements at the wall boundaries were measured using two WPs mounted directly to 
the wall ends. These measurements were used to calculate wall story rotations by dividing the difference 
in relative axial displacements by the distance between the potentiometers. Shear deformations within 
the first two (RW2) and three (SRCW1) levels of the wall specimens were determined using 



measurements from WPs placed diagonally on the walls, in an “X” configuration (Figure 1). 
 
Linear variable differential transducers (LVDTs), oriented vertically over the wall length just 
above the wall – pedestal interface, were used to obtained average axial strain and allow for the 
determination of section curvature. The strains in the reinforcing steel also were measured 
through the use of strain gauges near the wall base and at other locations (Thomsen [1] and 
Sayre [4]). 
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Figure 1 General instrument configuration. RW2 and SRCW1. 
 
 
Determination of flexural and shear deformations 
A common approach used to determine average (story) shear deformations for shear wall tests is to use 
measurements from displacement gauges placed diagonally in an “X” configuration (e.g., Thomsen [1], 
see Figure 2). However, as shown by Massone [3], measurements obtained from the diagonal gauges are 
influenced by flexural deformations if the center of rotation of the story does not coincide with the 
geometric center of the story height. The average shear deformations calculated using an “X” 
configuration may result in over-estimation of the shear deformations if not corrected to account for 
flexural deformations. 
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Figure 2 Uncorrected shear deformation measure at wall base. 
 
 
Flexural deformation 
To determine the contribution of the flexural deformations to the lateral displacement at the top of a story, 
the location of the centroid of curvature distribution (center of rotation) of the story must be estimated. 
The flexural displacement at the top of the first story, for a given curvature distribution is calculated as:  

h  Uf θα=           (Eq-1) 

where θ  is rotation over story level, h is the story height, and α is the relative distance from the top of the 
first story to the centroid of the curvature distribution. In this study, a value of α = 0.67 was used, which is 
consistent with prior research (Thomsen [1]). 
 
Shear deformation: Corrected X configuration 
As proposed by Massone [3], the uncorrected story shear displacement measured through the use of the 
“X” configuration of WPs and the story flexural displacement measured using the vertical WPs at the wall 
boundaries can be used in combination to obtain a “corrected” average story shear displacement 
(Us_Xcorrected) as: 
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where Us_Xoriginal obtained using only the diagonal WP (X configuration) measurements would give a 
biased estimation of the story shear displacement, due to contribution of flexural deformations. 

 
Force versus displacement relations – Shear and Flexure 
Using the methodology described above to separate the contributions of shear and flexural deformations in 
measured wall displacements, lateral load versus top and story deformation relations can be determined. 
Figure 3 plots the applied story shear force versus measured flexural (Figure 3a) and shear (Figure 3b) 
displacements within the first and second stories of specimen RW2. Figure 4 plots the same relationships 
for the first through third stories of specimen SRCW1. Relations derived from the experimental data are 
compared to analytical results for linear elastic analyses for a “fully-cracked” section stiffness for flexure 
and an elastic shear stiffness. The cracked section stiffness is obtained from a sectional analysis, as a 
secant stiffness to the point of first yield of reinforcement. For simplicity, a linear elastic shear stiffness is 
assumed. 
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Figure 3 First and second story deformations: RW2 
 
 

Results for specimen RW2 are presented in Figure 3. At the second story level of specimen RW2, shear 
displacements were evaluated using only the diagonal potentiometer (X configuration) measurements 
without correction given in Eq-2, because vertical potentiometers were not provided during testing along 
the second story height (Figure 1). The story shear force versus flexural displacement relationships for 
specimen RW2 (Figure 3a) reveal that: (1) the cracked stiffness obtained from a moment versus curvature 
analysis approximates the effective stiffness prior to yield reasonably well, (2) yielding of flexural 
reinforcement occurs at a lateral load close to that associated with the lateral load to reach the wall 
nominal moment (29.4 kips = 131 kN), and (3) yielding occurs primarily in the first two levels. The story 
shear force versus shear displacement relationships (Figure 3b) reveal that: (1) inelastic shear behavior 
occurred in the first story despite a nominal shear capacity (Vn = 62 kips; 276 kN) of approximately twice 
the applied story shear (~30 kips = 133 kN), (2) inelastic deformations were limited to essentially the first 
story, and (3) the elastic shear stiffness approximately represents the measured shear stiffness in regions 
where flexural yielding was not observed (i.e., the second level). The observed results clearly demonstrate 
coupling of wall inelastic shear and flexural responses; inelastic flexural deformations appear to have led 
simultaneously to inelastic shear deformations.  
 
Similar relationships for specimen SRCW1 are presented in Figure 4. Vertical and diagonal wire 
potentiometers were provided along the bottom three stories of specimen SRCW1 (Figure 1); therefore, 
the shear displacement measurements at the first, second and third story levels of SRCW1 were corrected 
based on Eq-2. The story shear force versus flexural displacement relationships in Figure 4(a) reveal 
findings similar to those for specimen RW2, except that slip between the structural steel section and the 
concrete appears to have contributed significantly to a loss of stiffness within the first story of specimen 
SRCW1. The story shear force versus shear displacement relationships (Figure 4b) reveal that inelastic 
shear behavior was experienced within the first and second stories of the wall, despite a nominal shear 
capacity (Vn = 146.3 kips; 651 kN) of approximately twice the applied story shear (~70 kips = 310 kN). 
The observed inelastic shear deformations in the first story level, and also to a lesser degree in the second 

(b) Shear (a) Flexure 



story level, clearly demonstrate the coupling of inelastic flexural and shear deformations. As well, the 
flexural and shear force-deformation relationships reach yielding at approximately the same time. This 
behavior, which has also been observed in prior studies (e.g., Takayanagi [5]), has been established for the 
tests evaluated using an unbiased methodology for evaluating shear deformations, and the results verified 
through the use of redundant measurements for multiple test specimens (Massone [3]). 
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Figure 4 Story deformations:  SRCW1.  
 
 

FLEXURE AND SHEAR INTERACTION MODEL FOR COLUMN-TYPE ELEMENTS 
 
Several analytical models have been proposed to consider coupling between flexural and shear 
components of RC wall response. One basic approach, proposed by Takayanagi [5], involves adopting a 
shear force - displacement relationship with shear yielding defined at the same lateral load level as that 
required to reach flexural yield. Another methodology involves implementing the finite element method 
(FEM) together with the so-called Modified Compression Field Theory (MCFT, Vecchio [6]) to model 
reinforced concrete membrane behavior. An approach based on adopting this idea for a fiber model, was 
proposed by Pentrangeli [7] to couple wall shear response with flexural and axial responses. 
 
The analytical model proposed in this study is based on applying the methodology developed by 
Pentrangeli [7], to a Multiple-Vertical-Line-Element wall model (MVLEM, see Orakcal [2]). Model 
results are compared to experimental data from tests on slender and short RC walls to investigate the 
validity of the model. 
 
Base model: Multiple Vertical Line Element Model (MVLEM) 
The Multiple Vertical Line Element Model (MVLEM) resembles a two-dimensional fiber model, 
simplified such that element rotations (curvatures) are concentrated at the center of rotation defined for 
each element, instead of using a displacement field (e.g., a linear curvature distribution) as in a generic 

(b) Shear (a) Flexure 



displacement-based fiber model or finite element model implementation. A structural wall is modeled as a 
stack of MVLE’s, which are placed one upon the other (Figure 5b). The axial and flexural response of 
each MVLE is simulated by a series of uniaxial elements (or macro-fibers) connected to infinitely rigid 
beams at the top and bottom (e.g., floor) levels (Figure 5a). The plane-sections-remain-plane assumption is 
applied to calculate the strain level in each uniaxial element according to values of displacement and 
rotation at the degrees of freedom of each MVLE. The stiffness properties and force-displacement 
relationships of the uniaxial elements are defined according to uniaxial constitutive stress-strain 
relationships implemented in the model for concrete and steel and the tributary area assigned to each 
uniaxial element (Figure 6). A horizontal spring placed at the center of rotation (at height ch) of each 
MVLE, with a prescribed nonlinear force-deformation behavior, simulates the shear response of the 
element. 
 

 

h 

(1-c)h 

ch 

1 
2 

3 

4 
5 

6 
Rigid Beam 

Rigid Beam 

k 1 k 2 k n k H . . . . . . . 

 

  

    m 

 RC WALL           WALL MODEL 

 
 1 

 

 
 2 

   . 
 . 
 .  . 
 . 

 
 
 

Figure 5 Multiple-Vertical-Line-Element (MVLE) Model (Orakcal [2]). 
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Figure 6 Discretization of wall cross section (Orakcal [2]). 
 
 
Shear - Flexure Interaction 
In MVLE models, flexural and shear modes of deformation are uncoupled (i.e., flexural 
deformations do not affect shear strength or deformation). As noted previously in this paper, 
experimental results indicate that inelastic shear deformations are observed simultaneously with inelastic 
axial – flexural deformations, even when the overall wall response is expected to be dominated by flexure 
(e.g., when the nominal shear strength of the wall exceeds significantly the lateral load required to 
produce flexural yielding). Therefore, for a MVLEM, where deformations due to flexure and shear are 
uncoupled, linear elastic shear response will be predicted for slender walls, which is inconsistent with 
experimental results 
 

(a) MVLEM Element (b) Model of a Wall 



Constitutive Material Models 
A uniaxial monotonic stress-strain relationship, such as a simple bilinear relationship or the stress - strain 
model proposed by Menegotto [8] can be used to model the cyclic behavior of the reinforcing steel. To 
obtain a reliable model for panel (membrane) behavior, the biaxial constitutive relationship adopted for 
concrete should consider the effects of compression softening (reduction in principal compressive stress 
due to the application of tensile stress in the orthogonal direction), tension - stiffening (post - peak tensile 
stresses in concrete due to bond stresses between reinforcing steel and concrete between cracks), and 
possibly the reduction in the post – peak concrete tensile stress capacity to account for loss of  aggregate 
interlock capacity. In this study, the uniaxial constitutive model by Menegotto [8] for steel and the biaxial 
constitutive model by Vecchio [6] for concrete were implemented (Figure 7). 
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Figure 7 Constitutive material models. (a) concrete, and (b) steel. 

 
 
Modeling RC Panel Behavior 
The Modified Compression Field Theory (MCFT) is used to model a RC panel element with membrane 
actions acting on it, i.e., uniform normal and shear stresses are applied in the in-plane direction. The 
constitutive stress - strain models for materials are applied along the principal directions of the strain field 
(i.e., principal strain directions 1 and 2), to obtain the stress field associated with the principal directions. 
It is assumed that the principal stress and strain directions coincide (Vecchio [6]). 
 
As established, the MCFT approach applies to a two dimensional panel element under membrane actions, 
and is appropriate for implementation into a 2D finite element formulation. In this study, the intent is to 
develop a simplified version of the model that adopts an approach similar to that adopted for a column-
type element; specifically, for the uniaxial elements of the MVLE as described in the previous section.  
 
Proposed Model 
In the procedure description, the uniaxial elements located within each MVLE (also called strips or fibers) 
are denoted by element (i) and the MVLEs are denoted by element (j): 
 

1. The deformations or strains within the components of each MVLE (j) are determined from the six 



prescribed degrees of freedom, (ux, uy and θ at both ends) shown in Figure 8. Assuming that the 
shear strain is uniform along the section and that plane sections remain plane, the axial strain (εy) 
and shear distortion (γxy) components of the strain field can be calculated for the entire section (for 
all the strips (i)) based on the prescribed degrees of freedom selected for the current analysis step. 
Accordingly, each strip (i) (Figure 8) has two input variables, axial strain (εy) and shear distortion 
(γxy), based on element (j) deformations. The transverse strain within each strip (εx) is initially 
estimated to complete the definition of the strain field, allowing stresses and forces to be 
determined from the constitutive material relationships and geometric properties (dimensions and 
steel area) for each strip. The output variables associated with the input strains εy and γxy are the 
axial stress, σy, and the shear stress, τxy, for each strip. 
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Figure 8 Trial displacement state at section (j) for prescribed top displacement. 
 
 

2. A numerical procedure (Newton’s method) is employed to linearize and iterate on the unknown 
quantity εx (horizontal stress in each strip i), to achieve horizontal equilibrium for a given σx 
within each strip. Due to a lack of information and as an initial approximation, the horizontal 
stress σx within each strip was assumed to be equal to zero, which is consistent with the boundary 
conditions of a wall with no transverse loads applied over its height. The orientation of principal 
strain (or stress), α, is used as an iterative parameter (instead of εx) for convenience 

 
a. For a trial value of principal orientation angle (α), together with the prescribed values of 

axial strain (εy) and shear distortion (γxy), the strain field (horizontal strain εx, and the 
principal strains ε1 and ε2) is defined for each strip (i). It is assumed that the same 
orientation angle (α) applies for the principal directions of both the strain (ε1, ε2) and the 
stress fields (σc1, σc2). Using the constitutive material relationships implemented for 
concrete and steel, and compatible strains for the two materials (assuming perfect bond), 
the stresses in concrete along the principal directions and stresses in steel along the 
vertical and horizontal directions are determined. As noted earlier, a uniaxial stress-strain 
model is used for the reinforcing steel; therefore, stresses in steel are calculated in 
horizontal and vertical directions (based on εx and εy, based on the assumption that 
reinforcement is provided in the vertical and horizontal directions, or transformed to 
equivalent reinforcement in the horizontal and vertical directions). 



b. Stresses in concrete are transformed from the principal directions to the x-y directions 
resulting concrete forces and superimposed with the forces in the reinforcement based on 
the concrete and steel areas within each strip. The resultant gives average normal and 
shear stresses in the strip (i) as: 

( )α⋅⋅
σ−σ

−=τ 2sin
2

2c1c
xy        (Eq-3) 

( ) sxx
2c1c2c1c

sxxcxx 2cos
22

σ⋅ρ+α⋅⋅
σ−σ

−
σ+σ

=σ⋅ρ+σ=σ     (Eq-4) 

( ) ( ) ( ) syy
2c1c2c1c

syycyy 2cos
22

σ⋅ρ+α⋅⋅
σ−σ

+
σ+σ

=σ⋅ρ+σ=σ    (Eq-5) 

c. Equilibrium is checked in the horizontal direction (σx) for each strip (i), until equilibrium 
is achieved for the specified angle α. 

 
3. Once horizontal equilibrium is achieved (within a specified tolerance) within each strip, 
vertical stresses in the strips are assembled to determine the total resisting axial force and bending 
moment of each MVLE, whereas the shear forces in the strips are assembled to determine the total 
resisting shear force of the element.  
 
4. Consequently, global equilibrium is checked for the overall MVLE wall model by comparing 
the applied and resisting forces, and global iterations are performed on the model degrees of 
freedom as described in Orakcal [2] until global equilibrium is satisfied.  

 
An important aspect of the proposed approach involves the solution strategy. In the procedure described 
above, it is assumed that for a prescribed deformation configuration for each MVLE (i.e., for prescribed 
displacements at the element degrees of freedom), an internal iteration is required to solve for the 
principal direction angle (α), until horizontal stress equilibrium (e.g., σx=0) is reached at each strip. 
Another way to approach the same problem is to define the angle (α) for each strip as an additional 
element degree of freedom (in addition to the six degrees of freedom already defined). In this case, the 
internal iterations required to solve for α within each strip (Step 2 in the procedure) would be redundant.  
However, the addition of another external dof would increase the size of the stiffness matrix defined for 
each MVLE. The proposed procedure may require more iterations to converge compared with the case 
when the internal variable (α-value) for each strip is defined as an additional degree of freedom at the 
element level. However, the proposed approach was selected primarily because it provides a more general 
format, that is, it is likely to be easier to implement into existing elements (e.g., fiber) or programs without 
significant modifications.   
 

PRELIMINARY MODEL RESULTS 
 
Analytical results obtained with the proposed approach for monotonic loading are compared with test 
results for two reinforced concrete wall tests. The two specimens selected for study represent relatively 
extreme cases of wall behavior, a slender wall with response governed by flexure (RW2) and a short wall 
with response governed by shear (H13). Therefore, they provide good test cases to examine the model 
performance. 
 
Specimen RW2, described earlier, is a slender wall with a shear aspect ratio of three (M/Vlw), and a 
nominal shear strength approximately twice that of the lateral load required to reach flexural yield. 
Specimen H13 tested by Hidalgo [9] is a short wall (M/Vlw = 0.5) with fixed-fixed boundary conditions at 
top and bottom of the specimen with a lateral load applied at the top level. Specimen H13 is 55.1 in. (1.4 
m) tall and 3.9 in. (0.1 m) thick, with web length of 55.1 in. (1.4 m). Boundary vertical steel has a total 



area of 1.24 in2 (8 cm2) at each boundary. The distributed web reinforcement has a steel area ratio of 
0.26% in both vertical and horizontal directions. The compressive strength of concrete used in 
construction of the H13 is 2.63 ksi (18.1 MPa), and the steel yield stress is 53.7 ksi (370 MPa). No axial 
load is applied on the specimen. The geometry of the specimen and the relatively large amount of 
boundary vertical reinforcement resulted in a response governed by shear (Hidalgo [9]).  
 
The analytical model consists of 8 MVLEs stacked on top of each other, with 8 uniaxial elements defined 
along the length of the wall for each MVLE. The center of rotation of the MVLEs was defined at a value 
of c=0.4 for RW2, and a value of c=0.5 for H13. Three analysis cases are presented in Table 1. 
 

Table 1: Modeling Cases 

 Shear-flexure behavior fcr, psi (MPa) Case No 

1 Uncoupled – Linear Shear ( )cccr 'f3/1   'f4f =  1(a) 

( )cccr 'f3/1   'f4f =  2(a) 
2 Coupled 

0f cr =  2(b) 

Note: fcr is the tensile strength of the concrete, and f’c is the compressive strength of the concrete.  

 
Analyses 1(a) and 2(a) include tensile strength of concrete, whereas 2(b) excludes the contribution of 
concrete tensile strength (fcr). For specimen RW2 all three cases (1a, 1b, 2b) were evaluated. For specimen 
H13, only the case defined as 2(a) (coupled model and expected materials properties) was evaluated. 
 
Slender wall test – RW2 
Figure 9 compares the analytical and experimental lateral load – top displacement responses for the 
slender wall. As observed in the figure, a better prediction of the lateral load – top displacement relation is 
obtained for case 2(b) (proposed shear – flexure coupling model neglecting tensile strength of concrete). 
For the same material properties (cases 1(a) and 2(a)), the lateral load – top displacement responses are 
not very different for linear elastic shear response or for coupling of the flexural and shear responses, 
since the overall response of the wall is primarily flexural. Figure 10 compares analytical and 
experimental lateral load – “flexural” displacement responses at the first and second story levels. The best 
correlation is obtained for the coupled shear and flexure response with zero concrete tensile strength. (case 
2(b)). Figure 11 compares analytical and experimental lateral load – “shear” displacement responses at the 
first and second story levels. Again, the best correlation is obtained for the coupled shear and flexure 
response with zero concrete tensile strength (case 2(b)). Results presented are preliminary, and additional 
studies for improved material relations and to incorporate cyclic behavior are underway.  
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Figure 9 Load-Top displacement relation. 
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Figure 10 Load-Flexural displacement curve. (a) 1st and (b) 2nd story. 
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Figure 11 Load-Shear displacement curve. (a) 1st and (b) 2nd story. 

 
 
Results of analyses that consider coupling of the shear and flexural responses (cases 2(a) and 2(b)), yield 
inelastic shear and flexural displacements at various story levels; however, inelastic shear deformations 
are concentrated within the bottom story of the wall, where large inelastic flexural deformations are 
experienced. Although discrepancies are observed between analysis and test results, the analytical model 
is successful in representing the behavior associated with the coupling of shear and flexural responses. 
Refinement of the analytical model to incorporate updated material relationships, alternative strain and 
stress conditions (presently uniform shear strains and zero horizontal stresses along wall length), as well 
as cyclic behavior, may result in improved response predictions. 
 
Short wall test – H13 
The proposed analytical model can be extended to medium-height and short walls as long as the adopted 
material laws are representative of the physical behavior, and strain and stress conditions adopted in the 
model (uniform shear strains and zero horizontal stresses) are refined. In such cases, nonlinear shear 
deformations govern the overall response of the wall. Preliminary model results are compared with test 
results. 
 
For specimen H13, only the analytical lateral load – top displacement relationship was compared with 
experimental results, since no other experimental data were available. Figure 12 plots the analytical and 
experimental lateral load – top displacement responses. As observed in Figure 12, the model proposed 
model captures general trends observed in the test of H13, and produces results that are substantially 
better than results produced with a linear (uncoupled) shear model; however, significant discrepancies are 
observed between experimental and analytical results. In particular, significant discrepancies in the 
responses are noted after concrete cracking (at a lateral load of approximately 35 kips (155 kN)). Better 
correlation might be possible for more refined modeling options. This is an area of current research by the 
authors. 
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Figure 12 Load-Top displacement relation. 
 
 

CONCLUSIONS 
 
Test results for reinforced concrete and structural steel reinforced concrete walls were investigated to 
establish force deformation relations at various story levels. The deformations were disaggregated into 
flexural and shear components via a procedure described. The results showed that inelastic shear and 
flexural deformations initiated simultaneously, at essentially the same level of applied lateral top load and 
displacement, despite wall nominal shear strengths of approximately twice the lateral force required to 
initiate flexural yielding. The findings indicate the presence of coupling between inelastic flexural 
deformations and inelastic shear deformations. The experimental results investigated were from tests on 
slender walls with responses dominated by flexural behavior; however, similar findings would be 
expected for shorter walls with responses governed by shear. 
 
An analytical model that couples wall flexural and shear responses was proposed. The model incorporates 
RC panel behavior described by the Modified Compression Field Theory (MCFT) into the fiber-based 
Multiple Vertical Line Element Model (MVLEM). Model results were compared with selected test results 
for a slender and a short wall. In the case of the slender wall, good correlation between analytical and 
experimental results was observed. The inelastic shear deformations of the slender wall were somewhat 
underestimated; however, shear yielding and nonlinear shear behavior were successfully represented. 
Model results for the short wall captured the general behavior observed in the experiment; however, more 
significant discrepancies between the analytical and experimental responses were observed. The model 
results are promising; ongoing work will focus on refinement of the analytical model and implementation 
of the model into a widely available analysis platform. 
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