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SUMMARY 
 
A probabilistic methodology is presented to estimate economic losses resulting from earthquake damage 
in buildings. The methodology allows the identification of different sources that contribute to economic 
losses in buildings both at the component-level and at the system-level. Sensitivity analyses are then 
performed to identify and quantify those that contribute the most to the overall uncertainty in loss 
estimates. The expected annual loss and the mean annual frequency of exceedance of a certain dollar loss 
are computed both at the component-level, for a slab-column connection, and at the system-level. The 
methodology is illustrated by applying it to a seven-story reinforced concrete building. 
 

INTRODUCTION 
 
Recent earthquakes in the United States have highlighted the importance of controlling damage in 
buildings in order to limit economic losses. Designing structures in which economic losses are controlled 
requires reasonable estimations of losses in earthquakes with different levels of intensity. Different 
approaches can be used to estimate economic losses in a building. In the proposed approach losses are 
estimated as a function of the damage in individual structural and nonstructural components.  
 
As part of the research being conducted at the Pacific Earthquake Engineering Research (PEER) center a 
methodology is developed to estimate economic losses in buildings. The methodology is developed on the 
basis of the PEER’s probabilistic framework. One primary advantage of the proposed methodology is its 
transparency in identifying the sources of uncertainty that contribute to probability parameters of 
economic losses both at the component-level and at the system-level. Once different sources of uncertainty 
are identified, sensitivity analyses can be performed to quantify which sources are significant and which 
ones are not significant. This information can then be used to introduce simplifications in the procedure of 
loss estimation. 
 
Presented in this paper is a sensitivity study on different sources of uncertainties that affect economic 
losses at the component-level and at the system-level in buildings. First, we develop the formulation to 
estimate the expected annual loss, EAL, and the mean annual frequency, MAF, of exceeding a certain 
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dollar loss in an individual component. The methodology is then illustrated by applying it to a reinforced 
concrete slab-column connection. Sensitivity studies are performed on different sources of uncertainty to 
identify the significance of each source in the EAL and MAF of the loss of the case study component. The 
results show that the modeling uncertainty in the seismic hazard is the most important source of 
uncertainty to estimate EAL of a slab-column connection. The MAF of the component is mainly sensitive 
to the uncertainty in the repair cost of the component. 
 
Similarly, at the system-level, the formulation to estimate the EAL and MAF of the loss of the system is 
developed. The loss estimation methodology is then applied to an existing seven-story reinforced concrete 
building. The effects of different sources of uncertainty on the estimation of the system EAL are 
investigated. For the case of MAF the effects of correlation between losses in individual components are 
investigated. Our studies show that the EAL of the building is mainly sensitive to the uncertainty in the 
damage estimation. For the MAF of the system, we found that the effect of correlation is significant for 
low probability events, i.e. global collapse, and can be ignored for high-probability events. The later result 
is promising since it allows for significant simplifications in the loss estimation of buildings when damage 
control is the main seismic performance objective. 
 

LOSS ESTIMATION AT THE COMPONENT-LEVEL  
 
Estimation of the expected annual loss (EAL) of a component 
Using the total probability theorem, the average annual loss in an individual component, E [ Li ] can be 
computed as 

[ ] [ ] ( )IMdIMLELE ii ν∫
∞

=
0

|      (1) 

where dν (IM) is the derivative of the seismic hazard curve evaluated by performing a probabilistic 
seismic hazard analysis at the site as a function of a ground motion intensity measure, IM. [ ]IMLE i |  is 
the expected loss in a component conditioned on IM. Li is a random variable that represents the loss in the 
ith component normalized by the original cost of that component. For example, a realization of Li equal to 
0.7 means that the loss in the component is 70% of its original cost. 
 
Similarly to Eq. (1), the expected loss in the ith component for a given scenario can be computed as 
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where ( )IMEDPPd i |  is the probability density function of the engineering demand parameter in the ith 

component, EDPi, conditioned on IM. [ ]ii EDPLE |  is the average loss in component i as a function of the 
level of seismic demand in that component, EDPi.  
 
The deformation parameter, EDPi, in the ( )IMEDPP i |  is the structural response parameter which is 
closely correlated with the seismic damage in the component. For example, damage in almost all types of 
structural components, such as columns and slab-column connections is closely correlated with the level 
of interstory drift ratio, IDR, in the component. For some of the non-structural components, however, peak 
floor acceleration, PFA, is the primary deformation parameter which is closely correlated with the seismic 
damage in some nonstructural components.  
 
Different approaches can be used to estimate the probability density function of EDPi conditioned on IM. 
One feasible way is through response history simulations for a suite of earthquake ground motions scaled 
to certain levels of intensity, Miranda and Aslani [1].  



 
Using the total probability theorem for discrete random variables, we can expand [ ]ii EDPLE |  as follows  
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where ( )ikk EDP|dmDMP =  is the probability of being in the kth damage state, DMk, of the ith 

component when the structure is subjected to a deformation level equal to edpi. [ ]kki dmDMLE =|  is the 
expected loss in the ith component given that the component is in its kth damage state. The summation is 
on all the possible damage states, m, that a component can experience before loosing its vertical carrying 
capacity.  
 
The probability of being in a certain damage state, DMk, conditioned on EDPi, ( )ik EDP|DMP , can be 
estimated as 

( ) ( ) ( )ikkikkikk EDP|dmDMPEDP|dmDMPEDP|dmDMP >−>== +1       (4) 
 
where functions ( )ikk EDPdmDMP |1+>  and ( )ikk EDPdmDMP |>  are the probability of exceeding 
k+1th and kth damage states, respectively, conditioned on EDPi , and are known as fragility functions for 
those damage states. Damage states in a component are defined based on the required courses of action to 
repair a seismically damaged component, Aslani and Miranda [2]. 
 
Estimation of the mean annual frequency of exceeding a certain level of loss 
The approach used to derive Equations (1) through (4) for the average expected loss of a component can 
be applied to estimate the mean annual frequency of exceedance of the loss in an individual component, 
by simply replacing the expected values with probability distribution of the component loss in a given 
damage state  
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where [ ]kkii dmDM|lLP =>  is the probability of exceeding a certain level of loss given that component i 
is in the kth damage state. 
 
If the loss curve of the component has been developed, using Eq. (5) , an alternative approach to estimate 
the expected annual loss of the component instead of using Eqs. (1) - (4) is to compute the area 
underneath the loss curve 
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Loss estimation of a reinforced concrete slab-column connection 
To exemplify the formulation of loss estimation at the component-level, we have applied it to a reinforced 
concrete slab-column connection located in the third story of a testbed structure. The testbed is a seven - 
story reinforced concrete structure. It was designed in 1965 and built in 1966. The structural system of the 
building consists of moment-resisting perimeter frames and interior gravity-resisting frames (flat slabs and 
columns). The structure is nominally symmetric with the exception of an infill wall in the first floor of the 
north frame of the building. A detailed description of the testbed building has been presented in Browning 
et al. [3]. 



Four basic ingredients are required to evaluate Eqs. (1)–(4): (1) seismic hazard curve at the site,ν (IM); (2) 
probability distribution of EDPi conditioned on IM, ( )IMEDPP i | (3) fragility functions corresponding to 
different damage states that a component can experience as a function of the level of EDPi in that 
component, ( )ikk EDP|dmDMP > ; and (4) loss functions corresponding to the cost of repair of the 

component in a given damage state, [ ]kkii dmDM|lLP => . Figures 1 through 4 presents each of the above 

basic ingredients for loss estimation of a reinforced concrete slab-column connection in the testbed 
building. 
 
Figure 1 presents the seismic hazard curve at the site of the testbed structure. In this study the spectral 
displacement of a linear elastic single-degree-of-freedom system evaluated at the first period of vibration 
of the multi-degree-of-freedom model of the structure, Sd, is selected as the ground motion intensity 
measure. Information shown in Figure 1 is used to estimate dν (IM) in Eqs. (1) and (5). 
 
Figure 2 presents the variations of the median interstory drift ratio along the height of the building at 
different levels of intensity. The results in Figure 2 are obtained using a series of non-linear time history 
analyses of the testbed structure , Miranda [1]. Corresponding to the median response at each floor level 
and each level of intensity, shown in Figure 2, a probability distribution exists. An example is presented 
for the IDR in the third story when the structure is subjected to a spectral displacement of 20 cm. The 
information presented in Figure 2 is used to estimate d P (EDP | IM) in Eqs. (2) and (5). 
 
Fragility functions corresponding to different damage states of a slab-column connection are shown in 
Figure 3. Four damage states are defined for this component. The first damage state, DM1, occurs when 
the small levels of cracking are observed in the connection. The required repair action is cosmetic repairs 
such as pasting and painting. The next damage state, DM2 , is defined when the cracks are wide enough to 
require epoxy injection as the repair action. The third damage state, DM3 , is defined when the component 
has experienced a punching shear failure. At this stage the damaged concrete needs to be removed and 
additional reinforcement may be required before pouring new concrete. The last damage state, DM4, 
corresponds to the loss of vertical carrying capacity, LVCC, in the component. At this damage state the 
component collapses. As a simplifying assumption in this study we assume that loosing the vertical 
carrying capacity at the component level results in a system failure. Information presented in Figure 3 is 
used to estimate P ( DM | EDP) in Eqs. (3) and (5). 
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Fig. 1. Seismic hazard curve at the site of          Fig. 2. Variations of the median interstory drift  
the case study building.                                        ratio (IDR) along the building height at different 
                                                                                levels of intensity. 
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Fig. 3. Fragility functions for different damage           Fig. 4. Loss functions for a slab-column  
states of a slab-column connection located in the         connection. 
third story of the building. 
 
Fragility functions developed for slab-column connections are based on experimental research on this type 
of component. A summary of the experimental data used to develop these fragility functions is presented 
in Aslani and Miranda [2]. Further, we assume that the fragility functions follow a cumulative lognormal 
distribution. This assumption introduces some approximation in estimating the EAL at the component-
level and system-level. 
 
Figure 4 presents the loss functions associated with the repair cost for each of the first three damage states 
of a slab-column connection. Loss functions are calculated by itemizing the tasks required to repair a 
component at different damage states. Information presented in Figure 4 is used to estimate E [Li |DMk ] in 
Eq. (3) and P [ Li > li | DMk ] in Eq. (5).  
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Fig. 5. Variations of the mean, E [ Li | EDPi ] , and the standard deviation of the loss , σ [ Li | EDPi] , 
for a slab-column connection located in the third story of the building with changes in the interstory 
drift ratio, IDR , in that component. 



E [ Li | IM ]

0.0

0.2

0.4

0.6

0.8

1.0

0 20 40 60 80 100

IM [ Sd (cm) ]

Slab-Column connection 

            

σ [ Li | IM ]

0.0

0.2

0.4

0.6

0.8

1.0

0 20 40 60 80 100

IM [ Sd (cm) ]

Slab-Column connection 

 
Fig. 6. Variations of the mean, E [ Li | IM ] , and the standard deviation of the loss , σ [ Li | IM ] , for 
a slab-column connection located in the third story of the building with changes in the level of 
seismic hazard intensity, IM. 
 

Information presented in Figures 1 to 4 are used in Eqs. (1) to (4) to estimate the average economic losses 
in a slab-column connection. Beyond the expected loss , variations of the standard deviation of the loss for 
an individual component are investigated using the same approach presented in Eqs. (1) to (4). 
 
Figure 5 presents the variations of the mean, E [ Li | EDPi ], and the standard deviation of the loss,           σ 
[ Li | EDPi] , with changes in the interstory drift ratio, IDR, for the slab-column connection located at the 
third story of the testbed structure. As shown in the figure the loss in the component starts at around 0.6% 
drift. At around 2% drift the slope of both mean and standard deviation of the loss becomes almost 0, 
caused by the relatively large demand required to experience the third damage state compared to the drift 
level at which the second damage state occurs, Figure 3. 
 
Integrating results presented in Figure 5 over all possible EDP’s , Eq. (2), we can now estimate the mean, 
E [ Li | IM ] , and the standard deviation of the loss , σ [ Li | IM ] , for a given scenario, IM. Figure 6 
presents the variations of E [ Li | IM ] and σ [ Li | IM ] for the slab-column connection located in the third 
story of the testbed structure. As can be seen in the figure, loss in the component initiates at IM = 5 cm, 
whereas the standard deviation of the loss starts at around 2.5 cm. Comparing the initiation of standard 
deviation of the loss with the expected loss shows that standard the coefficient of variation (c.o.v.) at small 
levels of intensity is significantly larger than 1 since σ [ Li | IM ] approaches toward 0 more slowly than E 
[ Li | IM ]. This observation is of high importance since the initiation of loss in a component plays a 
significant role both in component expected annual loss and the whole building (system) expected annual 
loss. 
 
At IM = 20 cm the average loss in the component is around 40% of the component original cost. At this 
level the standard deviation of the loss is significant, leading to c.o.v.’s around 0.8. The main reason of the 
relatively large values of the c.o.v. at this level and in general in this example is the significant uncertainty 
for the repair costs, uncertainty at DV | DM level. Later, in the sensitivity analysis it is shown how this 
source of uncertainty dominates the results of estimating the mean annual frequency of exceeding a certain 
level of loss. 
 



The results from Figure 6 can be integrated together with the seismic hazard curve at the site to estimate 
the mean annual frequency of exceedance of the loss in the component, Eq. (1). The curve labeled 
“uncertainty at all levels” in Figure 7 presents the loss curve for the slab-column connection example. 
Shown in the figure is the annual rate of exceeding a certain level of loss in the component. For example, 
the mean annual frequency of exceeding 50% of the component original cost is 0.005. 
 
Sensitivity study on the EAL and MAF of loss of a slab-column connection 
A main advantage of the formulation presented to evaluate the expected annual loss of a component, Eqs. 
(1) - (4), is its transparency in identifying different sources of uncertainty that effect EAL. Two different 
sources of uncertainty are investigated: uncertainty stemmed from the estimation of the seismic response 
at different levels of intensity, P ( EDP | IM); and uncertainty stemmed from the incurred seismic damage 
in the component caused by the imposed seismic demand, P ( DM | EDP ).  
 
To investigate the effects of each of the above sources of uncertainty in estimation of the EAL, we have 
estimated the changes in average annual loss by assuming uncertainty at one level and certainty in another 
level. For example, we estimated the EAL of the component when there is no uncertainty at      DM | EDP 
level but there is uncertainty at EDP | IM level and compared it to the case when uncertainties at both 
levels are taken into account. Our observations show that for the type of uncertainties considered in this 
study and for this component the uncertainty at DM | EDP level is more significant than the one of EDP | 
IM in estimating the EAL. 
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Fig. 7. Effects of different sources of uncertainty on the estimation of the component loss curve. 
 
For the case of MAF of the loss at the component-level three sources of uncertainty are investigated. The 
first two sources of uncertainty are the same as what considered in EAL sensitivity analysis. The third 
source is the uncertainty corresponding to the DV | DM level. The results of the sensitivity analysis on the 
loss curve of the slab-column connection are presented in Figure 7. As shown in the figure the dominating 
source of uncertainty in this case is the one corresponding to that associated with repair costs of the 
component. 
 
Effects of  the seismic hazard uncertainty  
The sensitivity of the EAL and MAF to the assumptions made to estimate the seismic hazard at the site is 
investigated. The uncertainty in the seismic hazard is accounted for by computing the 84th percentile 
hazard curve, Jalayer [4]. Our observations show a 50% increase in the expected annual loss of the 
component because of the modeling uncertainty at the seismic hazard level. The changes in the loss curve 
of the slab-column connection are shown in Figure 7. 



LOSS ESTIMATION AT THE SYSTEM-LEVEL  
 
Estimation of the expected annual loss of the system 
The EAL of the system can be expanded as 

[ ] [ ] ( )IMdIMLELE TT ν∫
∞

=
0

|     (7) 

where E [ LT | IM ] is the average loss of the system conditioned on IM. 
 
The scenario-based expected loss of the system can be computed as 
 

[ ] [ ] ( )[ ] [ ] ( )IM|CPC|LEIM|CPNC,IM|LEIM|LE TTT +−= 1    (8) 
 
where [ ]NC,IM|LE T  is the expected loss of the system conditioned on IM when the structure does not 

collapse, [ ]C|LE T  is the expected loss of the system when the structure collapses, ( )IM|CP  is the 
probability that structure collapses in a given earthquake scenario.  
 
The non-collapse system expected loss conditioned on IM, [ ]NC,IM|LE T , can be estimated by simply 
summing over all component losses in the building.  

[ ] [ ]∑
=

=
n

i

iiT IM|LEaNC,IM|LE

1

    (9) 

where ai is the original cost of the ith component, and [ ]IM|LE i  is estimated from Eq. (2). The 
summation is over all non-rugged components in the building, n. 
 
The probability of collapse considered in this study takes into account the collapse caused by the loss of 
vertical carrying capacity, LVCC. To estimate ( )IM|CP , we assume, Aslani [4], that no re-distribution of 
vertical loads occurs at the system-level and the probability of collapse due to LVCC would be equal to the 
largest probability of any individual structural element that can loose its vertical carrying capacity  

E [ LT | IM,NC ]

$ 0 M

$ 2 M

$ 4 M

$ 6 M

$ 8 M

$ 10 M

0 20 40 60 80 100

IM [ Sd (cm) ]
          

E [ LT | C ]

$ 0 M

$ 2 M

$ 4 M

$ 6 M

$ 8 M

$ 10 M

0 20 40 60 80 100

IM [ Sd (cm) ]
 

Fig. 8. Variation of the system expected loss with changes in the level of intensity, IM, for both cases 
of occurrence and non-occurrence of the structural collapse. 
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where ( )IM|LVCCP i  is the probability of losing the vertical carrying capacity in the ith component 
conditioned on IM and is computed as 
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=
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where ( )ii EDP|LVCCP  is the probability of the ith component losing its vertical carrying capacity given 

that it is subjected to a deformation level equal to edpi. ( )ii EDP|LVCCP  is computed from fragility 
surfaces, Aslani and Miranda [5], developed for LVCC damage states on the basis of experimental studies 
on structural components. In a fragility surface the mean and standard deviation of EDP corresponding to 
the LVCC damage state are evaluated as a function of a new parameter, α, which allows the incorporation 
of additional information. The parameter α can incorporate information on the element (e.g., geometry, 
detailing, etc.), the loading and or a combination of the two. The probability of exceeding the LVCC 
damage state is then estimated as a function of the level of EDP in the component but also as a function of 
the parameter α. 
 
Estimation of expected annual loss for the reinforced concrete testbed structure 
The formulation presented in the previous section is applied to the seven-story testbed structure. All 
structural and non-structural components in the building are carefully identified. For each component 
fragility functions and loss functions corresponding to different damage states in the component are 
developed, Aslani and Miranda [2], Taghavi and Miranda [6]. Further, for certain damage states of 
structural components fragility surfaces are developed for a reliable estimate of that damage state. 
 
Figure 8 presents the expected loss of the system as a function of the level of intensity in the building both 
for non-collapse and collapse cases. The average loss of the system for the case of non-collapse starts at 
around 2.5 cm linear spectral displacement. The main source of loosing money at such small levels of 
intensity stems from the facts that the loss in non-structural components initiates at low levels of  
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Fig. 9. Fragility surface for loss of vertical                Fig. 10. Probability of system collapse caused  
carrying capacity (LVCC) in slab-column                  by loosing the vertical carrying capacity at the  
connection as a function of the IDR and α.                component level. 



 
intensity and the fragility functions are assumed lognormal. If the structure collapses at any level of 
intensity the loss of the system is equal to the total cost of the building, as shown on the right-hand side 
graph of Figure 8. 
 
To estimate the expected loss at the system level using Eq. (8), we need to estimate the probability of 
collapse as a function of the level of intensity in the building. For the testbed building we assume that the 
most probable mode of collapse is losing the vertical carrying capacity. To capture this mode we used 
fragility surfaces of different structural components in the building. Figure 9 presents an example of a 
fragility surface developed for the loss of vertical carrying capacity in a slab-column connection. 
 
We used fragility surfaces developed for different structural components together with response 
simulation results of the testbed building, Figure 2, to estimate the probability of collapse in the LVCC 
mode, using Eqs. (10) and (11). Figure 10 presents the probability of collapse computed for the testbed 
building as a function of the ground motion intensity level. As shown in the figure, probability of collapse 
at the system level for intensities smaller than 7.5 cm is 0.  
 
Incorporating the results of Figures 8, 9 and 10 in Eq. (8) we can estimate the conditional expected loss of 
the system at different levels of intensity for the case study building. The result is presented in Figure 11. 
The figure also shows the contribution of collapse and non-collapse loss to the total loss of the system. It 
can be seen that at small levels of intensity, less than 20 cm, the non-collapse losses is a major contributor 
to the total loss.  
 
Integrating the results from Figure 11 with the seismic hazard at the site, Eq. (7) we can estimate the 
expected annual loss of the system. For the testbed structure the EAL is $ 146,000. It should be noted that 
this value is estimated based on two main assumptions; the most probable collapse mode of the system is 
LVCC and the components fragility functions are lognormally distributed. The sensitivity of the EAL to 
these assumptions is under investigation. Specially, for the case of second assumption, preliminary results 
show that the EAL is quite sensitive to the initiation of the loss in each individual component. 
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Fig. 11. Variations of the system expected loss               Fig. 12. Effects of uncertainty at DM | EDP 
with the level of intensity.                                                   and EDP | IM levels on the non-collapse 
                                                                                               expected loss of the system for a given IM. 



Sensitivity study on the expected annual loss of the system 
The effects of two sources of uncertainty on the EAL of the system are investigated; the uncertainty in 
estimating the damage as a function of EDP, DM | EDP level uncertainty, and the uncertainty in the 
estimation of seismic response as a function of the level of intensity, EDP | IM level uncertainty. It can be 
understood from Eq. (8) that these two sources of uncertainty affect both the [ ]NC,IM|LE T  and 

( )IM|CP . 
 
Figure 12 presents the sensitivity of the non-collapse average loss of the system conditioned on IM to 
uncertainty at EDP | IM and DM | EDP levels. As can be seen in the figure the non-collapse expected loss 
is not very sensitive to the uncertainties at these two levels. This observation is very important since it 
allows for significant simplifications in the estimation of [ ]NC,IM|LE T  , with relatively small amounts 
of error.  
 
The effects of uncertainty at EDP | IM and DM | EDP levels on the probability of system collapse in the 
LVCC mode is shown in Figure 13. The labels on the figure shows which sources of uncertainty are 
considered in the estimation of the probability of collapse. For example, the curve with EDP | IM label 
presents the probability of collapse when the uncertainty at EDP | IM is considered and not the one of the 
DM | EDP. As can be seen in the figure the uncertainty at the DM | EDP level, plays a more significant 
role in the assessment of P ( C | IM ) compared to the effects of EDP | IM uncertainty . 
 
The effects of the two sources of uncertainty at the response level and the damage level on the expected 
loss of the system are investigated, using Eq. (8). Figure 14 presents the results of this investigation. Our 
observations show that the uncertainty at the DM | EDP is very important since it can change the initiation 
of the total loss at the system level, which has a significant effect on the expected annual loss. For 
example, for the case of the testbed structure when certainty is assumed at the damage level the expected 
loss starts at 10 cm elastic spectral displacement, while when the DM | EDP uncertainty is accounted for, 
the initiation of loss starts at around 2 cm. Our investigations show that not considering the uncertainty at 
the damage level can introduce 17% difference in the EAL of the system, while. assuming certainty at the 
EDP | IM level introduces a 10% error in the system EAL.  
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Fig. 13. Effects of uncertainty at DM | EDP                  Fig. 14. Effects of uncertainty at DM | EDP  
and EDP | IM levels on the probability of                     and EDP | IM levels on the expected loss of  
collapse of the system in LVCC mode.                           the system conditioned on IM.  



On the basis of above observations it can be concluded that for the case of the testbed structure when the 
expected annual loss is the target performance measure, a more accurate estimation of fragility functions, 
which results in decreasing the uncertainty at DM | EDP level, should be performed. The conclusion 
cannot be generalized, however, since the effects of modeling uncertainty at different levels, specifically 
at the EDP | IM level, has not taken into account and is currently under investigation. 
 
Estimation of the mean annual frequency of the system loss 
The MAF of the system can be computed as 
 

[ ] [ ] ( )IMdIMlLPlL TTTT νν ∫
∞

>=>
0

|       (12) 

where P [ LT > lT| IM ] is the probability of losing a certain level of loss, lT,  in a given scenario, IM. 
 
The probability of exceeding a certain level of loss at a given scenario can be expanded as 
 

[ ] [ ] ( )[ ] [ ] ( )IM|CPC|lLPIM|CPNC,IM|lLPIM|lLP TTTTTT >+−>=> 1    (13) 
 
where [ ]NC,IM|lLP TT >  is the probability of losing money in the system conditioned on IM when the 

structure does not collapse, [ ]C|lLP TT >  is the probability of losing money in the system when the 

structure collapses. In this study we assume [ ]C|lLP TT >  is lognormally distributed. 
 
From central limit theorem in the theory of probability, we can assume that the sum of n random variables 
is normally distributed for large enough n’s. Hence, non-collapse probability of losing money in the 
system at a given scenario when the structure does not collapse can be assumed normal 
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where Φ is the standard cumulative normal distribution of the loss at the system-level, [ ]NCIMLE T ,|  is 

estimated from Eq. (9) , [ ]NC,IM|LTσ  is the standard deviation of the LT ,when the structure does not  
collapse for a given scenario and can be expanded as 
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where NC,IM|LL ji
ρ  is the correlation coefficient between the losses in individual components as a function 

of the level of intensity, NC,IM|Li
σ  , NC,IM|L j

σ  is the standard deviation of the loss in a given scenario for 

the ith and jth components and can be estimated as described in the component-level loss estimation 
section. 
 
if the losses in individual components are not correlated, Eq. (15) simplifies to 
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if the losses in individual components are correlated, then the correlation coefficient can be written as 

NC,IM|LNC,IM|L

NC,IM|LL

NC,IM|LL

ji

ji

ji σσ
σ

ρ =     (17) 

where NC,IM|LL ji
σ  is the covariance between the losses in the ith and jth components for a given scenario, 

IM. Estimation of NC,IM|LL ji
σ  requires the knowledge of correlation between individual components at 

three different levels, EDP | IM , DM | EDP, and DV | DM. Detailed formulation on the evaluation of 
correlation between losses in individual components is presented in Aslani and Miranda [5]. 
 
Estimation of the mean annual frequency of the loss at the system-level for the testbed structure 
The scenario-based probability of losing money for collapse and non-collapse cases, [ ]NC,IM|lLP TT >  
and [ ]C|lLP TT >  respectively , are estimated for the testbed structure, using formulations and 
assumptions presented in previous section. The building loss curve, MAF of loss at the system level, is 
then computed using Eqs. (12) and (13). The results are shown in Figure 16 and are discussed in the next 
section. 
 
Sensitivity study on the effects of correlation on the mean annual frequency of the system loss 
To investigate the effects of correlation on the MAF of the loss for the testbed structure, two sets of loss 
estimations are accomplished. In the first set, we assume that the losses in individual components are not 
correlated and estimate the standard deviation of the loss at the system level, LT, using Eq. (16). In the 
second set ,we assume that the losses in individual components are correlated. The correlation is 
computed using the methodology and data presented in Aslani and Miranda [5]. Figure 15 compares the 
standard deviation of LT at different levels of intensity for correlated and non-correlated cases when the 
structure does not collapse (left graph) and when it collapses (right graph). As can be seen in the figure the 
effects of correlation on standard deviation of LT is significant both for collapse and non- collapse cases. 
When the structure does not collapse the standard deviation of LT almost triples for the case of correlated 
losses in individual components compared to the non-correlated case. When the structure collapses the 
standard deviation of LT increases by 75% from correlated to non-correlated case. 
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Fig. 15. Effects of correlation on the standard deviation of the loss at system-level at different levels 
of intensity , IM, when the structure does not collapse (left graph) and when it collapses (right 
graph). 
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Fig. 16. Effects of correlation between losses in individual components on the loss curve of the 
testbed structure. 
 
Presented in Figure 16 is the comparison between the loss curves of the testbed structure when the losses 
in individual components are correlated and when they are assumed non-correlated. It can be seen that for 
small levels of loss which can also be referred to as high-probability events, losses smaller than $ 2 M, the 
difference between the two curves is very small. For low-probability events, losses larger than $ 10 M, 
however, the difference between the correlated and non-correlated MAF’s are significant. For example, the 
MAF of losing more than $ 12 M when the losses at the component-level are assumed to be non-correlated 
is almost half of the MAF computed for the correlated case. 
 

CONCLUSIONS 
 
Identifying the important sources of uncertainty in estimating economic losses at the component-level and 
system-level in buildings is investigated. Four sources of uncertainty contribute to the loss estimation at 
the component-level; uncertainty in the seismic hazard, IM, uncertainty in the imposed seismic demand at 
a given scenario, EDP | IM uncertainty, uncertainty caused by the damage in the component, DM | EDP 
uncertainty, and the uncertainty in the incurred loss in the component , DV | DM  uncertainty. The 
contribution of each of these sources of uncertainty on the expected annual loss (EAL) and the mean 
annual frequency (MAF) of exceeding a certain level of loss is modeled by extending the PEER framing 
equation. 
 
The extended methodology is then applied to a reinforced concrete slab-column connection. The results 
show that the most contributing source of uncertainty for the case of EAL is the uncertainty in the seismic 
hazard curve. For the MAF of loss, however, the effects of the DV | DM uncertainty are the most on the 
loss curve compared to other sources of uncertainty. 
 
At the system-level, the effects of EDP | IM level uncertainty and DM | EDP uncertainty are investigated 
on the EAL. The two sources of uncertainty effect both the scenario-based expected loss when the 
structure does not collapse, E [ LT | IM , NC ], and the probability of collapse at a given scenario, P ( C | 
IM ). Our investigation shows that the EAL is mainly sensitive to the DM | EDP uncertainty.  
 



A sensitivity analysis is preformed on the effects of correlation on the building loss curve, MAF. First, we 
developed a formulation to account for the effects of correlation between losses in individual components. 
The formulation estimates the correlation between component losses as a function of the correlation at 
three levels of EDP | IM , DM | EDP and DV | DM. The methodology is then applied to a reinforced 
concrete testbed structure. Our observations show that the correlation between component losses 
significantly increase the dispersion of the loss at the system-level, increase of more than 300% for the 
non-collapse dispersion of the loss at different scenarios. The effect of correlation on the building loss 
curve is then investigated. It is concluded that assuming non-correlated component losses is not 
conservative and for the case of low-probability events, e.g. collapse, can lead to underestimations of more 
than 50% in MAF in some cases. For the case of high probability events, however, assuming that the 
losses are non-correlated at the component-level does not introduce significant approximation to the loss 
curve. The results is promising since it allows for great simplifications in the loss estimation methodology 
and increasing its practicality for high probability events. 
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