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SUMMARY 
 
The focus of this paper is real-time Bayesian state estimation using nonlinear models. A recently 
developed method, the particle filter, is studied that is based on Monte Carlo simulation. Unlike the well-
known extended Kalman filter, it is applicable to highly nonlinear systems with non-Gaussian 
uncertainties. The particle filter is applied to a real-data case study: a 7-story hotel whose structural system 
consists of non-ductile reinforced-concrete moment frames, one of which was severely damaged during 
the 1994 Northridge earthquake. An identification model derived from a nonlinear finite-element model of 
the building previously developed at Caltech is proposed. The particle filter provides consistent state and 
parameter estimates, in contrast to the extended Kalman filter. Finally, recorded motions from the 1994 
Northridge earthquake are used to illustrate how to do real-time performance evaluation by computing 
estimates of the repair costs and probability of component damage for the hotel. 
 

INTRODUCTION 
 
State estimation is the process of using dynamic data from a system to estimate quantities that give a 
complete description of the state of the system according to some representative model of it. State 
estimation has the potential to be widely applied in civil engineering. Due to the wide applicability, real-
time state estimation and identification methods have been studied in civil engineering for various 
purposes: Beck [1] used an invariant-embedding filter for modal identification; Yun [2] used an extended 
Kalman filter to study nonlinear fluid-structure interaction; Hoshiya [3] used the extended Kalman filter 
for structural system identification; Lin [4] developed a real-time identification methodology for better 
understanding of the degrading behavior of structures subject to dynamic loads; Ghanem [5] presented 
several different adaptive estimation techniques (e.g. extended Kalman filter, recursive least squares, 
recursive prediction error methods) and verified them using experimental data (Shinozuka [6]); Glaser [7] 
used the Kalman filter to identify the time-varying natural frequency and damping of a liquefied soil to get 
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insight into the liquefaction phenomenon; Sato [8] derived an adaptive H∞ filter and applied it to time-
varying linear and nonlinear structural systems in which displacements and velocities of the floors are 
measured; Smyth [9] formulated an on-line adaptive least squares algorithm for identifying multi-degree 
of freedom nonlinear hysteretic systems for the purpose of on-line control and monitoring. 
Among state estimation methodologies, those founded on the Bayesian framework are powerful due to the 
following facts: (1) they are rigorously based on the probability axioms; therefore, they preserve 
information; (2) they give the probability density function (PDF) of the system state conditioned on the 
available information, which may then be used for any probability-based structural health monitoring, 
system identification, reliability assessment and control techniques. With the PDF available, we can not 
only estimate the state but also give a description of the associated uncertainties. For the Bayesian state-
estimation algorithms, Kalman formulated the well-known Kalman filter (KF) (Kalman [10]) for linear 
systems with Gaussian uncertainties. Later, KF was modified to give the extended Kalman filter (EKF) 
(Jazwinski [11]) to accommodate lightly nonlinear systems, and this is basically the dominant Bayesian 
state-estimation algorithm for nonlinear systems and non-Gaussian uncertainties for the last 30 years.  
Although EKF has been widely used, it is only reliable for systems that are almost linear on the time scale 
of the updating intervals. However, civil engineering systems are often highly nonlinear when subject to 
severe loading events; in this case, the applicability of the Kalman filter and extended Kalman filter is 
often questionable. These older techniques have been used by civil engineering researchers for decades 
[1,2,3] although their applicability for nonlinear systems and non-Gaussian uncertainties is seldom 
verified either empirically or theoretically.  
In this paper, we introduce some recent developments (Gordon [12]; Kitagawa [13]; Doucet [14]; van der 
Merwe [15]) in real-time Bayesian state estimation that use Monte Carlo simulation (MCS). The 
technique called particle filter (PF) is presented and discussed. These Monte Carlo techniques have the 
following advantages: (1) they are applicable to highly nonlinear systems with non-Gaussian uncertainties; 
(2) they are not limited to the first two moments as in KF and EKF; and (3) as the sample size approaches 
infinity, the resulting state estimates converge to their expected values. The performance of different 
methods (i.e. EKF and PF) will be compared through a real-data case study.  
This paper has the following structure: We first define the general problem of Bayesian state estimation 
for nonlinear dynamical systems. We then review the Kalman filter and extended Kalman filter algorithms 
and introduce the particle filter techniques. Finally, we present a case study of a real building to 
demonstrate the application of the different methods. We also apply the results to illustrate real-time 
estimation of repair costs and probability of component damage of the building during an earthquake. 
 

STATE ESTIMATION 
 
Consider the following discrete-time state-space model of a dynamical system:  

1 1 1( , , )k k k k kx f x u w− − −=            ( , , ) 1, 2...k k k k ky h x u v k T= =  (1)  

In this equation, n
kx R∈ , p

ku R∈  and q
ky R∈  are the system state, input (known excitation) and 

observed output at time k ; l
kw R∈  and m

kv R∈  are introduced to account for unknown disturbances, 

model errors and measurement noise; kf  is the prescribed state transition function at time k ; and kh  is 

the prescribed observation function at time k . The values of the variables kx , ky , kw  and kv  are 

uncertain and so are modeled as random variables, while ku  is considered to be a known excitation.  

For each time k , the dynamical system input ku  and output ˆky are measured. (In order to avoid 

confusion, we denote the observed output value by ˆky ). We denote 1 2ˆ ˆ ˆ{ , ,..., }ky y y  and 1 2{ , ,..., }ku u u  by 



k̂Y  and kU , respectively. The goal of real-time Bayesian state estimation is to evaluate the conditional 

probability density function (PDF) ˆ( | )k kp x Y  for the state kx  at every time k  in a real-time manner, i.e. 

to sequentially update this conditional PDF using the observed system input and output up to the current 
time, based on prescribed probabilistic models for kw  and kv . Note that the conditioning of every PDF on 

kU is not denoted explicitly.  

The basic equations for updating 1 1
ˆ( | )k kp x Y− −  to ˆ( | )k kp x Y  are the predictor and updater (or corrector) 

equations that follow from the Theorem of Total Probability and Bayes Theorem, respectively:  

1 1 1 1 1

1 1
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ˆ ˆ( | ) ( | ) ( | )

ˆ ˆˆ ˆ( | ) ( | ) ( | ) ( | )ˆ( | )
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k k k k k k k k
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p y x p x Y p y x p x Y
p x Y
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− − − − −

− −

−−

=

= =

∫

∫

 (2)  

where 1k̂Y −  is dropped in 1( | )k kp x x −  and ˆ( | )k kp y x  because the models for the state transition and 

observation PDFs make it irrelevant. The main challenge in Bayesian state estimation for nonlinear 
systems is that these basic equations cannot be readily evaluated because they involve high-dimensional 
integrations. 
 

KALMAN FILTER AND EXTENDED KALMAN FILTER 
 
When kf  and kh  in (1) are both linear in ku , kx , kw  and kv , i.e. 

( , , ) ( , , )k k k k k k k k k k k k k k k k k k k kf x u w A x B u G w h x u v C x D u H v= + + = + +  (3) 

and kw  and kv  are zero-mean independent Gaussian random variables with identity covariance matrices, 

the conditional PDF is also Gaussian and can be updated analytically. Furthermore, it is sufficient to 
update the first two moments because they completely specify this conditional PDF. The updating 
algorithm is the well-known Kalman filter (KF). It comprises two steps, the predictor (uncertainty 
propagation) and updater (estimation) steps. 

In the uncertainty propagation step, the goal is to compute 1
ˆ( , | )k k kp x y Y −  from 1 1

ˆ( | )k kp x Y− − . First, 

1
ˆ( | )k kp x Y −  is computed based on 1 1

ˆ( | )k kp x Y− −  using the following moment equations: 

| 1 1 1 1| 1 1 1

| 1 1 1 1| 1 1 1 1

ˆ( | )

ˆ( | )

k k k k k k k k k

T T
k k k k k k k k k k

x E x Y A x B u

P Cov x Y A P A G G

− − − − − − −

− − − − − − − −

≡ = +

≡ = +
 (4) 

Note that the values 0|0x  and 0|0P  have to be given prior to the initialization of the algorithm. Second, 

1
ˆ( | )k kp y Y −  is computed based on 1

ˆ( | )k kp x Y −  and ku  using the following moment equations: 

| 1 1 | 1

| 1 1 | 1

ˆ( | )

ˆ( | )

k k k k k k k k k

y T T
k k k k k k k k k k

y E y Y C x D u

P Cov y Y C P C H H

− − −

− − −

≡ = +

≡ = +
  (5) 

and finally, the conditional covariance between kx  and ky  is the n q×  matrix computed as follows: 



| 1 1 | 1
ˆ( , | )xy T

k k k k k k k kP Cov x y Y P C− − −≡ =   (6) 

This completes the computation of all the moments needed to specify the Gaussian PDF 1
ˆ( , | )k k kp x y Y − . 

In the estimation step, ˆ( | )k kp x Y  is updated based on the following equations: 

1
| | 1 | 1 | 1 | 1

1
| | 1 | 1 | 1 | 1

ˆ( ) ( )

( )

xy y
k k k k k k k k k k k

xy y xy T
k k k k k k k k k k

x x P P y y

P P P P P

−
− − − −

−
− − − −

= + ⋅ ⋅ −

= − ⋅ ⋅
  (7) 

Extended Kalman filter 
Many dynamical systems exhibit nonlinear behavior, and the direct use of KF is prohibited. However, if 

kf  and kh  are only slightly nonlinear, an approximation for KF can be derived by linearizing the 

uncertainty propagation and estimation steps. The resulting filter is the well-known extended Kalman 
filter (EKF). For the uncertainty propagation step in EKF, the goal is to find the linear approximations of 

| 1k kx − , | 1k kP − , | 1k ky − , | 1
y

k kP −  and | 1
xy

k kP −  based on 1| 1k kx − −  and 1| 1k kP − − . To simplify the notation, we define 

[ ]T T T T
k k k kz x w v=  and | |[ 0 0 ]T T T T n l m

k k k kz x R + += ∈ , so ( , , ) ( , )k k k k k k kf x u w f z u= . 

When propagating from [ 1| 1k kx − − , 1| 1k kP − − ] to [ | 1k kx − , | 1k kP − ], we expand 1 1 1( , )k k kf z u− − −  in the 

neighborhood of 1| 1k kz − − . With the linear approximation, we get 

| 1 1 1 1 1 1| 1 1 | 1[ ( , )] ( , ) LN
k k k k k k k k k k kx E f z u f z u x− − − − − − − − −= ≈ ≡  (8) 

and 

{ }
{ }

| 1 1 1 1| 1 1 1| 1 1 1

1 1 1 1 | 1

( ) ( )( ) | ( )

( ) | ( )

T T
k k z k k k k k k k k z k

T LN
z k k k z k k k

P f E z z z z D f

f Cov z D f P

− − − − − − − − − −

− − − − −

≈ ∇ ⋅ − − ⋅ ∇

= ∇ ⋅ ⋅ ∇ ≡
 (9) 

where )(
1

mlnn
kz Rf ++×

− ∈∇  is the Jacobian matrix evaluated at 1 1| 1k k kz z− − −= . It can be seen that 

( ) ( ) ( ) ( )| 1 1 1| 1 1 1 1

T TLN LN LN LN LN
k k k k k k k kP A P A G G− − − − − − −= ⋅ ⋅ + ⋅  (10) 

where 
1 1| 1

1 1
k k k

LN n n
k x k z z

A f R
− − −

×
− − =

≡ ∇ ∈  and 
1 1| 1

1 1
k k k

LN n l
k w k z z

G f R
− − −

×
− − =

≡ ∇ ∈  are the Jacobian matrices. 

Similarly, kh  is also linearized to get the approximations for | 1k ky − , | 1
y

k kP −  and | 1
xy

k kP − : 

( ) ( ) ( )( )
( )

| 1 1 | 1 | 1

,
| 1 | 1 | 1

,
| 1 | 1 | 1

( , ,0)LN LN
k k k k k k k k

T Ty LN LN LN LN LN y LN
k k k k k k k k k k

Txy LN LN xy LN
k k k k k k k

y h x u y

P C P C H H P

P P C P

− − − −

− − −

− − −

≈ ≡

≈ + ≡

≈ ≡

 (11) 

where 
| 1 , 0k k k k

LN q n
k x k x x v

C h R
−

×
= =

≡ ∇ ∈  and 
| 1 , 0k k k k

LN q m
k v k x x v

H h R
−

×
= =

≡ ∇ ∈ . 

For the estimation step,  (7) can still be used as an approximation. If kf  and kh  are indeed linear, EKF is 

identical to KF. The degree of accuracy of EKF relies on the validity of the linear approximation. EKF is 
not suitable to track multi-modal or highly non-Gaussian conditional PDFs due to the fact that it only 



updates the first two moments. When the system parameters are unknown, it is important to also estimate 
them. Uncertain parameters can be augmented into system states and estimated using EKF. 
 

PARTICLE FILTERS 
 
We have seen that EKF can only propagate and estimate the first two moments of the conditional PDF. For 
systems with non-Gaussian uncertainties, it is often desirable to propagate and estimate the conditional 
PDF itself; however, doing so effectively requires an infinite number of parameters to represent the 
functional form of the conditional PDF. An alternative is to conduct Monte Carlo simulation by drawing 
samples from the conditional PDF so that the conditional expectation of any function of kx  can be 

consistently estimated. We focus on the Monte Carlo simulation technique in this section and use the term 
particle filters (PF) to denote the resulting algorithms (following van der Merwe [15]; Doucet [16]). 
Similar PF algorithms have been called Monte Carlo filters by Kitagawa [13] and sequential Monte Carlo 
Bayesian filters by Doucet [14].  
 
Basic equations 
We first present some basic equations that are useful throughout this section. Let  { }0 1, ,...,k kX x x x= , 

then according to Bayes rule, 

1 1

1 1 1 1 1 1 1 1

1

1 1 1 1
1 1

ˆ ˆ ˆ( , ) ( , , , )ˆ( | )
ˆ ˆ( ) ( )

ˆ ˆ ˆ ˆˆ ˆ( , ) ( , | , ) ( | ) ( , | , )
ˆ ˆˆ( ) ( | )

ˆ ˆˆ( | , , ) ( | , )ˆ( | )
ˆˆ( |

k k k k k k
k k

k k

k k k k k k k k k k k k

k k k

k k k k k k k
k k

k

p X Y p X x Y y
p X Y

p Y p Y

p X Y p x y X Y p X Y p x y X Y

p Y p y Y

p y x X Y p x X Y
p X Y

p y Y

− −

− − − − − − − −

−

− − − −
− −

= =

⋅ ⋅= =

⋅= ⋅ 1
1 1

1 1

ˆ( | ) ( | )ˆ( | )
ˆˆ) ( | )

k k k k
k k

k k k

p y x p x x
p X Y

p y Y
−

− −
− −

⋅= ⋅

(12) 

where we have used the fact that 1 1
ˆˆ ˆ( | , , ) ( | )k k k k k kp y x X Y p y x− − =  and that 1 1

ˆ( | , )k k kp x X Y− − =  

1( | )k kp x x −  based on (1) and the fact that the PDFs for kv  and kw  are prescribed. Evaluating the 

recursive equation in (12), we get 

1 0
0 1

1 11

ˆ( | ) ( | ) ( )ˆ ˆ( | ) ( ) ( | ) ( | )
ˆ ˆˆ( | ) ( )

k k
m m m m

k k m m m m
m mm m k

p y x p x x p x
p X Y p x p y x p x x

p y Y p Y
−

−
= =−

⋅= ⋅ = ⋅ ⋅∏ ∏  (13) 

Monte Carlo simulation for state estimation 

Our interest is to develop a MCS algorithm for the conditional PDF ˆ( | )k kp X Y  that is real-time. In other 

words, if 1
ˆ

kX −  is a sample from 1 1
ˆ( | )k kp X Y− − , the sample from ˆ( | )k kp X Y  must have the form 

{ }1
ˆ ˆ ˆ,k k kX X x−= , where ˆkx  is the new sample and 1

ˆ
kX −  is the previous sample from 1 1

ˆ( | )k kp X Y− − . 

However, such a real-time MCS algorithm cannot be directly implemented. This is because 1 1
ˆ( | )k kp X Y− −  

is different from 1 1 1
ˆ ˆ ˆ( | ) ( | , )k k k k kp X Y p X Y y− − −= . 



 
Importance sampling technique 

 Nevertheless, we can sample from an importance sampling PDF ˆ( | )k kq X Y  that admits a real-

time sampling procedure, i.e. 1 1
ˆ( | )k kq X Y− −  is identical to 1

ˆ( | )k kq X Y− . In other words, the structure of 

( | )k kq X Y  is such that 1kX −  is independent of ky  conditioned on 1kY − . Drawing N  samples 

{ }ˆ : 1,...,i
kX i N=  randomly from ˆ( | )k kq X Y  (at this time, we assume that ˆ( | )k kq X Y  can be easily 

sampled), the expectation of any function of kX , denoted by ( )kr X , conditioned on k̂Y  can be estimated 

using the importance sampling technique as follows: 

1
,

1

1 ˆˆ ˆ ˆ[ ( ) | ] ( )
N

i i
k k k k k N

i

E r X Y r X r
N

β
=

≈ ⋅ ≡∑  (14) 

where ˆ ˆ ˆ ˆ ˆ( | ) ( | )i i i
k k k k kp X Y q X Yβ =  is the non-normalized importance weight of the i-th sample. Any 

quantity of interest can be estimated with different ( )r ⋅  functions in (14); for instance, if ( )k kr X X= , 

ˆ[ ( ) | ]k kE r X Y  is simply the conditional expectation ˆ[ | ]k kE X Y ; if ( ) T
k k kr X X X= , ˆ[ ( ) | ]k kE r X Y  is the 

conditional second moment ˆ[ | ]T
k k kE X X Y . 

Let { }: 1,...,i
kX i N= denote the state variables corresponding to N  random samples from ˆ( | )k kq X Y  

(before drawing the actual samples). It is readily shown that the estimator 1
,

1

1
( )

N
i i

k N k k
i

r r X
N

β
=

= ⋅∑  is an 

unbiased estimator of ˆ[ ( ) | ]k kE r X Y  if the support region for ˆ( | )k kp X Y  is a subset of that for 

ˆ( | )k kq X Y : 

1
,

1

1
( ) ( )

ˆ ˆ ˆ( | ) ( | ) ( ) ( | )

ˆ ˆ( ) ( | ) ( ) |

N
i i

k N q k k q k k
i

k k k k k k k k

k k k k k k

E r E r X E r X
N

p X Y q X Y r X q X Y dX

r X p X Y dX E r X Y

β β
=

⎡ ⎤ ⎡ ⎤ ⎡ ⎤= ⋅ = ⋅⎣ ⎦ ⎣ ⎦ ⎣ ⎦

⎡ ⎤= ⋅⎣ ⎦

⎡ ⎤= ⋅ = ⎣ ⎦

∑

∫

∫

 (15) 

According to the Central Limit Theorem, 1
,k Nr  converges (as N  approaches infinity) to a Gaussian 

random variable with mean equal to ˆ[ ( ) | ]k kE r X Y  and with variance that decays as 1/ N . Therefore, 
1
,k Nr  is a consistent estimator of ˆ[ ( ) | ]k kE r X Y . 

Although 1
,k Nr  is unbiased and consistent, it is not a feasible estimator because the non-normalized 

importance weights ˆ ˆ( | ) ( | )i i i
k k k k kp X Y q X Yβ =  depend on ˆ( | )i

k kp X Y , which cannot be computed 

easily since in order to evaluate ˆ( | )i
k kp X Y , we have to evaluate ˆ( )kp Y , as shown by (21), which is a 

difficult task. Nevertheless, it is shown in Ching [17] that the following estimator is computable while it is 
asymptotically unbiased and consistent:  



2 1
, ,

1 1

1 1
( )

N N
i i j N

k N k k k k N k
i j

r r X r
N N

β β β
= =

⎛ ⎞⎛ ⎞≡ ⋅ =⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠

∑ ∑  (16) 

where  

1

N
N j

k k
j

Nβ β
=

⎛ ⎞
= ⎜ ⎟
⎝ ⎠
∑   (17) 

Note that 2
,k̂ Nr , unlike 1

,k̂ Nr , can be computed conveniently from samples { }ˆ : 1,...,i
kX i N= : 

 2
,

1 1 1

ˆ ˆˆ ( ) ( )
N N N

i j i i i
k N k k k k k

i j i

r r X r Xβ β β
= = =

⎡ ⎤⎛ ⎞
= ⋅ = ⋅⎢ ⎥⎜ ⎟

⎢ ⎥⎝ ⎠⎣ ⎦
∑ ∑ ∑ %  (18) 

where  

1

0 0
1 1

11 1

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ( | ) ( | ) ( | ) ( | )

ˆ ˆ( ) ( )
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ    ( | ) ( | ) ( | ) ( | )

ˆ ˆ ˆ ˆ( | ) ( | )

N
i i i j j
k k k k k k k k k

j

i jk kN
i i i j j j

m m m m m m m mi j
jm mk k k k

p X Y q X Y p X Y q X Y

p x p x
p y x p x x p y x p x x

q X Y q X Y

β
=

− −
== =

⎛ ⎞
= ⎜ ⎟

⎝ ⎠

⎛ ⎞
= ⋅ ⋅ ⋅ ⋅⎜ ⎟

⎝ ⎠

∑

∑∏ ∏

%

 (19) 

Therefore, the factor ˆ( )kp Y  in (13) has been cancelled due to the use of the normalized importance 

weights { }: 1,...,i
k i Nβ =% , i.e. 

1

1
N

i
k

i

β
=

=∑ % . Also, the likelihood functions ˆ ˆ( | )i
m mp y x  and 1ˆ ˆ( | )i i

m mp x x −  

can be readily evaluated using the prescribed PDFs for mv  and mw  if the mappings in (1) uniquely specify 

mv  and mw , given 1,  and m m my x x − . At this time, we assume that ˆ ˆ( | )i
k kq X Y  can be easily evaluated too. 

The selection of an importance sampling PDF that admits a real-time procedure is discussed in Ching 
[17]. The conclusion is that the following importance sampling PDF performs better: 

0 1
1

ˆ ˆ( | ) ( ) ( | , )
k

k k m m m
m

q X Y p x p x x y−
=

= ⋅∏   (20) 

The corresponding modified non-normalized importance weight is: 

1 1
1

1 1 1

ˆ ˆ( | ) ( | ) ( | ) ( | )
ˆ ˆ( | , ) ( | , )

k
m m m m k k k k

k k
m m m m k k k

p y x p x x p y x p x x

p x x y p x x y
β β− −

−
= − −

⋅ ⋅= = ⋅∏  (21) 

Liu [18] discusses the optimality of this importance sampling PDF. 
Due to the structure of the algorithm, at any time k , we are only required to store the sampled states and 
weights in the most recent two time steps, i.e. k  and 1k − , if the quantity of interest is ( )kr x  and so 

depends on the current state (clearly, additional dependence on the previous state 1kx − can also be treated). 

As a result, the following recursive algorithm can be used: 
 
Algorithm 1: Basic PF algorithm 

(1) Initialize the N  samples: Draw 0ˆ  from ( )ix p x  and set 1 ,  1,...,i N i Nβ = = . 



(2) At time k , store the previous samples and weights 

 ˆi i i ix x β β= =%

%   (22) 

For 1,...,i N= , draw 1ˆ ˆ from ( | , )i i
k k kx p x x x y− = %  and update the importance weight 

 1

1

ˆ ˆ ˆ( | ) ( | )
ˆ ˆ( | , )

i i i
i i k k k k

i i
k k k

p y x x p x x x x

p x x x x y
β β −

−

= ⋅ = == ⋅
= =

%

%

%

 (23) 

(3) For 1,...,i N= , ˆ[ ( ) | ]k kE r x Y  can be approximated based on (16):  

 
1 1

ˆ ˆ[ ( ) | ] ( )
N N

i j i
k k

i j

E r x Y r xβ β
= =

⎡ ⎤⎛ ⎞
≈ ⋅⎢ ⎥⎜ ⎟

⎢ ⎥⎝ ⎠⎣ ⎦
∑ ∑  (24) 

where ( )r ⋅  is a function that maps from kx  to any quantity of interest. 

(4) Do Steps (2) and (3) for 1,...,k T= . 
 

Usually, 1 ˆ( | , )i
k k kp x x x y− = %  in Step 2 is difficult to sample. Note that estimating the first two moments 

of 1 ˆ( | , )i
k k kp x x x y− = %  is a problem that can be solved using a single-time-step EKF algorithm. The least-

informative PDF (i.e. the maximum entropy PDF; see Jaynes [19]) given the estimated two moments, 

which is a Gaussian PDF (denoted by 1 ˆ( | , )i
LI k k kp x x x y− = % ; LI  subscript means ‘least-informative’), 

can be used for the importance sampling PDF. The use of 1 ˆ( | , )i
LI k k kp x x x y− = %  is discussed in van der 

Merwe [15]. 
 

Algorithm 2: Determining 1 ˆ( | , )i
LI k k kp x x x y− = %  

(1) Uncertainty propagation: compute 
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where 
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 is the Jacobian matrix, and 
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where 
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(2) Estimation: compute 
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1 ˆ( | , )i
LI k k kp x x x y− = %  is then the Gaussian PDF with the two moments in (27). 

 
Reducing degradation – recursive resampling and parallel particle filters 
Note that it is desirable to have the importance weights { : 1, 2,... }i i Nβ =  be approximately uniform so 

that all samples contribute significantly in (24), but they become far from uniform as k  grows, which is 

due to the recursion in (21) and the fact that ˆ( | )k kq X Y  ≠ ˆ( | )k kp X Y . Ultimately, a few weights become 

much larger than the rest, so the effective number of samples is small. Nevertheless, the degradation can 
be reduced, as described in this section and the next. 
Instead of letting the N  samples evolve through time independently (Algorithm 1), we can resample the 
samples when the importance weights become highly non-uniform (Kitagawa [13]; Doucet [14]; Liu [18]). 
After the resampling, the importance weights become uniform, therefore the degradation problem is 
alleviated. The resampling step tends to terminate small-weight samples and duplicate large-weight 

samples and, therefore, forces the N  samples to concentrate in the high probability region of ˆ( | )k kp x Y .  

Although the resampling step sets the weights back to uniform, the price to pay is that the samples become 
dependent and therefore collectively carry less information about the state. As a result, the resampling 
procedure should only be executed when the importance weights become highly non-uniform. This can be 
done by monitoring the coefficient of variation (c.o.v.) of the importance weights. The resampling 
procedure is executed only when this c.o.v. exceeds a certain threshold, indicating that the variability in 
the importance weights is large. 
Another way to alleviate the dependency induced by the resampling step is to conduct several independent 
PF algorithms and combine all of the obtained samples. Although the samples obtained in a single 
algorithm can be highly dependent, the samples from different algorithms are completely independent. 
The resulting algorithm is as follows: 
 
Algorithm 3: Parallel PF algorithm with resampling 

(1) Perform the following (2)-(6) for 1,...,j L=  independently. Since the processes are completely 
independent, they can be conducted in parallel. 

(2) Initialize N  samples: Draw ,
0 from ( )i jx p x%  and set , 1i j Nβ =  for 1,...,i N= .   

(3) At time k , store the previous samples and weights 

 
, , , ,ˆi j i j i j i jx x β β= =%

%   (28) 

For 1,...,i N= , draw , ,
1 ˆ from ( | , )i j i j

LI k k kx p x x x y− = %  and update the importance weight 
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(4) Compute the c.o.v. of ,{ : 1,..., }i j i Nβ = . If the c.o.v. is larger than the prescribed threshold, then 

execute the resampling step for 1,...,i N= : 
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x x w p β β
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= ∑  (30)  

and set , 1i j Nβ =  for 1,...,i N= . Otherwise, for 1,...,i N= : 
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(5) ˆ[ ( ) | ]k kE r x Y  can be then approximated by 
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(6) Do Steps 2 to 5 for 1,...,k T= . 

 
Advantages and disadvantages of the PF technique 
The advantages of the PF technique include (1) as N  (the number of samples per algorithm) approaches 
infinity, the value of any function of the state kx  estimated by PF converges to its expected value; 

therefore, the PF technique can be used to validate other methodologies; and (2) parallel computations are 
possible for PF algorithms. A disadvantage of the PF technique is that it is computationally expensive, 
especially when the degradation is severe so that we need large N  and L  to have the algorithm converge. 

In general, the required N  and L  grow with the size of the effective support region of ˆ( | )k kp x Y . A 

simple test for convergence is to add parallel particle filters until the estimated quantities of interest, 
( )kr x , do not significantly change.  

 
REAL-DATA CASE STUDY 

 
Building description 
The selected building for the case study is a 7-story, 66,000 square feet (6,200 m2) hotel located at 8244 
Orion Ave, Van Nuys, CA, at 34.221° north latitude, 118.471° west longitude, in the San Fernando Valley 
of Los Angeles County. We refer to this building as the Van Nuys hotel. It was built in 1966 according to 
the 1964 Los Angeles City Building Code. The lateral force-resisting system is a reinforced concrete 
moment frame in both directions. The building was lightly damaged by the M6.6 1971 San Fernando 
event, approximately 20 km to the northeast, and severely damaged by the M6.7 1994 Northridge 
Earthquake, whose epicenter was approximately 4.5 km to the southwest. The building has been studied 
extensively, e.g., by Jennings [20] and Beck [21]). 
The south frame of the building was heavily damaged during the 1994 Northridge earthquake, during 
which the building was instrumented with sixteen accelerometers. Among the sixteen channels, five 
channels measured the accelerations in the longitudinal (east-west: E-W) direction at the ground, second, 
third, sixth floors and the roof. The locations of the five accelerometers were at the south-east corner of 
the ground floor and near the east wall at the second, third, sixth floors and the roof. Figure 1 shows the 
measured E-W acceleration time histories during the earthquake. 
The purpose of this case study is to examine the use of real-time Bayesian state-estimation techniques in 
tracking the system state and parameters of the building during the earthquake and to apply the new 
technique to real-time loss monitoring. We focus exclusively on the dynamics in the E-W direction due to 
the fact that this involves the south frame that was severely damaged. 
 
Time-varying nonlinear degradation identification model 
We employ a time-varying nonlinear stochastic structural model for identification (called the simplified 
nonlinear degradation model). This model is derived from a more complicated finite-element model 
previously developed at Caltech and is discussed in detail in Ching [17]. The simplified model is a 7-story 



shear building model and has five system parameters which control the degradation behavior of the inter-
story stiffnesses and dampings. The rationale that we allow the system parameters to drift with time is as 
follows: it is very unlikely that the simplified nonlinear degradation model has no modeling error. The 
modeling error can be partially compensated by allowing the system parameters to vary with time, that is, 
the model is able to adaptively fit the data by slowly changing its parameter values.  
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Figure 1. Measured E-W accelerations of the Van Nuys hotel during the Northridge earthquake 

 
Results and discussion 
We implement PF with N = 200 and L = 10 and the importance weight c.o.v. threshold = 200% using 
Algorithm 3. If more samples are used in PF than the 2000N L⋅ =  samples, there is little change in the 
estimated means and variances of the unknown parameters, indicating that the results are nearly 
converged. Figure 2 shows the evolution of the predicted inter-story drifts. The “measured” inter-story 
drifts in the first and second stories (obtained from double integrating and high-pass filtering the 
difference between the accelerations measured at the first story and ground floor base, and second and 
first stories) are also plotted in the figure. Figure 3 shows the time evolution of the estimated inter-story 
stiffnesses and dampings from the simplified nonlinear degradation model, where ,i tk  and ,i tc  denote the 

inter-story stiffness and damping in the i-th story at time t. By carefully inspecting Figure 2, one can see 
that the predicted maximum inter-story drift is at the fourth story, which is consistent with the actual 
damage to the south frame in the 1994 Northridge Earthquake (Section 5.3.3 in Beck [21]). 
 
Comparison with EKF results 
We also implement the EKF algorithm for the simplified nonlinear degradation model. Although not 
shown in this paper, the results from EKF are not consistent with those from PF. Since we treat PF as our 
comparison standard, we conclude that EKF are not consistent. For the detailed results from EKF, please 
refer to Ching [17]. 



Real-time performance evaluation 
Since the system state kx  of the simplified nonlinear degradation model completely characterizes the 

model status at time k, any desired performance measure of the monitored system at time k can be 
computed with an appropriate response function (the ( )r ⋅  function appearing in Step 5 in Algorithm 3).  

With the PF algorithm, at each time k, N L×  weighted samples of the state, i.e. 
,ˆ{ : 1,..., ; 1,..., }i jx i N j L= = , are available, so N L×  weighted samples of the performance measure, i.e. 

,ˆ{ ( ) : 1,..., ; 1,..., }i jr x i N j L= = , can be obtained. The estimated mean of the performance measure at 
time k is given as in Algorithm 3 by 
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Figure 2. Solid lines are “measured” inter-story drift ratios; dashed lines are predicted inter-story 
drift ratios; and dotted lines are 95% confidence intervals 
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Figure 3. The estimated stiffnesses (left) and dampings (right); the dotted lines are the 95% 

confidence intervals 
 
There are many possible performance measures of interests. In this paper, we consider the first two 
moments of the repair costs of the monitored structure (CR) and the probability of a damage state of a 
specified damageable assembly. We describe in Ching [17] how to compute the first two moments of the 
repair costs and probability of damage conditioned on engineering demand parameters (EDP), e.g. 
maximum inter-story drifts, given probability distributions for capacity, unit repair cost and contractor cost 
uncertainties, by using the assembly-based vulnerability (ABV) approach (Porter [22]). In this paper, we 
only consider the repair costs and probability of damage of the non-structural components, e.g. windows, 
drywall finish, drywall partitions, and stucco, of the Van Nuys hotel, and the corresponding EDPs are the 
inter-story drift ratios. There are 41 damageable non-structural assemblies in this hotel, including 6 
assemblies of windows (1 assembly per story from 2nd to 7th stories), 14 assemblies of drywall finish (2 
assemblies per story from 1st to 7th stories), 14 assemblies of drywall partitions (2 assemblies per story 
from 1st to 7th stories), and 7 assemblies of stuccos (1 assemblies per story from 1st to 7th stories). 
With the results from the PF approach using the simplified nonlinear degradation model, we obtain 2,000 
(weighted) samples of system states at each time instant, i.e. 2,000 weighted samples of the first two 
moments of CR and probability of damage of the 5th–story partitions (as an example). Figure 4 shows the 
real-time estimate of the repair costs for the non-structural assemblies. It is clear that there are two time 
instants, around 3.5 sec and 9 sec, corresponding to a rapid repair cost increase. The c.o.v. for the repair 
costs is about 15%. Figure 5 shows the real-time estimate of the probability that the drywall partitions in 
the 5th story are in one of the two damage states (1: visible damage; 2: significant damage). 
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Figure 4. Real-time estimate of the repair costs for the non-structural assemblies in the Van Nuys 

hotel during the 1994 Northridge earthquake; dotted lines are 95% confidence intervals 
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Figure 5. Real-time estimate of the probability for one of the damageable assemblies (drywall 

partitions in the 5th story) to be in its two damage states (1: visible damage; 2: significant 
damage) during the 1994 Northridge earthquake 

 
CONCLUSIONS 

 
We have presented two real-time Bayesian state-estimation algorithms in detail, including the extended 
Kalman filter (EKF) and the particle filter (PF), which is basically a Monte Carlo simulation approach. 
The Van Nuys hotel is studied using the EKF and PF algorithms, and the results show that EKF can 
sometimes create misleading results. We further apply the PF samples to compute real-time estimates of 
the repair costs and the probability of damage of an assembly of the Van Nuys hotel during the 1994 
Northridge earthquake. 
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