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SUMMARY 
 
It is important to estimate a natural period of local soil deposit for the seismic design of buildings and 
infrastructures.  Several simplified equations have been used to approximate the natural period of layered 
ground in practice.  However, it is known that these equations sometimes give inadequate values, because 
these equations deal with the layered ground on a rigid bedrock.  In addition, some of these equations are 
not based on physics, but are derived through statistical studies.  We propose a new simplified equation to 
approximate natural period of layered ground on the elastic bedrock based on Reflection / Transmission 
Coefficient method. 
 

INTRODUCTION 
 
The earthquake ground motion is evaluated for designing important structures such as buildings and 
infrastructures.  The natural period of local soil deposit is an essential parameter to estimate local site 
effects on ground motions.   
 
For example, the natural period is widely used for the site classification.  Soil conditions at the site are 
categorized into three groups in “Earthquake Resistant Design Standard for Bridges in Japan”[1].  The 
first group is called as “bedrock site” whose natural period Tg is less than 0.2 sec.  The second group is 
called as “stiff soil site” whose Tg is from 0.2 to 0.6 sec.  The third group is called as “soft soil site” whose 
Tg is more than 0.6 sec.  The design spectra are given according to the groups. 
 
The natural period is also used to estimate the earthquake response of the local soil deposit.  The design 
spectra for buried structures are often given by a velocity response spectrum SV(T) on the bedrock.  If the 
local soil deposit is modeled as a single degree-of-freedom system, the ground displacement u at the depth 
z is represented as  
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where Tg is the natural period of local soil deposit, H the total thickness of soil layers.  This method is 
widely used in the design standards for underground structures such as buried pipelines and tunnels in 
Japan[2]. 
 
The characteristics of the soil-structure interaction are strongly controlled by the relationship between the 
natural periods of the structure, Ts, and that of the soil deposit, Tg.  Murono and Nishimura [3] pointed out 
the phase difference between the response of superstructure and ground is characterized by the 
relationship between Ts and Tg; when Ts<Tg soil deformation and the inertia force act on a foundation with 
nearly same phase, when Ts=Tg they deviate nearly 90 degree with each other; when Ts>Tg with nearly 
inverse phase. 
 
It is important to estimate the natural period of local soil deposit to design structures against earthquakes 
as mentioned above.  If the ground consists of a single soil layer and bedrock, the natural period of the 
ground, Tg,  is exactly obtained as 
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where,  V and  H are shear velocity and thickness of  the soil layer.  However, the natural period of a 
multi-layered ground is difficult to be represented by a simple equation. 
 
Several simplified equations have been proposed to approximate the natural period of multi-layered 
ground in design practice.  Dobri et al.[4] summarized and proposed several equations to estimate the 
natural period.  Three of those methods, which are often used in practice, are introduced and examined in 
the following section.  Note that these equations assume a rigid bedrock beneath the soil layers. 
 
We propose a new simplified equation to approximate natural period of layered ground on the elastic 
bedrock.  It is based on physics of elastic wave propagation represented by Reflection / Transmission 
Coefficient method.  Two kinds of approximations are reasonably introduced in order to simplify the 
equation. 
 

EXISTING EQUATIONS USED IN PRACTICE 
 
Sum of period of layers 
A twice of two-way period is obtained as the natural period by summing up the durations of which shear 
wave propagates in each layer, as follows; 
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where,  iV  and  iH  are the shear velocity and thickness of  ith layer, as shown in Figure 1.  Eq.(3) is 
widely used for estimating the natural period in the design of infrastructures in Japan. 
 
Weighted average of shear velocities of layers 
If the weighted average of shear wave velocities of whole soil layers is obtained using thickness of each 
layer as weight, the natural period of multi-layered ground is derived as 

∑
−

=

=
1

1

4
N

i

ii
A

H

HV
H

T
,
 ∑

−

=

=
1

1

N

i
iHH

,
 (4) 



where, H is the total thickness of soil layers.  Eq.(4) is widely used for the design of buildings in Japan, 
whereas it has a poor physical background.   
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Figure 1  Parameters of ground model 

 
Simplified Rayleigh procedure 
Rayleigh’s method assumes that the peak value of kinematic energy is equivalent to that of elastic strain 
energy.  The natural period of layered ground is represented as 
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where, zmi is the depth at mid-point of the layer, Xi the displacement at the interface between the ith and 
i+1th layers.  Eq.(5) can be calculated by an iteration process.  Dobri et al.[4] proposed the Simplified 
Rayleigh procedure which calculates Eq.(5) only the first step of the iteration process. 
 
Comparison of the existing equations 
Note that these equations do not include VN, the shear velocity of bedrock, in the parameters. It means that 
a rigid bedrock is assumed.  Figures 2, 3 and 4 show distributions of the ratios of Equations (3), (4) and 
(5) to the fundamental period analytically obtained by Haskell matrix method[5] (e.g. The computer 
program “SHAKE”[6]), respectively.  Soil profiles up to 20m depths at 27 K-net earthquake observation 
sites [7] in Hyogo prefecture, Japan, are used for the calculation.  The values are listed in Table 1.  It is 
recognized that the results of Eq. (3) are extensively scattered as shown in Figure 2.  The results of Eq. (4) 
has a better precision than Eq.(3), although it has a poor physical background.  It may be a problem that 
the peaks of the distributions in Figures 2 and 3 are shifted largely from 1.0.  As Eq. (5) is derived by 
physics, many of the results are concentrated near 1.0.  However, it is recognized that these equations 
cannot approximate the natural period at the four sites, whose error ratio is about more than 1.5.  These 
sites have a layer boundary with large impedance ratio at the shallow depth compared with the depth of 
bedrock.  Namely the assumption of the rigid bedrock works well under the limited conditions to estimate 
the natural period of the grounds. 
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 Figure 2 Precision of Eq.(3)  Figure 3  Precision of Eq.(4) 
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 Figure 4 Precision of Eq.(5)  Figure 5  Precision of Eq.(11) 
 
 

PROPOSED METHOD  
 
Reflection/Transmission Coefficient method 
Reflection/Transmission Coefficient method (RTCM) is a basic technique to solve the dynamic response 
of a layered ground (e.g. [8]).  The amplification factor of the soil layers can be obtained by summing up 
the infinite number of reflection and transmission wave which occur on the boundaries between layers.  If 
a vertically up-going sinusoidal SH wave is input to the two-layers ground which consists a single soil 
layer and a bedrock, the spectral amplification factor AH(T) is obtained as 
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where, T is the period of incident wave, νi the vertical wave-number given by  
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 j is an imaginary unit.  Ti
U and Ti

D are the transmission coefficients for up-going and down-going incident 
wave for the boundary between i th and i+1 th layers, which is also shown in Figure 1, described as 
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Ri
D is the reflection coefficient for down-going incident wave to the boundary, which can be approximated 

as 
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if densities of the layers are similar. Note that R0
U=2 is used in Eq. (6).  

 
Single reflection approximation  
As RTCM considers the infinite number of multiple reflection and transmission waves in the layered 
ground, the analytical representation of the amplification factor is so complicated. Then only the first 
reflection waves occurred on each boundary of the layers is considered for simplicity.  If the amplitude of 
incident wave on ground surface is set to be 1 and only real value of that is considered, the second term of 
Eq.(6) is written as  
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Then approximated amplification spectrum, AF(T), is derived by summing up the single reflection waves 
occurred on each boundary of the layers, as 
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where Si is the coefficient which represents the effects of reflection and transmission on boundaries 
between each layer.  If  1≈U

k
D

k TT  is considered, the coefficient is approximated by 
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Figure 5 shows distributions of the ratio of the period giving the fundamental peak in Eq. (11) to the 
fundamental period analytically obtained.  Note that the densities of the layers are not used for calculating 
Eq. (13).  The natural periods are successively approximated if the multiple reflection waves are ignored. 
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 Figure 6 Approximation by a 3rd-order polynomial Figure 7  Precision of Eq.(17) 
 
Approximation by 3rd-order polynomial 
The cosine function in Eq. (11) may be approximated by a 3rd-order polynomial which has extreme values 
at t=0 and t=T as 
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Figure 6 compares the right and left sides of Eq.(14).  The polynomial approximates the cosine function in 
the range from t=T0 to t=1.5T0.  The amplification spectrum is approximated using the polynomial as 
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The fundamental natural period can be defined as the period which gives a local maximum of Eq.(15).  
Then the following equation is obtained when differentiation of Eq.(15) is set to be zero. 
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The fundamental natural period of the layered ground, T3, can be represented by the simple equation 
shown below; 
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Note that N=2 gives T3=t1 which is the exact value for a single soil layer and bedrock.  
 
Eq.(17) is easy to use for its simple formulation.  Figure 7 shows distributions of the ratios of Equations 
(17) to the fundamental period calculated by Haskell matrix method.  It is recognized that Eq. (17) does 
not have a clear advantage over the existing equations.  Large errors, which are more than 1.8  for three 
sites and less than 0.7 for a site, are seen.  These may be resulted from the poor performance of 
approximation shown in Figure 6. 
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 Figure 8 Approximation by a 4th-order polynomial Figure 9  Precision of Eq.(22) 
 
Approximation by 4th-order polynomial 
Another polynomial is examined.  The cosine function in Eq.(11) can be also approximated by a 4th-order 
polynomial with extreme values at t=0, t=T and t=2T, as 
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Figure 8 compares the right and left terms of Eq.(18).  Good approximation is shown in the range from t=0 
to t=2T.  Then the amplification spectrum is approximated as 
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The fundamental natural period can be defined as the period which gives a local maximum of Eq.(9).  
Then the following equation is obtained when differentiation of Eq.(9) is set to be zero. 
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The fundamental natural period of the layered ground, T4, can be obtained as a larger solution of the 
quadratic polynomial ,as 
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Figure 10 Analytical and approximated amplification spectra  
 
Note that N=2 gives T4=t1.  If Eq. (22) gives an imaginary value, layers are removed from the deepest layer 
until it becomes a real value. In the case the soil profile has a layer boundary with large impedance ratio at 
shallow depth compared with the depth of bedrock, the deep layers are ignored by this operation.  Figure 9 



shows the ratio of natural periods obtained by the proposed method (Eqs. (10), (12), (13) and (22)) to 
those by Haskell matrix method.  It is shown that the proposed method has a better precision than the 
existing simplified equations.  However, one site is remained which has a large error about 1.7.   
 
In order to realize how the amplification spectra are approximated by the equations described above, 
Figure 10 shows comparisons between the analytical amplification spectra obtained by Haskell matrix 
method and those by the approximate equations.  Black and solid lines show the analytical amplification 
spectra, blue and short dashed lines are for the single-reflection approximation (Eq.(11)), red and long 
dashed lines for the proposed method (Eq.(22)).  It is no problem that the values of amplification spectra 
defined by the single-reflection approximation and the proposed method are smaller than the analytical 
ones, because only the periods for giving the fundamental peaks are examined.  Figure 10 (a) and (b) are 
the examples of good approximations.  The single-reflection approximation can follow the analytical 
spectra even for the higher mode as shown in Figure 10 (b).  The proposed method represents the peak of 
the fundamental mode with a good accuracy.  On the other hand, Figure 10 (c) is the result in the only case 
where the single-reflection approximation is not accurate, whereas the proposed method gives a good 
solution for the case.  Figure 10 (d) shows the reason why the proposed method have a case, as shown in 
Figure 9, where an inadequate solution is given.  It is recognized that the analytical spectrum has a 
potential peak at 0.08 sec of the period.  The potential peak may affect the solution of the proposed 
method. 
 

CONCLUSION 
 
A simplified equation is proposed for estimating a fundamental natural period of multi-layered ground on 
the elastic bedrock.  The proposed equation is based on physics of wave propagation and has a good 
precision for almost soil profiles.  The equation is summarized below; 
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where, Tg is the natural period of the ground, Vi and Hi are the shear velocity and the thickness of the ith 
layer.  If Tg is an imaginary value, layers are removed from the deepest layer ( L,2,1 −−→ NNN ) until 
it becomes a real value. 
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Table 1  Ground parameters used for the examples 
 

Site Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 
HYG001 2.0[120:1.70] 3.0[270:1.94] 5.5[690:2.11]   
HYG002 1.0[100:1.78] 2.0[130:1.82] 4.0[230:1.90] 5.0[390:1.95] 8.5[310:1.92] 
HYG003 1.0[120:1.89] 5.0[230:1.97] 4.5[410:1.98]   
HYG004 1.0[220:1.85] 2.0[530:1.93] 7.5[780:2.12]   
HYG005 1.0[110:1.79] 3.0[210:1.84] 3.0[260:1.87] 5.0[370:1.98] 3.5[490:2.03] 
HYG006 1.0[100:1.85] 3.0[450:2.02] 6.5[640:2.06]   
HYG007 1.0[250:1.99] 2.0[360:1.98] 7.5[710:2.11]   
HYG008 1.0[180:1.81] 6.0[230:1.87] 3.5[480:2.07]   
HYG009 1.0[ 80:1.47] 5.0[280:1.70] 14.5[420:1.94]   
HYG010 1.0[140:1.71] 3.0[200:1.77] 12.5[350:2.02]   
HYG011 1.0[ 70:1.80] 1.0[150:1.81] 3.0[230:1.98] 5.5[730:2.11]  
HYG012 3.0[180:1.88] 2.0[280:1.88] 5.5[530:2.02]   
HYG013 3.0[140:1.81] 3.0[300:1.97] 9.5[410:2.08]   
HYG014 1.0[130:1.90] 2.0[300:2.03] 2.0[480:2.09] 5.5[920:2.14]  
HYG015 1.0[ 90:1.79] 2.0[220:1.82] 7.5[570:2.09]   
HYG016 2.0[150:1.77] 3.0[190:1.82] 11.0[140:1.76] 4.0[400:2.00]  
HYG017 1.0[120:1.83] 2.0[230:1.90] 7.5[540:2.11]   
HYG018 1.0[ 80:1.90] 2.0[290:1.95] 14.0[400:2.04] 3.5[450:2.09]  
HYG019 2.0[140:1.80] 3.0[180:1.81] 5.5[280:1.85]   
HYG020 1.0[210:1.85] 3.0[290:1.95] 6.5[380:2.10]   
HYG021 1.0[160:1.98] 6.0[380:2.06] 3.5[680:2.18]   
HYG022 4.0[160:1.74] 3.0[170:1.79] 9.0[200:1.92] 4.0[380:2.09]  
HYG023 8.0[200:1.93] 12.0[400:2.00]    
HYG024 1.0[ 90:1.81] 4.0[310:1.85] 2.0[250:1.84] 10.5[290:1.88]  
HYG025 1.0[200:1.68] 4.0[220:1.80] 3.0[330:1.97] 4.0[230:1.77] 2.5[680:2.13] 
HYG026 5.0[160:1.80] 3.0[460:1.83] 2.5[600:2.12]   
HYG027 1.0[310:1.90] 4.0[610:1.99] 5.5[850:2.08]   
Note: The parameters of each layer are described as “Thickness(m) [ Vs(m/sec) : Density ]”. 
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