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SUMMARY 
 
    In this study, we model the phase characteristics of vertical ground motion based on the concept of 
group delay time.  For this purpose, we first calculate the average group delay time and its standard 
deviation by using the data of observed vertical ground motion, and then obtain the regression 
equations of these values as the functions of earthquake magnitude and epicentral distance.  
After that, we simulate sample vertical earthquake motions by using simulated phase spectra.  
Finally, we implement response analysis to investigate how the vertical ground motion 
influences the response of structure.  
 

INTRODUCTION 
 
    Several studies have shown that the phase spectrum of an earthquake motion controls its non-
stationary characteristics (Katsukura and Izumi, 1983)1.  To investigate the non-stationary 
characteristics of earthquake motion, its phase characteristics should properly be modeled.  We 
have modeled the phase characteristics of horizontal earthquake motion (Sato et al., 1999)2.  
However, the phase spectrum of vertical ground motion has not been clarified yet.  In this paper, 
we first derive regression equations for the mean and standard deviation of group delay time by 
using the observed vertical earthquake motion and simulate the vertical earthquake motion 
based on the regression equations.  Finally, we investigate the effect of vertical ground motion 
on the response of structure by earthquake response analysis while taking into account the 
simulated vertical ground motions. 
 

DATA USED FOR ANALYSIS 
 
    Table 1 shows the data used for regression analysis.  We selected 57 vertical earthquake motions 
observed during five earthquakes, which are the same earthquakes as those we used for modeling the 
phase characteristics of horizontal ground motion.   
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ANALYTICAL METHOD 

 
Definition of Group Delay Time 
    The group delay time3 is defined by the derivative of Fourier phase spectrum )(ωφ  with respect to the 
circular frequency ω as 
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    The mean value of the group delay time within a certain frequency band of which the central frequency 
is ω  expresses the arrival time of a wave component at the frequency of ω .  The standard deviation of the 
group delay time is related to the duration of the wave component.  In view of these characteritics, we use 
the group delay time to model the phase spectrum. 
 
Average Group Delay Time and Its Standard Deviation 
    To show the non-stationary characteristics of earthquake motion in the time and frequency domains, 
wavelet analysis is often used because the resolution in the time and frequency domains is guaranteed by 
the uncertainty criterion.  Although there are several ways to define the analyzing wavelet )(tϕ , we used 
the method of Meyer4 to compose )(tϕ .  The Fourier transformation of )(tϕ  has a compact support for 
each scale factor j (named the j -th compact support) defined by  
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in which 
dT  is the duration of earthquake motion.   

   For all observed earthquake motions at sampling intervals of 0.01 (sec), we added zero data until the 
total number of sampling data of each earthquake motion N  reach 131,072(=217).  By using the wavelet 
transformation of each earthquake motion )(tx , we decomposed each time history of earthquake motion to 
a component time history of each scale factor j ( j =0-16).  We call it the j -th component time history 

)()( tx j . We calculate the mean )( j
tgrµ  and standard deviation )( j

tgrσ  of group delay time of )()( tx j  on the j -th 
compact support by Eqs. (3) and (4): 

∑
=

=
)(

1
)(

)(
)(

)(jN

i
j

i
j

grj
tgr N

t ω
µ                   (3) 

( )∑
=

−=
)(

1

2)()(
)(

)( )(
1

jN

i

j
tgri

j
grj

j
tgr t

N
µωσ                 (4) 

in which )( jN  is the number of the data on the j -th compact support, and )()( ωj
grt  is the group delay time of 

the j -th component time history at the circular frequency of iω  defined by  

Table 1: Earthquake records used for analyses 

Earthquake
M

Magnitude Number of records

Hokkaido Nansei-oki EQ
(1993)

7.8 5

Hokkaido Toho-oki EQ
(1994)

8.1 20

Sanriku Haruka-oki EQ
(1994)

7.5 10

Hyogoken Nanbu EQ
(1995)

7.2 7

Kagoshimaken Hokuseibu EQ
(1997) 6.3 15
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The calculated Fourier phase spectrum )()( ωφ j  defined as a principal value within the range [ ]ππ   ,− , 
therefore, we must unlap it to obtain the group delay time based on Eq. (5).  We applied the method of 
Sawada et al5 to unlap )()( ωφ j .   
 

MODELING OF PROBABILISTIC CHARACTERISTICS OF GROUP DELAY TIME 
 
    We calculated the mean group delay time )( j

tgrµ  and its standard deviation )( j
tgrσ  for all observed 

earthquake motions shown in Table 1.  Because the trigger time of each earthquake motion is recorded 
and the rupture stating time is given, we shifted the origin time of each earthquake motion to the rupture 
stating time.  The concerned period range in the standard aseismic design procedure is 0.1-5 sec.  
Therefore, the regression analyses of )( j

tgrµ  and )( j
tgrσ  were conducted for 147 −=j . 

   We conducted regression analyses by using two parameters, the magnitude M  and the epicentral 
distance ∆ , by Eqs. (6) and (7): 
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in which α , β  and γ  are the coefficients of regression equations obtained by regression analyses for the   
j -th component time history of earthquake motion.  Table 2 shows the results of regression analyses.  The 

correlation coefficients for )( j
tgrµ  are larger than 0.90 for all scales j , and the correlation coefficients for 

)( j
tgrσ  are 0.72 - 0.93. 

 
SIMULATION OF EARTHQUAKE MOTIONS 

 
    To show the effectiveness of the obtained regression equations, we simulate earthquake motions by 
using the proposed group delay time model.  At first, the values of )( j

tgrµ  and )( j
tgrσ  on the j -th compact 

support are obtained from Eqs. (6) and (7).  A sample group delay time )()( ωj
grt  on the j -th compact 

support is simulated by generating a random value based on the normal distribution )  ,( )()( j
tgr

j
tgrN σµ .  The 

phase spectrum )()( ωφ j  is obtained by integrating the group delay time with respect to the circular 
frequency.  We decide the Fourier amplitude )()( ωjA  as the simulated earthquake motion is compatible 
with the given response spectrum.   
    Figure 1 shows the simulated vertical ground motions for earthquake at the magnitude of 7.0 and three 
epicentral distances (30, 50 and 100km).  We simulated vertical earthquake motions by using the response 
spectrum proposed by Kawashima et al6.  The simulated earthquake motions have mainly high-frequency 
components first, which gradually change to low-frequency components as time passes by.  The arrival 
time of the earthquake motion delays and the duration of the earthquake motion becomes longer as the 
epicentral distance becomes longer.  Figure 2 shows the horizontal ground motions simulated by the same 
method to use the horizontal group delay time model2. 
 

EFFECTS OF VERTICAL GROUND MOTIONS ON THE RESPONSE OF STRUCTURES 
 
    We clarify the effects of vertical ground motions on the response of structures by using two types of 
nonlinear model, a horizontal single degree of freedom model and a rocking single degree of freedom 
model.  The equation of motion of the horizontal single degree of freedom model is defined by Eq. (8). 
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in which m  expresses the mass; ξ  the damping factor and T  the natural period.  On the other hand, the 
equation of motion of the rocking single degree of freedom model that takes the P- ∆  effect into account is 
defined by Eq. (9) as proposed by Yamashita et al7. 
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in which )(φM  expresses the restoring moment; φ  the angle of rotation of the pier; H  the height of a pier 
and g the gravitational acceleration.  We can take into account both the horizontal ground motion and the 
vertical ground motion by using a rocking model.   
    Figure 3 compares the displacement response calculated by using a horizontal model and the 
displacement response calculated by using a rocking model for the yielding strength of 0.2 and the height 
of a 5m-pier.  In this calculation, we used the restoring moment characteristic expressed by a bilinear 
model and earthquake motions shown in Figs. 1 and 2 for the epicentral distance of 50km. The peak value 
of the input horizontal acceleration was adjusted to 750 (gal), and that of the input vertical acceleration is 
also adjusted as the ratio of the peak vertical acceleration to the peak horizontal acceleration did not 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2 Simulated horizontal ground motions 

Table 2: Regression coefficients 
)( j

tgrµ  )( j
tgrσ  

j  Range of 
frequency [Hz] )(
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jγ  

Correlation 
coefficient )(

2
jα  )(

2
jβ  )(

2
jγ  

Correlation 
coefficient 

7 0.033-0.130 0.612 0.031 0.440 0.936 8.596 0.0 0.440 0.728 

8 0.065-0.260 0.339 0.105 0.357 0.955 1.215 0.133 0.357 0.800 
9 0.130-0.521 0.582 0.112 0.175 0.956 0.458 0.232 0.175 0.800 
10 0.260-1.042 0.799 0.085 0.255 0.971 1.765 0.108 0.255 0.739 
11 0.521-2.083 1.226 0.020 0.365 0.991 1.450 0.098 0.365 0.815 

12 1.042-4.167 0.745 0.041 0.317 0.991 0.587 0.125 0.317 0.875 
13 2.083-8.333 0.493 0.055 0.350 0.992 0.264 0.160 0.350 0.925 
14 4.167-16.667 0.369 0.063 0.396 0.992 0.152 0.184 0.396 0.892 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1 Simulated vertical ground motions 
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change.  Figure 3 indicates that the residual displacement in the rocking model is larger than that in the 
horizontal model.   
    Figure 4 compares the peak response displacement calculated by using the simulated earthquake 
motions and the peak response displacement calculated by using the observed earthquake motions.  The 
horizontal axis expresses the peak value of the input horizontal acceleration, and the vertical axis 
expresses the peak response displacement.  If the epicentral distance is short, the response displacement in 
the rocking model is larger than the peak response displacement in the horizontal model.  Since the 
epicentral distance is longer, however, the peak response displacements in the two models become almost 
the same.  This characteristic is applicable to both the response analyses to use the simulated earthquake 
motions and the response analyses to use the observed earthquake motions.  This results show that the 
proposed phase spectrum model is effective for the simulation of vertical earthquake motions. 
 

CONCLUDING REMARKS 
 
    We proposed a phase spectrum model of vertical ground motions by applying the concept of group 
delay time.  By using two parameters, the magnitude M  and the epicentral distance ∆ , we derived the 
regression equations for the mean of group delay time and its standard deviation on compact supports of 
the Meyer wavelet.  We checked the effectiveness of this phase spectrum model by simulating earthquake 
motions.  We showed the effect of the simulated vertical ground motion on the response of structures by 
conducting response analyses with a rocking single degree of freedom model. 
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Figure 3 Comparison of the displacement response calculated by using a horizontal model and the 
displacement response calculated by using a rocking model 
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(a)  Simulated earthquake motions 
  
 
 
 
 
 
 
 
 
 
 
 
 

(b) Observed earthquake motions 
 

Figure 4 Comparison of the response displacement calculated by using simulated earthquake 
motions and the response displacement calculated by using observed earthquake motions 

0 200 400 600 800 1000
0

4

8

12

16

20

24

Input peak acceleration (gal)

Pe
ak

 r
es

po
ns

e 
di

sp
la

ce
m

en
t (

cm
)

Rocking model
Horizontal model

Δ=20 (km)

0 200 400 600 800 1000
0

4

8

12

16

20

24

Input peak acceleration (gal)

Pe
ak

 r
es

po
ns

e 
di

sp
la

ce
m

en
t (

cm
)

Rocking model
Horizontal model

Hino (Tottoriken Seibu)
   ＜Δ=6.3 (km) ＞

0 200 400 600 800 1000
0

4

8

12

16

20

24

28

Input peak acceleration (gal)

Pe
ak

 r
es

po
ns

e 
di

sp
la

ce
m

en
t (

cm
)

Rocking model
Horizontal model

Morikawachi (Hyougoken Nanbu)
   ＜Δ=49.1 (km) ＞

0 200 400 600 800 1000

2

4

6

8

10

12

14

Input peak acceleration (gal)

Pe
ak

 r
es

po
ns

e 
di

sp
la

ce
m

en
t (

cm
)

Rocking model
Horizontal model

Δ=50 (km)


	Return to Main Menu
	=================
	Return to Browse
	================
	Next Page
	Previous Page
	=================
	Full Text Search
	Search Results
	Print
	=================
	Help
	Exit DVD



