
 

13th World Conference on Earthquake Engineering 
Vancouver, B.C., Canada 

August 1-6, 2004 
Paper No. 1146  

 
 

MODIFIED SLIDING MODE CONTROL  
USING TARGET DERIVATIVE OF LYAPUNOV FUNCTION  

 
 

Sang-Hyun Lee1, Kyung-Won Min2 and Hongjin Kim  
SUMMARY 

 
This paper presents a modified sliding mode control (SMC) algorithm for vibration control of structures to 
enhance the control performance of the widely-used SMC algorithm. In modified SMC, the control force 
is determined to meet conditions imposed on the target derivative of Lyapunov function. A shape function 
is developed to determine which one of the equivalent and corrective control, which are two terms 
comprising SMC, is a dominating part in controlling structures. Simulation results of show that the 
proposed method is able to enhance the performance for control of drifts, accelerations, and relative 
displacements. Moreover, it is observed that the performance is insensitive to the fundamental vibrating 
period and it utilizes the less control energy when compared to the original SMC. 
 

INTRODUCTION 
 
During last decades, significant scholastic efforts have been made for the development of active control 
devices and algorithms for large scale civil structures subjected to earthquake loads, and the effectiveness 
has been verified through extensive analytical and experimental studies [1-4]. For the practical application 
of the active control strategy to civil engineering, problem of stability and robustness is one of great issues 
and examined [5, 6]. A design of controller which guarantees the stability of nonlinear system as well as 
linear system, is possible using Lyapunov stability theory, which requires the definition of positive 
definite Lyapunov function, and the corresponding controller is designed to make the derivative of the 
Lyapunov function negative semi-definite [7-9]. Wu et al. proposed the modified bang-bang control by 
using Lyapunov’s direct method [10]. Dyke et al. used magnetorheological (MR) damper designed to 
dissipate energy maximally by choosing the Lyapunov function as the total vibratory energy [11]. Min et 
al. proposed the probabilistic control algorithm, which determines the direction of a control force by 
Lyapunov controller design method [12], and Hwang et al. verified its efficiency through the experimental 
test [13]. The efficiency of the Lyapunov controller depends on the identification of the Lyapunov 
function. 
Sliding mode control (SMC), one of the Lyapunov controllers, has been applied to the control of civil 
engineering structures under earthquake and wind loads, and its effectiveness and robustness were 
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verified through theoretical and experimental studies [14-18]. SMC determines the sliding surface where 
the motion of a structure is stable, and Lyapunov function is defined as a scalar function proportional to 
the distance of states to the sliding surface. 
In SMC framework, the control force is given as the summation of a corrective control force and an 
equivalent control force [19]. The corrective control force makes the response trajectory deviated from the 
sliding surface back into the sliding surface while the equivalent control force causes the response to be 
parallel to the sliding surface or, in special case, keeps the trajectory staying in the sliding surface. The 
effectiveness and robustness of SMC depend on which one of above two forces is the dominating part of 
the control force, and the effect is strongly related to the dynamic characteristics of the sliding surface 
determined by the LQR method [20]. 
Based on the control objectives and capacity of actuator, sliding mode controller can be not only linear 
one which generates control force proportional to states or excitation signal, but also nonlinear one such as 
bang-bang controller which generates maximum force irrespective of magnitude of states or excitation. 
However, since SMC is generally designed to satisfy the condition that the derivative of Lyapunov 
function is just negative semi-definite, linear controllers by previous studies cannot make most of actuator 
and bang-bang controller generate unnecessary large control force. 
In this paper, a concept of target derivative of Lyapunov function is proposed for determining the 
weighting between corrective and equivalent control parts. A shape function is developed for this purpose. 
This function plays a role similar to that of a saturation function of Lee et al. [21] or a shifted sigmoid 
function of Ertugrul et al. [22], which are developed to eliminate the chattering phenomenon which 
happens in Lyapunov controller such as SMC. Numerical simulations using single-degree-of-freedom 
(SDOF) and multi-degree-of-freedom (MDOF) systems under seismic excitations have been performed to 
evaluate the effectiveness of the proposed algorithm. Simulation results show that the proposed algorithm 
enhances the performance for control of drifts, inter-story drifts, and accelerations comparing to those by 
the original SMC. 
 
 

DESIGN OF SLIDING MODE CONTROL 
 
Equation of Motion 
State-space form equation of an n-DOF second order mass-damping-spring system subjected to a ground 
acceleration gx&&  and control force vector u  of size r×1, is given by  

 uBBAzz 21 ++= gx&&&                                                                                               (1) 
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and M, C, and K are, respectively, the mass, damping, and stiffness matrices of size n×n, r is the number 
of controller, x is the displacement response vector of size n×1, and E and H are the earthquake influence 
and control force influence matrices, respectively. I and 0 are the identity and zero matrices, respectively. 
  
Design of Sliding Surface  
A sliding surface is given as a linear function of state vector z such that 
 Pzs =                                                                                                                                                        (3) 
in which s is a r-vector. The matrix P (r×2n) can be determined by a LQR method to minimize the 
following performance index [14]. 



∫
∞

=
0

dtJ QzzT                                                                                                                                           (4) 

where Q is a (2n×2n) positive definite weighting matrix. 
 
Control Forces  
A Lyapunov function V is selected as follows  

sss T5.0)( =V                                                                                  (5) 
The derivative of Lyapunov function is given as follows  
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Control force for 0)( ≤sV& is expressed as a sum of equivalent control force ueq and corrective control 

force uc such that 

ceq uuu +=                                                                                                     (9) 

in which uc is determined to satisfy the condition ( ) 0sgn c ≤⋅ uλ . ( )⋅sgn  is a sign function. 

Eq.(6) and Eq.(9) indicate that ueq makes the )(sV&  be zero and uc makes the )(sV& be negative. 

If control force is not applied, the )(sV&  becomes 
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where subscript ‘i’ means the ith controller. It is noted that if 0<inV& , the response trajectory approaches 

to the sliding surface without the help of the controller, which is reasonable since general civil 
engineering structures show stable behaviors without any controllers. If a designer hopes to realize an 

asymptotic stability using controller, i.e 0)( ≤sV&  at every instant, following continuous sliding mode 
controller (CSMC) can be designed [14]. 

 CSMC: iiii uu λδ−= eq
*                                                                                                                          (11) 

in which 0≥iδ , and iiλδ−  is the corrective force. The control force of Eq.(11) is linear one, and the 

corresponding iV&  is 
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Also, following discontinuous controllers are possible [14].  
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in which, H(|λ|-εo) is the unit step function, and εo is the thickness of the boundary layer for eliminating 

chattering effect. ( ) )(sgn oiii H ελλδ −−  is the corrective force term.  



SMC is generally designed to satisfy the condition that the derivative of Lyapunov function is just 
negative semi-definite. Eqs.(11), (13) and (15) indicate that each control force brings about the 
corresponding derivative of Lyapunov function, and this implies that control force is given if the 
derivative of Lyapunov function is specified to a certain value. The relative magnitude of ueqi becomes 

larger when iV&  approaches to 0, while that of uci becomes larger when iV&  is getting smaller than 0. Lee at 

al. showed that the effectiveness of SMC depends on which one of the two forces is the dominating part of 
the control force, and that the effect is strongly related to the dynamic characteristics of the sliding surface 
determined by the LQR method[20]. Accordingly, the derivative of Lyapunov function used in SMC 
should be considered as a parameter which is specified by the designer. 
 
Maximum Capacity of Control Actuator and Saturated Controller 
For large-scale civil structures under seismic loads, it is almost impossible to realize the control force of 
Eq.(11), (13), and (15) which keeps the response trajectory to be always in the sliding surface since it 
requires substantially huge control forces equal to the seismic forces. Therefore, it is necessary to consider 
an actuator saturation problem in design of SMC when the controller capacity is less than the seismic 
force. The upper limit of control force, umax, is determined by the procedure proposed by Lee et al. [20] 
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where 0 ≤ ρ ≤ 1, Mφφ
T=1m , MφφKφφ

TT /=oω , 12/ moo ωξ Cφφ
T= , and dS  and φ  are, 

respectively, a displacement spectrum and a fundamental mode vector of the mass-damping-spring 
system. The Newmark design spectrum is used in this paper for obtaining a displacement spectrum [23]. 
With the umax obtained by using the above method, the control forces in Eqs. (11), (13) and (15) are 
saturated as 
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MODIFIED SLIDING MODE CONTROL (MSMC) 
 
In this section, a procedure is described in detail for modifying the sliding mode control in order that 
control performance is enhanced and insensitive to structural periods. A target derivative of Lyapunov 
function is proposed and control force is evaluated to meet the specified condition on the derivative of 
Lyapunov function. Shape function is developed for an efficient design of controller based on the distance 
of states from sliding surface. This shape function has another role of eliminating the chattering 
phenomena. 
 
Target Derivative of Lyapunov Function 
A design procedure for SMC is developed by setting a constraint condition on the derivative of Lyapunov 
function. In this paper, this condition is named as target derivative of Lyapunov function of ith controller 

denoted by TiV& . The underlying concepts are as follows; 

1) TiV& , is assigned to be close to zero when the response trajectory approaches to the sliding surface. 

Then, the control force becomes close to ueq and the states move along the sliding surface. 
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2) TiV&  is set to be a function negatively proportional to the distance to the sliding surface, when the 

response trajectory deviates from the sliding surface. In this case, the magnitude of corrective force term 



becomes large and the control force plays a role of making the response trajectory approach to the sliding 
surface. 
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in which q and κ are positive constants, and 
ioλσ  denotes the standard deviation of 0iλ , which is iλ  of 

uncontrolled system . The increase of the value of q brings about the rapid change of TiV& with respect 

to iλ .  

 
Shape Function 
 

To combine previous two concepts for TV& into one equation, following shape function is introduced.  
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where p and v are natural number and they should be determined by designer. The shape function has 
following characteristics with respect to λ i and plays a role similar to that of a saturation function or a 
shifted sigmoid function which was developed to eliminate the chattering phenomena. 
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Figure 1 shows the plot of ( )iS λ  with respect to p and v. It can be known that increasing p makes ( )iS λ  

to rapidly change between 0 and 1 with the change of iλ . As v decreases, the region of iλ  where 

( )iS λ  is close to 0 decreases while the region of iλ  where ( )iS λ  is close to 1 increases. 

Figure 1 Variation of Function Shape Function 
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The target derivative can be rewritten with ( )iS λ  as 
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Control Force by MSMC 
The guidelines in designing MSMC using the target derivative concept are as follows; 1) Control is not 
required when the target derivative is achieved without the control force; 2) Only the necessary amount of 
the control force to achieve the target derivative is computed when it is in need; 3) Saturated controller is 
considered; The target derivative and its corresponding control force is given as 
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SIMULATION  
The comparison between the performances of the SMC algorithms is made in this section.  From the 
results of Yang’s study [16], since the performances of CSMC, SMC-I, and SMC-II are generally 
equivalent, only CSMC is considered for the representative of the original SMC in this study. The NS 
acceleration component of El Centro earthquake (1940) with peak acceleration scaled to 0.112g is used as 
an earthquake load. 
 
Evaluation Criteria  
To evaluate the performance of controller in terms of the reduction of peak responses, the following 
evaluation criteria are considered. 
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in which )(txi  is the time history of the displacement of ith floor, and xmax is the uncontrolled maximum 

displacements for the first evaluation criterion, J1, )(tdi is the time history of the interstory drift of the ith 

floor and { })(maxmax tdd i
t

n = is the uncontrolled maximum interstory drift for the second evaluation 

criterion, J2, and )(txai&& is the time history of the absolute accelerations of the ith floor and max
ax&&  is the 

uncontrolled maximum absolute acceleration for the third evaluation criterion, J3. The non-
dimensionalized performance evaluation criteria, J1, J2, and J3 measure the control performance for peak 
story drift, the peak inter-story drift, and peak acceleration, respectively. Another non-dimensionalized 
evaluation criterion, J4, is used to measure the applied control energy  
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in which W denotes the weight of structure and T is the duration time of control. 



 
SDOF system  
Simulations of SDOF systems with damping ratio, oξ , and natural period, Tn, were performed for the 

comparison of the performance of the proposed controllers. Mass=1ton, oξ =0.02 and Tn=0.5, 1.0, and 2 

seconds are considered for simulation. umax for each ρ  is determined using Eq. (17). Sliding surface was 

obtained by the LQR method with a diagonal weighting matrix ]1[diag 2
nω=Q . 

The forces by SMC do not always dissipate the structural energy since the defined Lyapunov function is 
not the structural energy, but the distance to the sliding surface. The sign of the control force dissipating 
the structural energy is always opposite to that of structural velocity [12]. Dyke et al. proposed a clipped 
optimal control law, which commands control signals only when control force dissipates the structural 
energy, and utilized it as a control algorithm for MR damper [24]. For the comparison and evaluation of 
the performance of MSMC for SDOF systems, the clipped control law is considered. 
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The gain margin δ for CSMC and CSMC-clipped is o
u λσ/max . For MSMC, design parameters are 

determined as follows: o
u λσκ /5 max⋅=

; oλσν 02.0=
; p=1. MSMC-I is the case for q= 2, and MSMC-II 

is the case for q=3. 
Figure 2 shows the evaluation criteria according to ρ for the system with Tn=0.5 second.  It is observed 
that the performance of all considered controller is enhanced with increasing ρ, implying that the 
performance level of SMC depends on the maximum control force limit because SMC requires generally 
large control force and thus causes saturation. It is also observed that MSMC provides the most significant 
reduction of both displacement (J1 or J2; J1 and J2 have the same vale for SDOF system) and absolute 
acceleration (J3) responses at the same ρ. Furthermore, the control energies, J4, by MSMC are smaller than 
that of the original CSMC. CSMC-clipped, which are designed to remove the undesirable effect that 
control force do not dissipate structural energy, enhances the performance of the original SMC, but its 
performance is inferior to that of MSMC.  
It is shown that the values of evaluation criteria, J1 and J3, by MSMC-II is larger than that by MSMC-I for 
ρ>0.5. The reason why the performance of MSMC-II deteriorate when compared with that of MSMC-I for 
larger ρ, is that MSMC-II bring abut the rapid change of control force due to larger q, and this amplifies 
the ill effects particularly when the control force can be large due to larger ρ. 
Figure 3 and 4 present the evaluation criteria for Tn=1.0 second, and Tn=2.0 second, respectively. The 
global variation trends are similar to that for Tn=0.5 second. It is observed that MSMC provides the most 
excellent performance in spite of the less used control energy. 
 
MDOF System 
For MDOF systems, the performance index is expressed as with the weighting matrix Q consisting of 
elements, piq  and kiq  [20]. 
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where ik and im  denote, respectively, stiffness and mass of ith story, and id and ix&  denote ith interstory 

drift and relative velocity of ith floor to ground, respectively. 
 
Example 1 – a three-story building with active bracing system (ABS) 
A three-story building, which was studied as model structure for control by Yang et al. [16], is 
considered for example 1 of MDOF system. Every story has identical structural properties. The 
mass, stiffness, and damping coefficients are 1 ton, 980kN/m, and 1.407kNs/m, respectively. 
The fundamental period of the model structure is 0.45second. This building model with an 
active bracing system in the first story unit was studied by Yang et al. [16], who formulated the 

state-space equation in terms of inter- story displacements, id , and inter-story velocities, id& , and  

Figure 2. Performance evaluation criteria for Tn=0.5 second 
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Figure 3. Performance evaluation criteria for Tn=1 
second. 
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Figure 4. Performance evaluation criteria for Tn=2 second. 
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 the weighting matrix Q=diag[105 104 103 1 1 1]. Lee et al. [20] determined the weighting matrix in 
Eq.(31) with qk2=qk3=qp2=qp3=1,and qp1=qk1=100, and compared the performances of the corresponding 
SMC algorithms. In this study, MSMC logic is applied to enhance the original CSMC with weighting 
matrices by Yang and Lee, which are denoted in Figure 5 by CSMC-Q1 and CSMC-Q2, respectively. 
δ =50 kN·kg·cm/s is used for CSMC and following design parameters are used for MSMC: 

o
u λσκ /5 max⋅= ;

oλσν 02.0= ; p=1; q=2. The NS acceleration component of El Centro earthquake 

(1940) with peak acceleration scaled to 0.112g is used as an earthquake load.  
Figure 5 presents the evaluation criteria with respect to ρ . It also observed like the cases of SDOF systems 
that increasing ρ enhances the performance of every SMC algorithm. It is observed from Figure 5(a)-(c) 

that the performance of MSMC-Q1 is superior to that of CSMC-Q1, and the performance of MSMC-Q2 is 

Figure 5. Performance evaluation criteria of 3-story building with an ABS 
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Figure 6. Control force when ρ =0.03 

 



superior to that of CSMC-Q2. This fact indicates that MSMC logic can be used for enhancing the 
performance of the original SMC designed by specified weighting matrix. The controllers designed by Q2 
provides more reduction of evaluation criteria than those designed by Q1, and furthermore Figure 5(d) 
informs that the controllers designed by Q2 uses less control energy than those designed by Q1. Figure 6 
shows the time history of the control forces when ρ =0.03. It is evident that the undesirable chattering 

effects are remarkably reduced by using Q2 compared with the controllers using Q1. The RMS values of 
control forces are, respectively, 504N, 415N, 361N, and 356N for CSMC- Q1, MSMC- Q1, CSMC- Q2, 
and MSMC- Q2. 
Even though the controller is well designed to show good performance for the model structure, if there is 
much discrepancy between the model structure and real structure, the control efficiency can deteriorate. 
Robustness of the control algorithm should be investigated according to the variation of the structural 
properties such as stiffness and mass. In this study, the robustness of the CSMC and MSMC is 
investigated with uncertainties in stiffness matrix. The range of uncertainty is from -30% to +30% of the 
original stiffness. Figure 7 shows the results from robustness investigation. umax is determined with 
ρ =0.03. It is observed that all considered controllers have robust features in reducing displacement and 
inter-story drifts, and the performance of MSMC is most excellent in spite of the uncertainties in stiffness. 
It is noted that the acceleration response increases with the positive uncertainties in stiffness. This implies 
that the overestimation of the stiffness can bring about the increase of acceleration response. 
 
Example 2 – a three-story building with an active mass damper (AMD) 
The three-story building used in previous section, but with an AMD at the top story is studied in this 
section. The weighting matrix is chosen as with qp1=qp2=qk1=qk2=1,and qp3=qk3=100. The gain margin 
δ for CSMC is determined using 

o
u λσ/max , and 

o
u λσκ /2 max= , 

oλσν 1.0= .  p=1 and q=2 are used 

for MSMC.  
As investigated in the example 1, the results shown in Figure 8 indicate that MSMC improve the 
performance of the original SMC in reducing the displacement, interstory drift, and absolute acceleration 
responses. Furthermore, the consumed control energy by MSMC is less than that by CSMC. 

-30 -20 -10 0 10 20 30
0.4

0.45

0.5

0.55

0.6

0.65

Uncerntainty ratio (%)

J1

(a)

-30 -20 -10 0 10 20 30
0.4

0.45

0.5

0.55

0.6

0.65

Uncerntainty ratio (%)

J2

(b)

-30 -20 -10 0 10 20 30
0

0.2

0.4

0.6

0.8

1

Uncerntainty ratio (%)

J 3

(c)

-30 -20 -10 0 10 20 30
0

0.005

0.01

0.015

0.02

0.025

0.03

Uncerntainty ratio (%)

J 4

(d)

CSMC-Q
1

MSMC-Q
1

CSMC-Q
2

MSMC-Q
2

Figure 7. Performance evaluation criteria with uncertainties in stiffness  
 



 
Example 3 – 20-story shear building 
 A 20- story 
shear building 
with an AMD at 
the top floor, 
which has the 

structural properties listed in Table 1, is used as an example of a long period MDOF structure. The natural 
vibrating period is 2.85 second. The weighting matrix is determined by using Eq.(31) with qpi=qki=1 
(i=1,…,19) and  qp20=qk20=100. The gain margin δ for CSMC is determined using 

o
u λσ/max , 

o
u λσκ /10 max=  and 

oλσν 08.0= .  p=8 and q=3 are used for MSMC. 

Figure 9 presents the evaluation with respect to ρ . It is obviously illustrated that the performance of 
MSMC is superior to that of CSMC in spite of the fact that MSMC utilizes less control energy than 
CSMC. 
 Figure 10 shows the time histories of the displacement and acceleration responses of the top floor when 
ρ =0.1. CSMC and MSMC reduce the peak value of the top floor displacement, which is 15.56cm when 
no control force is applied, to 8.89cm, and 7.13cm, respectively. The peak absolute acceleration response 
by CSMC and MSMC are, respectively, 1.52m/s2 and 1.47m/s2 while it is 2.08 m/s2 without control. The 
CSMC is more  
effective for reducing the displacement response than the absolute acceleration response. Since CSMC 
utilizes the large control force and the sign of the control force changes rapidly when the  
 response trajectory crossing the sliding surface, this performance deterioration of the CSMC for 
acceleration control occurs.  
 
 
 
 
 
 

Floor Story Mass Story Stiffness Natural Period 
Damping 

Ratio 
1, 2, 3, 4, 5 60000(kN/m) 

6, 7, 8, 9, 10 45000(kN/m) 
11, 12, 13, 14, 

15 
30000(kN/m) 

16, 17, 18, 19, 
20 

50(ton) 

21000(kN/m) 

T1=2.75 second 
T2=1.04 second 
T3=0.63 second 
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Figure 8. Performance evaluation of 3-story building with an AMD 

Table 1. Structural properties of 20-story shear building 
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study, a 

Figure 9. Performance evaluation of 20-story shear building with an AMD 
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Figure 10. Time histories of the displacement and absolute acceleration at top floor of 20-story shear 
building with an AMD 



modified SMC algorithm for vibration control of structures is proposed to enhance the control 
performance of the original SMC algorithm. A shape function is developed to determine which one of the 
equivalent and corrective control forces is a dominating part. This function also has a role of eliminating a 
chattering phenomenon, which is known to be a problem of Lyapunov controller such as SMC. Numerical 
simulations are performed to demonstrate the effectiveness of the proposed modified SMC algorithm 
using SDOF and MDOF systems under seismic excitations. The control performance depending on the 
limits of control force is also evaluated expressing the control force limits as a ratio of the seismic force, 
which is obtained directly from a Newmark design spectrum. Simulation results show that the proposed 
method is able to enhance the performance for control of the drifts, accelerations, and relative 
displacements over the original SMC. Moreover, it is observed that the performance of the proposed 
control algorithm is insensitive to the fundamental vibrating period and it utilizes the less control energy 
when compared to the original SMC. 
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