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SUMMARY 
 

An approach is presented for calculating seismic response spectra with uniform annual failure rates, 
applicable to conventional systems as well to those provide with energy-dissipating devices. The 
approach is based on the analysis of single-degree-of-freedom systems with uncertain mechanical 
properties subjected to simulated ground motions. The effect of uncertainties related to the 
structural stiffness, the yield displacement and the ductility capacity on the response spectra with 
uniform annual failure rate is analyzed. Based on this, the importance of taking into account the 
uncertainty implicit in the available ductility is underlined.   

 
INTRODUCTION 

 
Seismic response spectra with uniform expected annual failure rates can be used for reliability-based 
seismic design and for the reliability assessment of structures. Several authors have treated this subject 
(Collins et al [1], Mendoza et al [2], etc); however, none of them has dealt with the response of systems 
considering uncertainties about their mechanical properties and having hysteretic dissipating devices. 
 
The response spectra with uniform failure rates contain uncertainties that may be significant in the design 
process. Those uncertainties are related, among others, to the algorithms used during the numerical 
process, the equivalence between the actual multi-degree-of-freedom (MDOF) structure and a single-
degree-of-freedom (SDOF) system, the external loads acting on the systems and the mechanic properties 
of the structures. 
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In this study three types of uncertainties are considered: a) those related to the excitation (seismic ground 
motions), b) those related to the uncertainties about the structural elements, and c) that related to the 
ductility capacity of the structural system 
 
The uncertainty related to the seismic excitation is introduced here by means of simulated accelerograms 
with statistical properties similar to those of the ground motion recorded during the September 19, 1985 
seismic event, at the Ministry of Communications and Transportation, East-West component (SCT-EW, 
1985), in Mexico City. The mathematical model used in this study for the numerical simulation is 
described in the next section.  
 
The uncertainty related to the mechanical properties of the structure, including its deformation capacity, is 
taken into account by means of Monte Carlo simulation analysis. The parameters considered as random 
variables are: a) the structural stiffness, b) the yield displacement, and c) the available ductility of the 
SDOF systems taken an equivalent to the detailed systems. 
 
The first part of the paper refers to response spectra with main failure rates associated with conventional 
systems. In the second part, a structural element that represents an energy dissipating device is (EDD) 
added in parallel to the SDOF system. The EDD considered in this study presents hysteretic behavior 
(load versus deformation) which does not depend on the velocity or on the frequency of the excitation, but 
on the relative displacement between its ends.  
 
The spectra obtained in this study takes into account all the possible intensity motions that can occur at the 
site of interest (SCT) by means of seismic hazard curves that are supposed to be known. For the SCT site 
(located at the lake bed zone in Mexico City) those curves were obtained by Alamilla [3]. 
 
 

SIMULATION OF GROUND MOTION 
 

The method followed to simulate the ground motions used for the analyses is based on that proposed 
by Grigoriu et al [4], and modified by Yeh and Wen [5]. The steps followed to generate the motions are: 

1. The Fourier amplitude spectrum of the original accelerogram (SCT-EW, 1985) is divided into 
several frequency bands. Each band is separately transformed into the time domain through the inverse 
fast Fourier transform. The record was divided into the three following bands (see Figure 1): from 0.0Hz 
to 0.48Hz, from 0.48Hz to 1.32Hz and from 1.32Hz to 12.5Hz (Rivera [6]). 

2. For each band a squared amplitude modulation function c2(t) is determined. The expressions for 
c2(t) are: 
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Figure 1. Fourier spectrum divided in three bands, and their corresponding accelerograms obtained by 
applying the inverse fast Fourier transform. 

 

 

3. The motion obtained for each band is transformed into a stationary process. This is done by 
dividing it by its amplitude modulating function to get an “amplitude-modulated accelerogram”. 

 

4. A time scale (t to φ) transformation is done. Notice that this transformation is not always necessary 
(Yeh and Wen 1989 [5]), since if the Fourier amplitude spectrum is divided into a large enough number of 
bands, the change in the frequency content will not be significant; otherwise it will be necessary to do the 
transformation using the following equation: 

      )(/)()( 000 ttt µµφ ′=                                                        (4) 

here 3
3

2
210 )( trtrrt ++=′µ , where r1, r2 y r3 are parameters that depend on the evolution in time of the rate 

of zero crossings, t0 is an arbitrarily chosen instant, and the prime stands for the derivative with respect to 
time. 

 

5. For each band the spectral density S(ω) of the amplitude modulated accelerogram is calculated. 
Then, through a least-squares fitting between S(ω) and the Clough and Penzien filter the parameters ωg, 
ωf, ζg, ζf and S0 corresponding to each frequency band are determined (Silva et al [7]). The form of that 
filter is: 
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where ωg, ωf, ζg and ζf are parameters associated with the equivalent frequencies and damping of the soil. 
S0 is the white noise intensity. 

6. The filtered white noise is generated using the following equation: 
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   In this equation, aj and bj are independent random variables with zero mean and unit standard 
deviation, σj

2 = 2 SCP(ω) ∆ω is the variance of the excitation process or spectral energy, N is the number of 
intervals in which S(ω) is divided, and ∆ω is the amplitude of these intervals.  

7. To get a simulated accelerogram, a transformation into the real time scale (φ to t) should be done, 
and afterwards the result obtained is multiplied by its corresponding intensity function ci(t). Finally, the 
corresponding signals of all bands are added up.  

 
SEISMIC RESPONSE SPECTRA WITH UNIFORM EXPECTED ANNUAL FAILURE RATES 

FOR CONVENTIONAL SYSTEMS 
 
Analytical fundamentals 
The methodology followed in this study for calculating the spectra with uniform failure rates is based on 
the following expression: 
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Where νF represents the structural failure rate, y∂
∂ν is the absolute value of the derivative of the seismic 

hazard curve (ν) with respect to the intensity y ,and P(structural failure|y) is the probability that the 
structural failure occurs for a given seismic intensity y. 
 
In this study it is assumed that the structure fails when its ductility demand (µd) is larger than or equal to 
its ductility capacity (µc). These variables are defined in what follows. 
 
The ductility demanded by the system is: 
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where uδ represents the maximum displacement demanded by the SDOF system, and yδ  is the yield 

displacement. A vector containing 100 values of µd was generated by means of the Monte Carlo 
simulation technique. 
 
The probability P(Q = cd µµ /  > 1) for different intensity values was obtained. In this case, equation 7 is 

expressed as follows: 
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Notice that instead of Q it is possible to propose another measure to describe the structural damage; for 
example, the Park and Ang index [8]  ID. For this case, equation 10 is transformed into: 
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Collins [9] has obtained spectra using this expression. Rivera [10] is working in this direction. 
 
Spectra with uniform failure rates, using deterministic structural properties 
In what follows different values of νF were calculated for SDOF systems with vibration periods between 0 
and 4s. For these cases several values of the seismic coefficients (Ce or Cy) and of the nominal ductility 
values (µ*) were assumed. From the analyses, demand hazard curves as those shown in Figure 2, which 
correspond to µ*= 1, were constructed. 
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Figure 2. Failure rates (νF) of SDOF systems with different periods (T), designed with µ*= 1 
 
Figure 2 indicates that the annual failure rates for a given seismic coefficient (Ce) are much larger for 
systems with vibration period T = 2s than for the other periods. This is because the dominant period of the 
ground motion at the SCT site is Ts = 2s (see Figure 1). 
 
Based on Figure 2 several spectra associated with different annual failure rates (νF  = 0.001, 0.005, 0.01, 
0.05 and 0.1) were determined. These are shown in Figure 3a. Similarly, spectra for different nominal 
ductility values were also obtained. The vertical axis of Figures 3a and b corresponds to the seismic 
coefficient, which is equal to the strength (F) divided by the weight of the structure, C = F / W. In Figure 
3a the vertical axis is indicated as Ce, where the sub-index refers to an elastic system. In Figure 3b Cy is 
used instead, corresponding to a non-linear system with design ductility µ* =2. For all the cases studied 
here, the critical damping of the system was assumed ξ = 0.05. 
 
Notice that the spectra corresponding to the elastic system (µ* = 1, Figure 3a) indicate larger seismic 
design coefficients for systems with vibration periods equal to 2s; while the spectra associated with µ* = 2 
have their peak ordinates for periods slightly smaller than 2s (about 1.98s). This is a consequence of the 
structural nonlinear behavior (µ* = 2). Another consequence of this behavior is that the spectral ordinates 
are smaller for systems associated with µ* = 2 than for those associated with µ* = 1, as expected. 
 



 
 
 
 
 
      
                                                                                                
 
 
 
                             

a) µ* = 1           b) µ* = 2 
 

Figure 3. Response spectra associated with different uniform annual failure rates. 
 
 
Figures 3a and b may have different interpretations. One of them is the following: the smaller the 
structural failure rate, the larger the seismic coefficient that should be used for structural design.  
 
The curves shown in figures 2 and 3 do not take into account the uncertainties implicit about the 
mechanical properties of the structural systems. The influence of those uncertainties is analyzed in the 
next section. 

 
 
Spectra with uniform failure rates, using uncertain structural properties 
In this section the ductility capacity (µc), the structural stiffness (K), and the yield displacement (dy) are 
considered as random variables. It was supposed that these variables were governed by a lognormal 
probability density function (pdf).  
 
For multi-degree-of-freedom (MDOF) systems the ductility capacity µc can be obtained by means of non-
linear static analysis (“push-over analysis) [11] or either by incremental dynamic analysis (IDA’s) [12]; 
however, for SDOF systems it is not necessary to perform this type of analysis to estimate the structural 
ductility capacity. For the SDOF systems, the model proposed by Esteva and Ruiz [13] was adopted. 
These authors assume that µc has lognormal distribution with mean value equal to: 
 

)exp(*
µαβµµ Vc =                             (12) 

 

Were *µ is the nominal design ductility, β is Cornell’s index (assumed equal to 3), Vµ is the coefficient of 
variation of µ,  and α = 0.55. Similarly, the mean values of the structural stiffness (K) and of the yield 
displacement (dy) were calculated using the following expressions.  
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kVKK αβ= ,                     (13) 

)exp(*

ydyy Vdd αβ=                 (14)  

 
Montiel et al [14] obtained values of the coefficients of variation of Vµ,  VK and Vdy  (see equations 12-14) 
based on IDA’s for the global response of 5-. 10- and 15-story reinforced concrete frames subjected to 
ground motions recorded at the SCT site. The results of these authors are shown in Table 1. 
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Table 1. Coefficients of variation of of µc, K and dy (Montiel et al [14]) 

 
 5-story frame 10-story frame 15-story frame 

µV  0.168 0.180 0.266 

KV  0.119 0.082 0.142 

ydV  0.113 0.095 0.115 

 
 
Based on the ranges of values that appear in Table 1, and on equations 10, 12 -14, the spectra on Figures 
4, 5 and 6 were calculated. In each case, only one of the variables mentioned in Table 1 were considered 
uncertain, while the other two were taken as deterministic. 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Figure 4. Influence of the yield displacement uncertainty on spectra with similar failure rates  
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 5. Influence of the yield displacement uncertainty on spectra with similar failure rates  
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Figure 6. Influence of the ductility capacity uncertainty on spectra with similar failure rates 
 

 
Figures 4, 5 and 6 indicate that the influence of the uncertainty about structural stiffness (K) is negligible 
on the response spectra, that about the yield displacement (dy) has some significance, and that about the 
ductility capacity (µc) is very significant. This means that the uncertainty about the parameter µc should be 
taken into account in the design process.  
 

 
SEISMIC RESPONSE SPECTRA WITH UNIFORM EXPECTED ANNUAL FAILURE RATES 

FOR SYSTEMS WITH DISSIPATING DEVICES 
 
In order to take into account the contribution of the dissipating devices to the response of the combined 
system (CS), a dissipating element was added in parallel to the SDOF system, as shown in Figure 7. The 
combined system is defined here as the conventional system plus the dissipating element. Figure 7 
indicates that the dissipating element has bilinear behavior, and the element presents stiffness 
degradation. In the figure the stiffness of the dissipating element is indicated as Kd, and that of the main 
system as Kc. The total stiffness of the CS is equal to KT = Kd + Kc.  
 
 

 
 

 
Figure 7. Main system plus an energy dissipating element 
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The ratio between the stiffness of the dissipating element and that of the main system is defined as: 
 

c

d

K

K
=α  

 
Another ratio of interest is that between the yield displacement of the dissipating element and that of the 
main system: 
 

yc

yd

d

d
=γ  

 
In this study the stiffness and the yield displacement of the main system (Kc and dyc) are considered as 
random variables; however, the stiffness and the yield displacement of the dissipators (Kd and dyd) are 
considered deterministic parameters.   
 
Equation 10 was applied to systems with dissipating devices, assuming different values of α and γ. Some 
results are shown in Figure 6, which presents spectra corresponding to different uniform failure rates (νF = 
0.005,0.01,0.0145,0.05, 0.1), for the following design values: µ* = 1, α = 0.45 and γ = 1.   
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

Figure 8. Response spectra for different failure rates, µ* = 1, α = 0.45 and γ = 1.     
 
 
The curves in Figure 8 can be compared with those in Figure 3a, which correspond to the corresponding 
conventional system. For example, for an annual failure rate νF = 0.005, the peak spectral ordinate for the 
conventional system (see Figure 3a) is equal to Ce = 0.81; however, the peak ordinate for the same νF 
value, associated with the system with dissipators, is about Ce = 0.65. This means that it is necessary to 
use a larger seismic design coefficient for conventional systems than for those with dissipators, for 
structures with the same period of vibration. This conclusion is reasonable because the structural damping 
is larger in systems with dissipators, and, as a consequence, the spectral ordinate becomes smaller.   
   
The ratio between the spectral ordinates of conventional systems and those of combined systems depends 
on νF  and on the period of vibration (T), as shown in Figure 9. This indicates that the ratios between the 
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spectra of conventional systems and those of structures with dissipators, for the same annual failure rate, 
are larger than unity. This means that the annual failure rate of a system with dissipators is smaller than 
that of a conventional system with the same period of vibration. This is reasonable because of the larger 
structural damping on the system with dissipators.  
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

Figure 9. Ratios of response spectra of conventional systems and systems with dissipators.  
µ* =1, α = 0.45, γ = 1. 

 
Figure 9 also shows that the presence of the dissipating elements is more significant for systems with 
vibration periods longer than the dominant period of the soil (Ts = 2s), probably because the combined 
structure presents non-linear behavior (due to the dissipating element), and consequently the “degraded” 
vibration period is larger than the initial one. 
 

CONCLUSIONS 

The results show that the uncertainties related to the structural ductility capacity are more significant with 
respect to the response spectra with uniform failure rates than those related to the structural stiffness and 
to the yield displacement of the systems.  
 
The results shown in this paper indicate that the uncertainty implicit in the ductility capacity should be 
taken into account in the design process.  
 
The response spectra with uniform annual failure rates corresponding to conventional systems present 
larger values of seismic design coefficients than those associated with systems with dissipating elements. 
This occurs because of the seismic energy dissipated by these elements.  
 
The ratio of spectra (corresponding to a given annual failure rate) associated with conventional systems 
and with systems with dissipating elements (associated with the same annual failure rate) is larger for 
systems with vibration period longer than the dominant period of the soil. This is related to the non-linear 
behavior of the dissipating elements. 
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