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SUMMARY 
 
Microtremor array exploration has been recognized as one of powerful techniques to know S-wave profile 
of sedimentary layers. In the exploration, phase velocity of Rayleigh wave is estimated from array records 
of vertical microtremors. The phase velocity is inverted to an S-wave profile using optimization 
techniques. Originally, least square methods developed in seismological community were applied in the 
inversion. Recently Genetic Algorithms which are regarded as one of the heuristic search methods are 
tried to be used in inverting phase velocity from microtremor exploration, because of robustness of the 
algorithms.  
 
In this study we compared performances of heuristic optimization techniques in phase velocity inversion. 
The heuristic methods examined are Genetic Algorithms, Simulated Annealing, and Tabu Search. We 
inverted synthetic phase velocity in numerical experiments. The Genetic Algorithms and Simulated 
Annealing show the rapid convergence of the misfits. However, the Simulated Annealing can find models 
with the smallest misfits. We also found the same conclusions in application of the methods to actual data. 
 
 

INTRODUCTION 
 
Assessment of local site effects is one of the most important subjects in engineering seismology. There are 
many kinds of techniques to the assessment. Probably, the most inexpensive technique is a method using 
microtremors. Applications of microtremors in estimating site effects can be mainly classified into two 
approaches. One is methods to estimate directly site effects or ground motion characteristics, such as 
predominant period, spectral ratio and horizontal-to-vertical ratio. Although these techniques are easy in 
field operation and data processing, we still have some uncertainty in results or interpretation of data. The 
second approach is a microtremor array technique.  In the technique, an S-wave profile is estimated from 
an inversion of Rayleigh wave phase velocity obtained from an analysis of array data of vertical 
microtremors (Horike [1], Okada et al. [2]). Once an S-wave profile is deduced, we can estimate site 
effects with various numerical simulations. Field operation and data processing are much more complex 
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than that of the direct estimation. However, there is no ambiguity in the approach and allow us a 
quantitative evaluation of site effects and its accuracy. 
 
Estimation of phase velocity from array data and its inversion to an S-wave profile are the two major tasks 
in the microtremor array exploration. Array data analyses using frequency-wavenumber spectrum and 
spatial autocorrelation function are often used in estimation of phase velocity (Okada et al [2]). Inversions 
of surface wave phase velocity are one of the most common techniques for a velocity profile in 
seismology.  Least square methods are usually used to invert observed phase velocity to a 1D profile of S-
wave velocity.  However, we have some difficulties in practical applications of linearized least square 
inversions of phase velocity. Numerical instability in calculating an inverse matrix is one of the 
difficulties in inversions. Preparation of an appropriate initial is also one of the difficulties in practical 
domain. Since the misfit function defined as L2-norm of difference between observed and calculated 
phase velocities is non linear, the misfit surface is multi-modal in parameter space. This arises the 
dependency of inverted results on initial model assumed. When an inappropriate initial model is used, we 
cannot estimate an S-wave profile with the global minimum of the misfit function.   
 
In this study, we apply heuristic search methods in an inversion of Rayleigh-wave phase velocity 
estimated from analysis of microtremor array data. In particular, we pay our attention to phase velocity 
inversion for S-wave profile of deep sedimentary layers. From numerical experiments and application to 
actual data, convergence speeds of the misfits between phase velocities for the true and inverted models 
are discussed. 
 

PROBLEM SETTING 
 
Phase velocity of fundamental mode of Rayleigh wave is assumed in the inversion. We calculate phase 
velocity for a horizontally layered model using the method by Haskell [3]. The misfit E(m) for the model, 
m, is calculated from  
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and N are the standard deviation and number of the observed phase velocity. We choose S-wave 
velocity and thickness of each layer as the model parameter, m. P-wave velocity is calculated 
from that of S-wave using an empirical equation by Kitsunezaki et al [4]. Density is fixed and 
given before the inversion. The number of the model parameters is 2M-1 for M-layer model. The 
problem is simply to find model parameters with the minimum misfit in given search areas of 
the parameters. 
 

HEURISTIC SEARCH METHODS 
 
A heuristic search method is one of optimization methods that can find models near the global minimum 
solution with reasonable computational costs (Reeves [5]). The major advantages of the heuristic search 
methods are no requirements of calculation of derivatives of misfit functions and specific initial models. 
The heuristic search methods have been applied in many engineering optimal designs since 1980. 
Recently, the methods were examined in geophysical inversions (e.g., Sen et al. [6]). The heuristic search 
methods that we examined are Genetic Algorithms (GA), Simulated Annealing (SA), and Tabu Search 
(TS).  
 



Simulated Annealing 
The SA is based on the idea of thermodynamics where melted metal reaches to low-energy state with 
gradual decrease of temperature (Metropolis [7]). Kirkpartrick et al [8] applied the idea to optimization 
problems with an analogy between the thermodynamics and optimization as shown in Table 1. The misfit 
to be minimized in inversion corresponds to energy in thermodynamics, and parameter change does to 
move of material state. This move of parameters is controlled by cooling schedule of the system with 
temperature decrease.  
 

Table 1 Analogy between thermodynamics and optimization 
Thermodynamics optimization 

Material state 
Energy 

Change of material state 
Temperature 
Freezing state 

Possible model 
Objective function 

Move to neighbor model 
Control parameter 
Heuristic solution 

 
The algorithm of the used SA is shown in Fig.1. First, we define a cooling schedule and an initial 
temperature, T0. Search areas for all the unknown parameters are also defined before calculation. Then, an 
initial model, m0, is randomly generated within the defined parameter spaces. The misfit, E(m0) for the 
initial model is calculated using the equation (1). Next, we add a random perturbation to the initial model 
for generation of a neighbor solution, m1 . We again calculate the misfit, E(m1) for the neighbor model. If 
the difference of the misfits of the two models, ( ) ( )[ ]01 mm EEE −=∆ , is negative, m1  becomes the 

present model. If the difference is positive (m1 is worse model), m1 is still chosen as the present model 
with a probability )/exp( TEP ∆−= . Because of the temperature-dependent probability, a model with 
high misfit is frequently chosen at high temperature. At low temperature, bad model is not often selected 
and only good model becomes the present model. After these processes have been repeated for all the 
parameters at predetermined times, temperature is decreased according to the cooling schedule. The 
present model can be modified to the neighbor model near the global solution by repeating the above 
processes. Although the SA is one of local search methods using a perturbation of the model parameters, 
the SA works as a global search method at high temperature, because it allow to climb up a hill of the 
misfit surface. It, however, works as a local search method at low temperature. This feature is different 
from pure random search methods, such as the Monte Carlo search method.  
 
 There are several algorithms in the SA. We examined the Metropolis algorithm (Metropolis [7]) and the 
Very Fast Simulated Annealing (Ingber [9]) in this paper. In the Metropolis algorithm, a new model, m1, is 
generated from a perturbation of the i-th parameter of the present model, m0, that is  
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where iu is a random number with uniform distribution between 0 and 1, and immax  and immin  are the 

predetermined upper and lower limits of the search area for the i-th parameter. The cooling schedule used 
are defined using  
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where kT  is the temperature at the k-th iteration. 

 
In the Very Fast Simulated Annealing (VFSA in the following) , a perturbation is also generated 
using equation (4). However, iu  in the equation is replaced by iy  that is defined as 
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The cooling schedule is based on 
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where ca,  are constant. 
 

 

Fig.1 Algorithm of inversion based on Simulated Annealing 
 
 
Genetic Algorithms 
The GAs are simulation algorithms based on evolution strategy in biology. The algorithms were developed 
to study artificial intelligence by Holland [10]. Applications of GAs in many optimization problems were 
examined by Goldberg [11]. Details of the application of GA to inversion of surface wave phase velocity 
can be explained by Yamanaka and Ishida [12]. In this study, we used a binary-code GA, where each 
parameter in defined search area is digitized using a binary code. A model is expressed with a sequence of 
0 or 1 (gene-type) by connecting all binary parameters. We call this bit string chromosome. First, L models 
in the genetic type are randomly generated for the initial population. The three genetic operations that are 
called selection, crossover, and mutation, are applied to the gene-type parameters of the models in the 
initial population. In the selection, new L models in the next generation are chosen using the probability 
determined with misfits for the models in present generation. The probability to be chosen in the next 
generation for the i-th model in the present generation is given from 
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The models chosen in the selection are applied to crossover. Two models which are randomly selected 
exchange their bit strings to generate two new models. An example of calculation of the crossover is 
shown in Fig.3. The location of cutting the bit strings is chosen using a random number. Then, the models 
after the crossover are modified in the mutation where a randomly chosen bit is reversely changed as 
shown in Fig.3. Mutation works as a local or global search according to the occurrence location of bit 
reverse. Although the crossover and mutation might generate models with large misfits, such models have 
low possibility to be chosen in the selection in the next generation. The calculation is terminated at a 
predetermined generation. 
 



          
Fig.2 Algorithm of inversion based on genetic algorithms    Fig.3 Example of crossover and mutation 
 
 
Tabu Search 
The TS is a kind of iterative local search methods using an idea of flexible memory (Glover, [13]).  The 
method is not well known in seismology and earthquake engineering, though it is regarded as one of major 
approaches in heuristics. The algorithm of the used Tabu search method is shown in Fig.4.  Model space 
for each parameter is equally divided in Nt possible values. The initial model is randomly generated and 
its misfit is calculated. Neighbor models are generated with moves of all the parameters in increase and 
decrease directions. Namely, misfits for 2(2M-1) neighbor models are calculated for choosing a move to a 
new model. We select a model with the minimum misfit among the neighbor models. If the attribute from 
the present model to the minimum model is not in the Tabu list, this model is accepted as the present 
model. If not, the minimum neighbor model is not used to renew the present model. Instead, the 2nd 
minimum model is compared with the Tabu list. The 3rd minimum neighbor model is examined, when the 
2nd model is also in the Tabu list. The attribute used here is defined by move and parameter. For example, 
the attribute in the Tabu list (30,5) means the 30th value of the 5th parameter. The attributes for the 
selected neighbor model are stored in the Tabu list whose memory is defined by Tabu length. Therefore, 
attributes for only recent moves are memorized in the Tabu list, and attributes for old moves are forgotten. 
The Tabu list can avoid cycling near the local minimum model. We used two additional operations as 
shown in Fig.4. We select a model that is listed in the Tabu list, if the aspiration rule is satisfied. We make 
the aspiration rule on, when a model has the minimum misfit among the models that have been visited 
before. Another operation which is included in our algorithm is the re-active rule. When the misfits are not 
improved in certain moves, we randomly generate a new starting model and clear the Tabu list. The 
calculation is terminated, when predetermined number of moves is executed.  
 

 
Fig.4 Algorithm of inversion based on Tabu Search 



 
NUMERICAL EXPERIMENTS 

 
The performance of the above-mentioned heuristic search methods in the phase velocity inversion is 
examined in numerical experiments. A four-layer model is used in the numerical experiments to generate 
synthetic data of phase velocity. Table 2 shows the model assumed. Since we are, here, interested in a 
microtremor array exploration of deep sedimentary layers, the synthetic phase velocity in a period range 
form 0.5 to 8 seconds are used in the experiments. We used the noise-free synthetic phase and the 
standard deviation in equation (1) is neglected in calculation of misfit. The search areas for the unknown 
parameters (Vs and H) are shown in Table 2. 
 

Table 2 Subsurface structural model used in numerical test 
No Vp(km/s) Vs(km/s) H(km) ρ(g/cm3) 
1 1.96 0.6 0.4 1.8 
2 2.40 1.0 0.5 2.0 
3 2.96 1.5 0.6 2.3 
4 4.84 3.2 - 2.5 

 
Table 3 Search areas in numerical test 

No Vs(km/s) H(km) 
1 0.4-0.9 0.2-1.0 
2 0.7-1.3 0.2-1.0 
3 1.2-1.8 0.2-1.0 
4 2.6-3.6 - 

 
 
Results of SA inversion 
First results of the inversion based on the VFSA are shown. From trial execution of the programs with 
small number of iterations, we determined the parameters (T0=1.0, a=0.5, c=1.0) in the cooling schedule 
of the VFSA in equation (7). The temperature decrease is shown in Fig.5. We examined 5 iterations at 
each temperature. Therefore, 35 neighbor models are examined at one temperature, because we have 7 
unknown parameters. The variations of the minimum misfit and the misfit for the present model are also 
shown in the figure. Models with large misfits are often accepted as the current model at high temperature. 
However, models with small misfits are chosen at low temperature, when the number of examined models 
exceeds over 1000.  This figure clearly shows the temperature-dependent features of the SA in the 
inversion. The variations of the unknown parameters are shown in Figs.6a and 6b. Similar to the 
variations of the misfits, the parameters reach to the true ones beyond 1000 moves. Since we used many 
random numbers in the calculation of the SA inversion, the results of the inversion more or less depend on 
random numbers. Therefore, 10 inversions were conducted with different initial numbers of a random 
number generator. Fig. 7 shows the variations of the misfits in the 10 inversions with different initial 
numbers of the random number generator. Although the convergence speed is slow in some of the results, 
most of the results show a similar decay of the misfit against the number of model moves. The variations 
of average and individual misfits for the SA inversion based on the Metropolis algorithms are shown in 
Fig.8. The average misfit quickly decreases within the first 200 iterations, and converges at 500 iterations. 
As compared with the variation of the misfits for the VFSA inversion, most of the VFSA inversions 
exhibit the better performance in finding small misfit model than that of the Metropolis algorithms. 
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Fig.5 Variations of misfits of current and minimum models in a VFSA inversion of synthetic phase 
velocity data. Crosses and solid line show current and minimum misfits and dotted line does temperature. 
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Fig.6 Variations of a) S-wave velocity and b) depth for each layer of models accepted in a VFSA inversion 
of synthetic phase velocity data. 
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Results of GA inversion 
The search area for each unknown parameter is linearly divided with an 8-bit binary code.  Therefore, total 
length of the bit string (chromosome) is 56 bits for a model. The parameters in the GA inversion are 
determined with a few test run of the program. We used 20 models for the population. Probabilities for 
crossover and mutation were set to be 0.7 and 0.01, respectively. This mutation probability means the 
occurrence of the mutation every two model.  The calculations were terminated at the 300th generation.  

Fig.7 Plot of misfits of individual and average 
minimum models in 10 VFSA inversions of 
synthetic phase velocity data with different 
initial values in random number generators.  

Fig.8 Plot of misfits of individual and 
average minimum models in 10 metropolis 
SA inversions of synthetic phase velocity 
data with different initial values in random 
number generators.  



 
Fig.9 shows the variation of the minimum misfit in a GA inversion of the synthetic data. Since the misfits 
for 20 models are calculated in each generation, the averaged misfit of the 20 models is also shown in the 
figure. The misfits rapidly decrease within the first 20 generations. Then, the minimum misfit is not 
significantly reduced, while the average misfit is fluctuated. Probably this can be due to bad models 
generated in mutation and crossover operations. The model parameters obtained in some of the 
generations are shown in Fig.10. The parameters are randomly distributed at the initial generation. They 
are concentrated in a few clusters after the 25th generation. Because of the mutation and crossover, jump 
of the parameters can be seen in the distribution of the parameters in the later generations. We conducted 
10 GA inversions with different initial values of the random number generator. The average misfit and 
individual misfits for the inversions are shown in Fig.11. 
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Fig.9 Variation of the minimum and average misfits with increasing generation in a GA inversion of 
synthetic data. 
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Fig.10 Distributions of S-wave velocity and thickness of the models examined in GA inversion of 
synthetic data at initial, 2nd, 10th, 25th, 50th, and 200th generations.. 
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Fig.11 Plot of misfits of individual and average minimum models for 10 GA inversions of synthetic phase 
velocity data with different initial values in random number generators. 

 
Results of TS inversion 
We conducted test executions of the program to determine the length of memory in the Tabu list, 
and found that the best choice of the Tabu length is 10 for this numerical experiment. The 
variation of the current and the minimum misfits are shown in Fig. 12. The misfits rapidly 
decrease in the first 100 moves. Beyond the 100th iteration, models with large misfits are also 
chosen, because of the Tabu criteria. It is notes that models with the smaller misfit can be found 
after selection of the worse models. This indicates the effectiveness of the Tabu list in global 
search algorithms. The parameter moves for the current and minimum models in the TS 
inversion are displayed in Fig.13. The S-wave velocity and thickness for the first layer smoothly 
approach near the true values, while those for the second layer start at a location far from the 
true ones and jump to the best model. The parameters for the third layer travel in a long path of 
the model space to reach to the best location. In particular, the moves for the thickness of the 
third layer distribute in wider space than that for the S-wave velocity. This suggests that the 
thickness of the third layer is the most sensitive in the misfit. The misfits for 10 TS inversions 
using different initial values of the random number generator are shown in Fig.14 together with 
their average misfit. Similar to the above results, the convergence for the some of the inversions 
are not well. This again indicates needs of several runs with different random numbers for stable 
results.  
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Fig.13 Variations of S-wave velocity and thickness for current (left) and the minimum (right) models in 
TS inversion for synthetic phase velocity 
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Fig.14 Plot of misfits of individual and average minimum models for 10 TS inversions of synthetic phase 
velocity data with different initial values in random number generators. 

 
Comparison of results 
The convergence speed of the misfits from the above inversions based on three heuristic search 
algorithms is compared with each other. Fig.15 shows the comparison of the average misfits for 
the 10 inversions based on the above algorithms. It is noted that the horizontal axis of the figure 
is the number of the examined models, because the GA inversion uses plural models at one time. 
We also depict the misfit for inversions using the Monte Carlo algorithm in the figure. At early 
stage of the searches, the GA and VFSA show a good convergence, and that for the Tabu search 
is worse than Monte Carlo method. However, the TS can find better models which have similar 
misfits as the GA finds, when the number of examined models exceeds over 1000 models. In the 
further iterations, only the VFSA is successful to find models with the smaller misfits. We also 
compare the variation of the misfits for the individual inversions in each algorithm. Fig.16 
shows the standard deviation of the misfits for the 10 individual inversions. The standard 
deviation for the VFSA is the smallest among the algorithms, indicating the high stability of the 
results.  
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APPLICATION TO ACTUAL DATA 
 
We applied the above inversion methods to actual phase velocity data obtained in the Kanto basin, Japan. 
The phase velocity data obtained at ASO in the western part of the basin are used. The location of the site 
is shown in Fig.17.  The phase velocities were estimated from a frequency-wavenumber spectral analysis 
of array data of vertical microtremors by Yamanaka et al. [14] as shown in Fig, 18.  The parameters used 
in each inversion are the same as the above numerical experiments. 
 
The results of the 10 individual inversions based on each method are averaged to get final results. The 
misfits and their standard deviations for the GA, VFSA and TS inversions are shown in Fig.19. As 
expected from the numerical experiments, the GA and VFSA exhibit a similar good performance at early 
stage of iterations. However, only the VFSA can continue to search models with small misfit, because the 
VFSA has global and local search ability according to temperature decrease. Probably, the premature 
convergence is one of the reasons for less performance 
of the GA (e.g., Goldberg, [10]). The high stability of 
the results of the VFSA can be also confirmed in the 
application to the actual data as shown in Fig.19.  The 
inverted models from the inversions are displayed in 
Fig.20. The models inverted with the GA and VFSA 
are similar to each other. The model from the TS has a 
shallower basement depth than the others. The 
theoretical Rayleigh wave phase velocities for the 
models are also compared with the observation in Fig. 
18. The theoretical phase velocity for the model from 
the TS is larger than the observed ones at period of 
longer than 3.5 seconds. This difference makes the 
shallow basement depth of the model from the Tabu 
search.  
 

Fig.15 Comparison between misfits for genetic 
algorithms (GA), very fast simulated annealing 
(VFSA), Tabu search (TABU) and Monte Carlo 
(MC) methods.  

Fig.16 Comparison between standard deviation 
of misfits for genetic algorithms (GA), very fast 
simulated annealing (VFSA), Tabu search 
(TABU) and Monte Carlo (MC) methods.  

Fig.17 Location of observation site, ASO, 
in the Kanto basin, Japan. 
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Fig.20 Comparison of the averaged  minimum misfits and their standard deviation of 10 inversions based 
on based on Genetic Algorithm, Very Fast Simulated Annealing, and Tabu Search. 
 
 

CONCLUSIONS 
 
Three major heuristic search algorithms, Genetic Algorithms, Simulated Annealing, and Tabu Search, are 
implemented in an inversion of Rayleigh wave phase velocity estimated in microtremor array exploration. 
We examined the performance of these algorithms in the phase velocity inversion from the numerical 
experiments and the application to the actual data obtained in a microtremor array exploration in the 
Kanto basin, Japan. The GA and VFSA show similar performance in convergence speed to find models 
near the optimal solutions. However, VFSA is good at finding models with smaller misfits than that for 
the GA, because of local search features of the VFSA. On the other hand, it turned out that convergence 
speed for the TS is not so fast. Probably, the TS has a high ability in local search and does not effectively 
work as a global search. These results clearly indicate that the VFSA and GA are the promising tools in 
phase velocity inversion used in microtremor array explorations. Probably, this is also true for other 
inversion problems in earthquake engineering.  

Fig.18 Comparison between theoretical phase 
velocity of Rayleigh wave for the inverted 
models in Fig.19 with observed phase 
velocity.  

Fig.19 Comparison between S-wave profiles 
derived from inversions based on Genetic 
Algorithm, Very Fast Simulated Annealing, 
and Tabu Search. 
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