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SUMMARY 
 
Studied are maximum displacements at the edges of the plan of elastic structural systems subjected to 
seismic motions that include accidental inputs: rotational seismic component and variations of center of 
mass location. The system properties that influence the responses are identified and assessed. Evaluated 
are the torsional provisions of Venezuelan and Mexican Seismic Codes, International Building Code, and 
De la Llera and Chopra Procedure; they can be either conservative or unconservative depending on the 
values of the system properties. A proposal that improves the mentioned procedure leading to a better 
agreement with the theoretical values, and including limitations concerning torsional stability, is 
presented. 
 

INTRODUCTION 
 
Seismic codes prescribe torsional effects to be incorporated in addition to translational effects in building 
design. Overall torsion can be split into inherent torsion derived from nominal dynamic properties of the 
system, and accidental torsion due to random variations of the stiffness and mass distributions and to the 
rotational seismic excitation; for inelastic response accidental torsion also comes from variations of the 
strength distribution. The effects of the accidental torsion are usually incorporated by means of an 
additional static torque, calculated as the product of the shear storey force by an accidental eccentricity, 
Newmark [1], just as it is specified in several seismic codes [2-4]. Recently, a more accurate procedure 
has been proposed, consisting in multiplying the inherent torsion effects by an amplification factor, De la 
Llera [5], Lin [6]. 
 
Emphasis has been made in the need of designing buildings for different performance levels according to 
seismic intensity. Besides the inelastic torsional response, it is therefore important the appropriate estimate 
of the elastic torsional response corresponding to the established performance for moderate earthquakes, 
Goel [7]. The accuracy of the procedures for incorporating the accidental torsion has been usually 
evaluated by means of elastic analysis, taking into account variations of the mass and stiffness distribution 
in the building plan, and adding rotational seismic excitation at the fixed base. This evaluation satisfies the 
requirements of elastic performance and has been extrapolated for inelastic performance. However, in our 
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knowledge the elastic calibration has not covered all the range of systems parameters. For instance, in De 
la Llera [5] the design recommendation takes into account the torsional stiffness and the plan aspect ratio 
but not the eccentricities between the centers of mass and rigidity, neither the system periods; this 
procedure is based on the response of symmetric systems having a relatively long period (1 sec.). Later on 
in Lin [6] adjustments for smaller periods (from 0.1 sec.) were presented. In this paper, the influence of 
the system properties in the accidental torsion is examined, including the cases of two-way eccentricities 
and different periods in the two orthogonal directions. The analyses are made with single storey systems 
that are known to represent the response of regular multistorey buildings, Kan [8]. The seismic excitation 
is established by means of: i) response spectra for the two principal horizontal components of ground 
motion, López [9], which can act along any direction with respect to structural axes, Smeby [10], Menun 
[11], López [12]; ii) a smoothed response spectrum for the rotational motion [5]. An evaluation of the 
torsional provisions of the Venezuelan [2] and Mexican [3] seismic codes, the International Building Code 
[4] and of De la Llera and Chopra Procedure [5, 6] is also presented. Finally, a proposal in order to 
improve the mentioned procedure is suggested. 
 

OVERVIEW OF TORSIONAL PROCEDURES 
 
In static analysis, the usual method for incorporating torsional effects consists in the modification of 
nominal eccentricities and the addition of accidental torques, in order to determine two torsional design 
moments that control the design of elements on the flexible and stiff sides of the building plan (Figure 1). 
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Figure 1. Single storey systems: (a) One-way asymmetric plan; (b) Two-way asymmetric plan. 
 

The center of shear forces (C.S.), point of application of the storey shear forces, weights the positions of 
the mass centers above the floor in consideration, according to the force applied at each one. To estimate 
the effects of inherent torsion an amplification factor (τ) and a reduction factor (τ') are prescribed, which 
modify the eccentricity between the C.S. and the center of rigidity (C.R.), for both directions of analysis. 
The first one controls the design of the flexible side of the building plan and the second that of the stiff 
side. The accidental torsion is estimated by prescribing an accidental eccentricity of the storey shear force 
V equal to a percentage (β) of the plan width that is orthogonal to the direction of analysis, B (= Bx or By), 
with the ± signs in order to increase the response on the flexible and stiff sides, respectively. Therefore, 
two torsional design moments are specified: MT,1  = V(τ e + β B) and MT,2 = V(τ’ e − β B), where e and V 
are taken positive. When using dynamic analysis, the effects of accidental eccentricities, ±β B, are 
statically added to the effects of the inherent torsion. 
 



The appropriate values of the parameters (τ and τ') corresponding to the inherent torsion can be 
determined by matching the dynamic amplification of the displacements (basic design parameters), and 
can be expressed in terms of few nondimensional parameters. When investigating a displacement along 
certain direction, we denote e as the eccentricity orthogonal to that direction, eo the eccentricity in that 
direction, ω the uncoupled circular frequency of the system in the direction of the displacement, ωo that 
for the orthogonal direction and ωθ the uncoupled circular torsional frequency; uncoupled frequencies 
refer to natural frequencies of the system if it were torsionally uncoupled (ex = ey = 0) but with the same 
translational and rotational stiffnesses. For example, if we study displacements along direction Y: e = ex ,   
eo = ey , ω = ωy , ωo = ωx. The required nondimensional parameters are: (a) the normalized eccentricities       
ε = e /ρ and εo = eo /ρ; and (b) the frequency ratios Ω = ωθ  /ω  and Ωo = ωo /ω, where ρ is the inertial radius 
of gyration of the system. In the case of one-way asymmetric plans εo = 0, Ωo can be left out, and we only 
need ε and Ω. 
 
In the Venezuelan Seismic Code [2] the static analysis method is only allowed for regular buildings that 
comply with Ω  ≥  0.5 and  ε  ≤ 0.2.  The parameters of the method are: 
τ = 1 + [4-16ε]Ω,   if  0.5 ≤ Ω ≤ 1  ;   τ = 1 + [4-16ε (2−Ω)](2−Ω)4,   if  1 ≤ Ω ≤ 2  ;   τ = 1,  if  2 ≤ Ω ;  
τ’ = 6 (Ω − 1) – 0.6,  but  −1 ≤ τ´ ≤ 1 ;  β = 0.06. The responses to the orthogonal seismic components 
must be combined by means of either the SRSS-rule, the 30%-rule or the CQC3-rule, including the 
accidental torsion for each component. 
 
The Mexican Seismic Code [3] sets τ = 1.5,  τ’ = 1  and  β = 0.10; the responses for the orthogonal 
horizontal components are combined by means of the 30%-rule. In the International Building Code [4] the 
maximum and the average of the displacements (δmax and δavg) of the resistant elements for each storey 
and direction, subjected to the storey shear forces plus the torsional moments defined by τ = 1 and β = 0.05, 
are first calculated. Then the torsional amplification factors A are determined by means of the expression   
1 ≤ A = (δmax  / 1.2 δavg)

2 ≤ 3. The structure must be designed using τ’ = 1, τ = A and β = 0.05A for each storey 
and direction. The responses to the two orthogonal seismic components are combined using either the 
SRSS-rule or the 30%-rule. 
 
In De la Llera and Chopra Procedure, De la Llera [5], with the modification indicated in Lin [6], the 
effects of inherent torsion are calculated first and later amplified by: (1) a factor A for 0 ≤ Ω ≤ 1; (2) a 
value determined by a linear interpolation between A and 1 for 1 ≤ Ω ≤ 1.8, where A = 1 + 0.0475 (B/ρ)α with 
α = −0.066(0.7/Ty)

2
 + 0.69(0.7/ Ty) + 1.38 if Ty <  0.7 sec. and α = 2 if Ty ≥ 0.7 sec. This procedure contains 

two debatable elements: i) the expression for α, which was evaluated for Ty = 0.1, 0.3 and 0.5 sec. in Lin 
[6], reaches its maximum for Ty = 0.134 sec. (but α should have a smaller value than it has for Ty = 0.1 
sec.) and it even takes negative values for Ty < 0.058 sec; ii) the structure would be unstable for the 
included value of Ω = 0; in addition, the minimum allowed value of Ω must be made dependent on the 
value of the eccentricities, as discussed below. 
 

METHOD OF ANALYSIS 
 
We consider single storey structural models with the center of mass (C.M.) at the geometric center of the 
plan and eccentricities (ex and ey) between the C.M. and center of rigidity (C.R.), (Figure 1). The plans are 
called symmetric if both of the eccentricities are null (ex = ey = 0), one-way asymmetric if only one of 
them is null, (for instance, ex ≠ 0 ; ey = 0), or two-way asymmetric if none of them are null (ex ≠ 0 ; ey ≠ 0). 
We assume that for a certain probability of occurrence the variability of the position of the C.M. can be 
defined by means of the statistical mean of the value ∆e that the C.M. can shift along each one of the 
principal orthogonal directions, which represents a determined proportion (ζ) of the plan width B. That is 
to say, ∆ek = ζ Bk , k = X or Y. We also assume that a similar probability of occurrence is associated with 



the translation of the C.M. along an ellipse that matches the points of maximum variations of eccentricity 
(Figure 2). Several positions of the C.M. are considered for the analysis: the ellipse center (point 0 = 
nominal position), the intersection points of the ellipse and the diagonals of its enveloping rectangle 
(points 2, 4, 6 and 8) and the points of maximum eccentricity (points 1, 3, 5 and 7), making nine cases of 
analysis for each nominal position (Figure 2). 
 

The seismic excitation consists of two horizontal components and one rotational component. The principal 
horizontal components 1 and 2 are described by pseudo-acceleration response spectra, A1 and A2 (Figure 
3). Denoting the period T in seconds, the assumed values A1 of the major component 1 are: 0.40 g for T = 
0; 1.00 g for 0.15 ≤ T ≤ 0.7; a linear variation between 0 ≤ T ≤ 0.15; values corresponding to a constant 
pseudo-velocity for 0.7 ≤ T ≤ 2.2 and to a constant deformation for T ≥ 2.2. The values A2 of the minor 
component 2 are obtained as A2 = γ A1, taking γ = 0.7 according to recent studies, López [9]. The 
normalized rotational spectrum ρAθ is a smoothed version of that presented in De la Llera [5] for ρ = 
20.41 m (corresponding to a square plan with Bx = By = 50 m); ρAθ takes the value 0.10 g for T = 0; 0.25 g 
for 0.1 ≤ T ≤ 0.3; values corresponding to a constant pseudo-velocity for 0.3 ≤ T ≤ 0.9 and to a constant 
rotation for T ≥ 0.9. 
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Figure 2. Points (0 to 8) along elliptic pattern 

for the center of mass (C.M.). 
 

Figure 3.   Normalized pseudo-acceleration 
spectra. A1/g: major horizontal; A2/g: minor 
horizontal;    ρAθ /g:   rotational component. 

 
Under each seismic component the responses are calculated by combining the modal responses using the 
CQC-rule, Rosenblueth [13], Der Kiureghian [14], that takes into account the correlation among the 
responses of modes with closed periods. We compute the critical value of a determined response to the 
rotational seismic component and  the two horizontal seismic components by considering all the possible 
incidence angles, by means of the CQC3-rule, Smeby [10], Menun [11], López [12]. When using the 
CQC3-rule, we consider that the rotational component is not correlated with the horizontal components. 
 

INFLUENCES OF STRUCTURAL PROPERTIES 
 
The structural response is expressed in terms of the ratio rmax/rnom between the maximum response (rmax) 
and the nominal response (rnom). We define the maximum response as the largest of the critical responses 
to the three seismic components for the 9 positions of the C.M. in the ellipse showed in Figure 2. The 
nominal response is the critical response to the two horizontal seismic components with the nominal 
position of the C.M. only (point 0 of Figure 2), leaving out the two sources of accidental effects: the 
rotational seismic component and the variation of the position of the C.M. The investigated responses are 



the displacements along direction Y at the flexible and stiff plan edges. For Ω < 0.8 the system is called 
torsionally flexible and for Ω > 1.2 torsionally stiff. 
 
Figure 4 shows the variation of ratio rmax/rnom with the system properties. The effect of ∆e/B is shown in 
Figure 4(a). We can observe the quasi-proportionality of the increment of the ratio with an increment in 
∆e/B. The small increment for ∆e/B = 0, points out the slight influence of the rotational seismic component 
in absence of variations of the positions of the C.M. Figure 4(b) presents values of the ratio rmax/rnom for 
different aspect ratios, Bx/By, fixing ∆e/B = 0.05 and Ty = 0.5 sec.; these results are similar to those 
presented in De la Llera [5] for Ω > 0.58 and Ty = 1 sec. However, when Ω is close to 0.25 the uniform 
tendency of the curves, observed for 0.5 < Ω < 0.8, is lost and a significant increase in rmax/rnom is observed, 
specially for the larger values of Bx/By. In Figure 4(c) we observe the influence of the uncoupled 
translational period Ty. An increment of rmax/rnom takes place for Ω ≤ 0.8 when Ty ≤ 0.3 sec. For example, 
rmax/rnom is close to 2 for Ω ≅ 0.3 when Ty = 0.3 sec., but the same occurs for Ω ≅ 0.55 when Ty = 0.1 sec. 
However, for all values of periods we observe similar increments in systems of moderate torsional 
stiffness, 0.9 ≤ Ω ≤ 1.1, while the increments grow gradually as Ω falls from about 0.9; this fact indicates 
that is conservative to keep a constant value of A for Ω ≤ 1 when the period is small. In Figure 4(d) we 
observe the influence of the period in the orthogonal directions; if the system is more flexible for the 
direction perpendicular to the examined displacement, large increments are possible for values the values 
of Ω  that correspond to ωo  ≅ ωθ. 
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Figure 4.   Values of rmax /rnom for the displacements along direction Y at both plan edges of 
symmetric systems, ex = ey = 0; Bx = 50 m: (a) Bx /By = 1, Tx = Ty = 0.5 sec., for several values of ∆e/B; 
(b) Tx = Ty = 0.5 sec., ∆e/B= 0.05, for several values of Bx /By ; (c) Bx /By = 1, ∆e/B= 0.05, Tx /Ty = 1, for 
several values of Ty ; (d) Bx /By = 1, ∆e/B= 0.05, Ty = 0.5 sec., for several values of Tx /Ty . 
 
Figure 5 shows the influence of the normalized eccentricities on the ratio rmax/rnom. In Figures 5(a), 5(c) 
and 5(e) we can notice that the response at the stiff edge can be affected by small eccentricities depending 
on the degree of torsional stiffness. In general, the values of rmax/rnom increase with the eccentricity for 



systems of high-moderate torsional stiffness, 1 ≤ Ω ≤ 1.2, but drop for systems of low-moderate torsional 
stiffness, 0.8 ≤ Ω ≤ 1. In the torsionally flexible systems, Ω < 0.8, the eccentricity does not lead to more 
unfavorable effects except for the very torsionally flexible ones, Ω < 0.5. On the contrary, in Figures 5(b), 
5(d) and 5(f) we observe that the accidental effects at flexible edge increase with the eccentricity for 
torsionally flexible systems, Ω < 0.8. As expected, very large increments of responses are found when the 
system is close to the torsional instability condition; it can be proved that this condition is reached when Ω 
= (εo

2
 Ωo

2 + ε2)1/2, being impossible a lower value of Ω. For one-way asymmetric systems this condition 
simplifies to Ω = ε. In order to guarantee the stability we have to add the accidental variations of nominal 
eccentricities in ε and εo. In addition, to avoid excessive displacements it is also necessary to move away 
from the instability limit. For example, if εo = 0.2 and ε = 0.5, being Ωo = 1 and ∆ε = 0.12 (for ∆e/B =  
0.05 and Bx/By = 1), we strictly need that Ω > 0.65, but it is advisable that at least Ω > 0.75 to prevent very 
large displacements or a fortuitous instability due to uncertainties in the parameters of the system. 
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Figure  5.  Values of rmax/rnom for the displacements in direction Y at plan edges of asymmetric 
systems, Bx = 50 m; ∆e/B = 0.05; Bx /By = 1. (a), (c) and (e): stiff edge; (b), (d) and (f): flexible edge; 
(a) and (b): Tx = Ty = 0.5 sec., for εy = 0 and several values of εx ; (c) and (d): Tx = Ty = 0.5 sec., for εx 

= 0.2 and several values of εy; (e) and (f) Tx = Ty = 0.1 sec., for εy = 0 and several values of εx. 
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Figure 6.  Values of rproc and rproc /rmax for displacements at plan edges in direction Y of symmetric 
systems, εx = εy = 0; Bx = 50 m; ∆e/B = 0.05; Tx = Ty = 0.5 sec.; (a) and (b): Venezuelan seismic code 
[2]; (c) and (d): Mexican seismic code [3]; (e) and (f): International Building Code [4], (g) and (h): 

De la Llera and Chopra Procedure, De la Llera [5], Lin [6]. 
 
 



EVALUATION OF TORSIONAL PROCEDURES 
 
Presented is an evaluation of the aforementioned torsional procedures [2-6] assuming as a reference value 
that ∆e/B = 0.05. The response obtained from the application of each procedure, normalized to the 
response of the corresponding symmetric system with the same uncoupled periods, is defined as rproc. The 
ratio rproc / rmax measures the accuracy of the specific procedure for estimating the accidental effects. The 
evaluation is presented for Bx/By = 5, 2, 1 and 0.5, assuming Bx = 50 m. 
 
Presented in Figures 6(a), 6(c), 6(e) and 6(g) are the values of rproc corresponding to Venezuelan [2], 
Mexican [3] and International Building [4] codes, and to De la Llera and Chopra Procedure, De la Llera 
[5], as modified in Lin [6], respectively, for the displacement at the edges of a symmetric plan with Tx = Ty 
= 0.5 sec. In Figures 6(b), 6(d), 6(f) and 6(h) the values of rproc / rmax are presented. For systems of moderate 
and large torsional stiffness, Ω ≥ 0.75, all procedures provide a good estimate of the accidental effects. But 
for torsionally flexible systems, Ω < 0.75, the seismic codes are conservative since the static accidental 
torque yields excessive displacements; on the contrary the De la Llera and Chopra Procedure provides a 
good estimate for all range of torsional stiffnesses, confirming for Ty = 0.5 sec. the results reported in [5] 
for symmetric systems with Ty = 1.0 sec. 
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Figure 7.   Values of rproc  / rmax for displacements at plan edges in direction Y of symmetric systems, 
εx = εy = 0; Bx = 50 m; ∆e/B = 0.05; Tx = Ty = 0.1 sec. (a): Venezuelan Code [2]; (b): Mexican Code [3], 

(c): International Building Code [4], (d): De la Llera and Chopra Procedure, De la Llera [5], Lin [6]. 
 

Results for short-period symmetric systems with Tx = Ty = 0.1 sec. are shown in Figure 7. For these 
systems disappear the great conservatism of the code provisions for torsionally flexible systems pointed 

out in the systems with Tx = Ty = 0.5 sec. (Figure 6), moving into underestimation of the theoretical 
responses. In this region the Venezuelan code becomes a little unconservative for all aspect ratios, 

whereas the Mexican and International Building ones only become so for small aspect ratios (as long as Bx 



(a)

0.5

1

1.5

2

2.5

3

0.25 0.5 0.75 1 1.25 1.5 1.75
Ω

r p
ro

c 

B x/B y = 521 0.5 

(b)

0.5

1

1.5

2

2.5

3

0.25 0.5 0.75 1 1.25 1.5 1.75
Ω

r p
ro

c 
/ r

m
ax

B x/B y = 521 0.5 

 

(c)

0.5

1

1.5

2

2.5

3

0.25 0.5 0.75 1 1.25 1.5 1.75
Ω

r p
ro

c 

B x/B y = 

5
21 

0.5 

(d)

0.5

1

1.5

2

2.5

3

0.25 0.5 0.75 1 1.25 1.5 1.75
Ω

r p
ro

c 
/ r

m
ax B x/B y = 521 0.5 

 

(e)

0.5

1

1.5

2

2.5

3

0.25 0.5 0.75 1 1.25 1.5 1.75
Ω

r p
ro

c 

B x/B y = 

5

21 

0.5 

(f)

0.5

1

1.5

2

2.5

3

0.25 0.5 0.75 1 1.25 1.5 1.75
Ω

r p
ro

c 
/ r

m
ax B x/B y = 521 0.5 

 

(g)

0.5

1

1.5

2

2.5

3

0.25 0.5 0.75 1 1.25 1.5 1.75
Ω

r p
ro

c 

B x/B y = 

5
2

1 
0.5 

(h)

0.5

1

1.5

2

2.5

3

0.25 0.5 0.75 1 1.25 1.5 1.75
Ω

r p
ro

c 
/ r

m
ax B x/B y = 521 0.5 

 
Figure 8.    Values of rproc and rproc /rmax for displacements at the stiff edge of asymmetric systems 
with εx = 0.2, εy = 0, and Tx = Ty = 0.5 sec.; (a) and (b): Venezuelan Code [2]; (c) and (d): Mexican 

Code [3], (e) and (f): International Building Code [4], (g) and (h): De la Llera and Chopra 
Procedure, De la Llera [5], Lin [6]. 

 



= 50 m) because of the larger accidental eccentricities. The modification proposed in Lin [6] turns out to 
be unconservative for torsionally flexible systems but very conservative for other systems. 
 
In the same format as presented for symmetric systems (Figure 6), Figure 8 presents results for 
asymmetric systems; results for the displacements at the stiff edge for systems with εx = 0.2, εy = 0, and Tx 

= Ty = 0.5 sec. are shown. The Venezuelan Code turn out to be conservative, but the Mexican and the 
International Building Codes are slightly unconservative for the region 0.5 < Ω < 1. On the contrary, De la 
Llera and Chopra Procedure is the most conservative in this region as observed in Figures 8(g) and 8(h). 
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Figure 9.   Values of rproc  / rmax for displacements at the flexible edge of asymmetric systems with εx = 
0.2,  εy = 0, and Tx = Ty = 0.5 sec.; (a): Venezuelan Code [2]; (b): Mexican Code [3], (c): International 

Building Code [4], (d): De la Llera and Chopra Procedure, De la Llera [5], Lin [6]. 
 
The ratio (rproc / rmax) for the displacement at the flexible edge of the same asymmetric systems (Figure 8) 
is shown in Figure 9. We observe that the code-specified procedures provide good estimates of the 
response for Ω > 1, whereas for the more torsionally flexible systems, Ω < 1, turn out to be quite 
conservative. De la Llera and Chopra Procedure has a more uniform behavior, keeping certain 
conservatism except for the region of very large torsional flexibility, Ω < 0.5. 
 
As a summary, the current torsional procedures do not keep a uniform accordance with the theoretical 
values, being conservative in some cases and unconservative in other ones. Although a deeper study can 
set a more accurate value of ∆e/B and its variance, the general nature of the presented results and 
especially the regions of dissimilar behavior will be probably the same. 
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Figure 10.   Values of rproc and rproc /rmax for the proposed procedure; Bx = 50 m; ∆e/B = 0.05; (a) and 

(b): edges of symmetric systems, εx = εy = 0; Tx = Ty = 0.5 sec.; (c) and (d): edges of symmetric 
systems, εx = εy = 0; Tx = Ty = 0.1 sec.; (e) and (f): stiff edge of asymmetric systems, εx = 0.2, εy = 0; Tx 

= Ty = 0.5 sec.; (g) and (h): flexible edge of asymmetric systems, εx = 0.2, εy = 0; Tx = Ty = 0.5 sec. 
 
 



IMPROVEMENT OF TORSIONAL PROCEDURE 
 
A modification of the De la Llera and Chopra Procedure is proposed next in order to improve the response 
estimation of the accidental effects for a wider range of system parameters and to ensure torsional 
stability. This procedure is used since it achieves very good estimates for symmetric systems with 
relatively large periods (T ≥ 0.5 sec) for all the range of torsional stiffnesses and aspect ratios. It seems 
feasible to set out, as a first approach, some simple modifications in order to improve the estimation for 
asymmetric systems and low periods. On the other hand, an improvement of the code-specified provisions 
would require rather complex modifications that would involve establishing a variable accidental 
eccentricity coefficient (β) depending on the system properties. 
 
The proposed torsional procedure takes into account the variations of rmax / rnom with system properties 
observed in Figures 4 and 5. These results and suitable measures for incorporating them are described 
next: 

1) In order to avoid a possible torsional instability it is necessary to bound the inferior value of the 
torsional stiffness, for preventing excessive displacements at the plan edges, as done in the 
Venezuelan Seismic Code. On this matter we have to take into account the accidental variations of the 
center of mass and rigidity. Under nominal conditions, for Ω = ε’ = (εo

2Ωo
2 + ε2)1/2 there is torsional 

instability; to get away from that it is advisable that Ω ≥ 1.1ε’. However, considering an accidental 
variation of eccentricities ∆e/B = 0.05 and all possible plan aspect ratios (since max{B/ρ}  ≅ 3.46; 

1.1∗3.46∗0.05 ≅ 0.2) we propose that Ω ≥ 1.1ε’ + 0.2. In addition, for very small torsional stiffnesses, 
Ω < 0.5, the displacements may increase too much for some values of periods or eccentricities. Given 
the typical uncertainties of system properties this condition should be avoided, because a small 
variation in those may lead to a large increase in the response. Therefore, it is proposed that for 
applying the procedure the additional requirement Ω  ≥ 0.5 is included; then, Ωmin = max{1.1ε’ + 0.2 ; 
0.5}. 

2) For the region of medium torsional stiffness, 0.9 ≤ Ω ≤ 1.1, the amplification corresponding to 
symmetric systems with a given value of Bx/By is almost constant, regardless of period values. For this 
amplification either the expression proposed in De la Llera [5] for T = 1 sec. or one slightly modified, 
A’ = 1 + 0.045(B/ρ)2, can be used for all period values. 

3) In order to use the bounds indicated in the preceding item we must have Ωmin < 0.9. Therefore, the 
method has to be limited to eccentricities so that ε’ ≤ 0.6. 

4) For symmetric systems, the increment of amplification for small periods (T < 0.7 sec.) grows in inverse 
proportion to Ω, from Ω ≅ 0.9 until Ω ≅ Ωmin. Let Amax be the amplification for Ω = Ωmin; an approximate 
fit of ratio Amax /A’ can be accomplished, such as Amax /A’ = exp{2.1(0.7−T)2.6} for T ≤ 0.7 sec. and  
Amax /A’ = 1 for T > 0.7 sec., which increases continuously as long as T decreases. 

5) At the stiff edge of asymmetric systems is not necessary to increase the amplifications corresponding 
to symmetric ones; in this proposal the possible reductions of them are not included. At the flexible 
edge of asymmetric systems the values of Amax for Ω = Ωmin increase by a factor of (1 + ε’) relative to 
those for symmetric ones, for moderate eccentricities; this factor is somehow conservative for large 
eccentricities. 

6) For very large torsional stiffnesses the amplification approaches 1, without reaching it for Ω = 1.75. It 
is proposed to replace the De la Llera and Chopra interpolation (between A and 1 for 1  ≤  Ω ≤ 1.8) with 
an interpolation between A’ and 1 for 1.1  ≤  Ω ≤   2. 

7) When the frequency ratio Ω o < 1 and Ωo ≅ Ω, the accidental effects are not adequately provided by 
the proposed procedure and a more refined analysis becomes necessary. 



 
According to the above criteria, we propose a procedure broke down as follows. The method is 
appropriate if the verification given in step 3 is fulfilled; otherwise, it is recommended to perform a 
dynamic analysis with accidental effects. For each direction of analysis the steps of the improved 
procedure are:  

Step 1. Compute the fundamental periods of the building (translational ones and rotational one) by means 
of dynamic analysis or Rayleigh method. Obtain the global values of Ω and Ωo. 

Step 2. Estimate the normalized eccentricities between the C.M. and the C.R. in each floor: ε, εo, ε’= 
(εo

2Ωo
2 + ε2)1/2. Then, assign a global value of ε’to the building either conservative or representative of the 

building plans. 

Step 3. Verify that  ε’ ≤ 0.6 ;  Ω ≥ 0.5  ;  Ω ≥ 1.1ε’ + 0.2  and that {Ωo is far enough from Ω , if  Ωo < 1}. 

Step 4. Determine the amplifications, A, at each edge of building plan: 
4.1 A = A’ = 1 + 0.045(B/ρ)2 ,   if 0.9 ≤ Ω ≤ 1.1 
4.2 A = Amax =  ηαA’,  if  Ω  =  Ωmin  = max{1.1ε’ + 0.2; 0.5}. Where: {α = exp{2.1(0.7−T)2.6} if T  ≤  0.7 

sec.; α = 1 if T  ≥  0.7 sec.}, {η = 1 + ε’ at flexible edge;  η = 1 at stiff edge }. 
4.3 A =1,  if  Ω  ≥ 2. 
4.4 Interpolate linearly between Amax and A’ for Ωmin < Ω < 0.9, and between A’ and 1 for 1.1 < Ω < 2. 

Step 5. Compute the amplifications at the resisting elements of building by interpolating linearly between 
the amplification at the edge and the value of 1 assigned either to the C.M. or to the C.R. 

Step 6. Compute the inherent responses (displacements and forces) at the resisting elements for all storeys 
of the building. 

Step 7. Compute the design responses (displacements and forces) by multiplying the inherent responses by 
the corresponding amplifications. 
 
Presented in Figures 10(a), 10(c), 10(e) and 10(g) are the design displacements derived from applying the 
proposed procedure for the four systems previously evaluated. Figures 10(a) and 10(c) correspond to 
symmetric systems for which rnom = 1; hence, we can observe the graphical expression of the procedure 
amplifications, for T = 0.5 sec. and 0.1 sec., respectively. Shown in Figures 10(e) and 10(g) are the design 
displacements at the stiff and flexible edges of a one-way asymmetric system with ε = 0.2. Figures 10(b), 
10(d), 10(f) and 10(h) present the values of rproc / rmax; the proposed procedure provides a good estimate of 
the accidental effects for most of the system parameters. It can be seen a very good estimation for the 
symmetric systems, reducing the errors for T = 0.1 sec. of the original procedure. In the same way, for 
asymmetric systems a better estimation is now obtained. Some overestimations for systems of moderate 
torsional stiffness still remain, because reductions of the amplification for asymmetric systems have not 
been included. 
 

CONCLUSIONS 
 
Investigated were the maximum elastic displacements at edges of single storey systems subjected to 
seismic excitation, considering two sources of accidental effects: rotational seismic component and 
variations of the center of mass. The position of the center of mass was varied along two orthogonal 
directions spanning nine positions on the plane. The critical response to the rotational and two horizontal 
seismic components considering all possible incidence angles was determined. The influence of system 
properties on the accidental effects was examined, several torsional procedures that incorporate these 
effects were evaluated, and an improved procedure was proposed. The main conclusions are: 



a) The relevant parameter is the ratio, named amplification, of the maximum response and the nominal 
inherent response. Significant results are: a.1) a quasi-proportional relationship between the 
amplification and the degree of accidental variation of the center of mass position; a.2) an uniform 
amplification for symmetric systems with medium torsional stiffness, irrespective of system periods; 
a.3) a tendency of the amplification to increase for very torsionally flexible systems, exceeding the 
aforementioned uniform value, for systems with moderate and large periods; a.4) a tendency to large 
increments of amplification for symmetric systems of low periods and small torsional stiffness; a.5) a 
large local increment of amplification for systems with a larger period in the direction orthogonal to 
the examined displacement, when that matches the torsional period; a.6) an increment of amplification 
at the flexible edge of asymmetric systems with small torsional stiffness; a.7) a very large increment 
of amplification when torsional stiffness is close to the torsional instability condition. 

b) The torsional provisions in the Venezuelan, Mexican and International Building Codes and the De la 
Llera and Chopra Procedure do not provide a uniform estimate of the theoretical values. All 
procedures lead to good estimates for torsionally stiff systems, but they can be either conservative or 
unconservative for the other systems. De la Llera and Chopra Procedure gives accurate results for 
symmetric systems with moderate or large periods, irrespective of torsional stiffness and aspect ratio, 
but its accuracy diminishes for short periods and asymmetric systems. 

c) The proposed torsional procedure, which improves that of De la Llera and Chopra, takes into account 
the influence of structural system properties indicated above. It includes restrictions to ensure 
torsional stability, expressed as minimum values for the ratios of torsional and translational 
frequencies. The proposed procedure shows a significant improvement in the estimate responses for 
short period systems and to a lesser extent for asymmetric systems. 
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