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SUMMARY 
 
It is shown that urban water distribution systems can be damaged by strong earthquakes, and the damage 
cannot easily be detected and located, especially immediately after the earthquakes.  In recent years, 
online damage estimation and diagnosis of buried pipelines attracted much attention of researchers 
focusing on establishing the relationship between damage ratio (breaks per unit length of pipe) and 
ground motion with taking the soil condition into consideration.  Due to the uncertainty and complexity 
of the parameters that affect the pipe damage mechanism, it is not easy to estimate the degree of physical 
damage only with a few numbers of parameters.  As an alternative, this paper develops a methodology to 
detect and locate the seismic damage in a water distribution system by monitoring water pressure online 
at some selected positions in the water distribution system.  For the purpose of online monitoring, 
emerging supervisory control and data acquisition (SCADA) technology can well be used.  A neural 
network-based inverse analysis method is constructed for detecting the location and extent of damage 
based on the variation of water pressure.  The neural network is trained by using analytically simulated 
data from the water distribution system with one/multiple damage, and validated by using a set of data 
that have never been used in the training.  It is found that the method provides a quick, effective, and 
practical way for damage detection and location in a water distribution system.  
 

INTRODUCTION 
 
A water distribution system can be damaged under strong earthquakes, and the damages cannot easily be 
located, especially immediately after the events, which, on the one hand, always results in water running 
to waste; and on the other hand, often causes low water pressure or even no water where water is urgently 
needed.  How to solve the problem is crucially significant to post-earthquake emergency response and 
recovery of an urban water distribution system [1][2].   
 
In recent years, real-time damage estimation and diagnosis of buried pipelines attracted much attention of 
researchers focusing on establishing the relationship between damage ratio (breaks per unit length of 
pipes) and ground motion with taking the soil conditions into consideration [3][4][5], and all these studies 
are based on the starting point that when the damage ratio for a gas distribution system achieves to a 
prescribed value the gas supply to this distribution system will be shut off.  As a macro-damage 
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estimation of a gas distribution system in the stage of post-earthquake emergency response and recovery, 
damage ratio is a useful index, but it is not appropriate for location of damage in a water distribution 
system due to the uncertainty and complexity of the parameters that affect the pipe damage mechanism 
[6].  Eguchi et al [7] put forward a method for damage estimation of a water distribution system, in 
which, a nominal damage estimated by seismic intensity from earthquake parameters (magnitude, 
epicentral distance, etc.) is updated gradually through hydraulic analysis based on post-earthquake 
observation data, but unfortunately, as the authors stated that the updating process is too difficult to 
realize the tentative idea.   
 
In Tianjin City, China, supervisory control and data acquisition (SCADA) technology has been applied to 
water distribution systems, in which water pressure and/or flow rate at some selected nodes such as 
reservoirs, pumps and pipes are monitored online by remote terminal units (RTUs) and the signals are 
transmitted to main terminal unit (MTU) by radio or internet, as shown in Fig. 1.  However, because the 
number of monitoring stations is limited, and more importantly, there are few effective methodologies 
available, it is difficult to locate seismic damage precisely and timely in practice.   
 
This paper proposes a methodology to locate seismic damage in a water distribution system by 
monitoring water pressure variation online at some nodes in the water distribution system.  For the 
purpose of online monitoring, supervisory control and data acquisition (SCADA) technology can well be 
used.  The method is finally validated by examples.  
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MTU：Main Terminal Unit RTU-1 
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Fig.1: Monitoring of water distribution systems 
 
 

METHOD 
 
Zoning and monitoring of a water distribution system 
A water distribution system is zoned into a few independent sub-systems, where valves are installed 
among sub-systems.  The valves are shut off under normal condition and opened at necessary cases, e.g., 
an earthquake; one water head monitoring station and one flow rate monitoring station are set up at the 
intake of one sub-systems, and three water head monitoring stations are installed in the sub-system.  The 
water head and flow rate are monitored and transmitted back by radio or Internet.  
 
Artificial neural network technique 
A back-propagation neural network is used in this paper, and the neural network consists of three layers: 
input, hidden, and output layer.  It is shown that one hidden layer is generally sufficient [8].   
 



After input data are fed into the neural network at the input layer, they are propagated through the hidden 
layer until output data are generated.  The output data are then compared with the target output, and an 
error signal is computed for each output cell.  Then the error signals are transmitted backward from the 
output layer to each cell in the hidden and input layers that contributes directly to the output.  This 
process is repeated until each cell in the network has received an error signal that describes its relative 
contribution to the total error.  Based on the error thus evaluated, connection weights are updated at all 
cells forcing the network to converge to an acceptable state of performance measured in terms of the root-
mean-square (RMS) error.   
 
The sigmoid function is used for output function.  In order to normalize the influence of input data with 
different cells and to prevent the saturation of the output function, in this paper the input and output data 
are scaled to [-1.0, 1.0] and [0.2, 0.8], respectively, based on the minimums and maximums of the data.     
   
Database development by hydraulic analysis 
Using artificial neural network technique to establish the relation between the water head variations at 
nodes that are not monitored and the water head variations at nodes monitored in a water distribution 
system, sufficient and well-distributed data for neural network training are needed.   
 
For a given water distribution system, the data can be collected from actual break events or can be 
simulated by hydraulic analysis or can be the combination of the two ways.  For the problem of seismic 
damage location, it is difficult to obtain sufficient actual data only from break events; therefore, it is 
necessary to simulate sufficient data anyway.  This paper produces all the data by hydraulic analysis.  
 
For a water distribution system at any node , the continuity condition requires that [9]  i
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where  is the flow rate in link ,  is the flow rate of demand at node ,  is the flow rate 
of leakage at node .  Assuming the length and diameter of link  to be  and , respectively, 
the Hazen-William equation between the head loss  and the flow rate  in each link  can be 
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where  is the water head at node ,  is the roughness coefficient of link . iE i ijC ij

 
The flow rate of demand  at node is associated with the water head at the node: when the relative 
water head is not less than a given specific design value (usually the lowest design water head) , the 
flow rate of demand is the normal flow rate ; and when the relative water head is less than  
but greater than 0, the flow rate [9] is 
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where  is the elevation at node ; and when the relative head is less than or equal to 0, the flow rate 
of demand is 0 at node .  
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The flow rate of leakage at node may be estimated [9]  i
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where  is the leakage coefficient.  In the paper k=1.15.  It should be noted that the leakage along all 
links should be converted into leakage at nodes. 
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If the number of the nodes is N, the following equation is a set of nonlinear equation with N unknowns 
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The Newton-Raphson method is used to solve the nonlinear equation (7).  Equation (2) can be written as  
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Equation (5) can be written as  
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Substituting equation (8), (9) and (10) into (7), equation (7) can expressed in iterative form 
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Staring with the initial value  for  ( i0,ie iE N,...,2,1= ), a set of linear equation (11) is solved for 0,iE∆ , 
thus getting the first iterative results 0,iE0,1, ii ee ∆+= .  The procedure is repeated until 

kiki ee ,1, −+ ( ) less than a given specific small value, then Ni ,...,2,1= 1, += kii eE  may be considered as the 
solution at node . i
 
When a break is occurred to a pipe in a water distribution system, water is discharged at the break.  A 
break can be various shapes and different extents, but all can be expressed as the size of the opening area.  
The discharge flow rate at a break may be estimated by [10] 

gHACq ddd 2=               (12) 
where  is the discharge coefficient associated with the break shape,  is the opening area, dC dA H  is 
the water head at the break, g is the acceleration of gravity.  By adjusting the discharge coefficient, 
various openings can be simulated.   
 
In the same way, equation (12) can be written as  
  iiiddiiddd EGegACGegAC ∆−+−= − 5.0'5.0' )(25.0)(2q         (13) 
where  is the elevation of the opening. '
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EXAMPLES 
 
Fig. 2 shows a water distribution system with one source, 30 nodes and 50 links.  The length and 
diameter of pipe links are listed in Table 1.  It is assumed that the roughness coefficients for all links are 
140, the demand flow rates are uniformly distributed with 0.05m3/sec at all nodes, and the leakage 
coefficients at all nodes are 2.0×10-5.  The elevation of all links is 48.0m, and the water head at resource 
is 100.0m.  A pump station is installed at link 51.  Three monitoring stations for water head are set up 
for the water distribution system, which are indicated in the figure.  
 
Example 1: single damage 
First, develop neural network training database by hydraulic analysis of the water distribution system with 
one break.  Calculate the water head at all nodes (including three monitoring stations) without any 
damage and with one break in sequence at the middle of each link.  The extent of the damage is 
described by the ratio ( ) of discharge area at the breaks to the cross area of the pipe, and the ratios 
are chosen as 0.01, 0.02, 0.1, 0.2 and 0.5, respectively, and the discharge coefficient C  takes the 
common use value 0.64, then total 250 sets of data for the water head variations can be obtained for 50 
links and 5 damage states for each link.  The database is not shown here for the limited space.  In order 
to make the 5 damage states well distributed, take the logarithm of the ratios, and then normalize them.  
Use the 250 sets of data to train the neural network: 3 neural cells at input layer for the water head 
variations at 3 monitoring stations; 27 cells at output layer for the water head variations at nodes that are 
not monitored.  Fig.3 shows that the neural network tends to converge after 10000 cycles training, and 
the RMS error is 0.00177 after 100000 cycles training.   
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Next, test the neural network to see if it can give us the results that we expect.  Input the data used for 
training and Table 2 shows the water head variations at nodes that are not monitored, e.g., nodes A, B, C 
and D for break ( =0.1) at link 9, 20, 24, 25, 26, 27, 28, 31 and 42, respectively.  The results in 
Table 2 are the normalized water head variations, and the values in brackets are the relative error with the 
targets.  From the results it is known that the relative errors are very small, with the minimum 0.05% and 
the maximum 2.83%, and most are below 1%, which shows the neural network training is successful.  
This may indicate that there indeed exists an inherent relation between water head variations at different 
nodes in a given water delivery system, which is the key to the methodology, and 3 monitoring stations 
are sufficient for the purpose of damage location in the example.  As the back-propagation neural 
network technique is based on the decrease of RMS error of all training data, the relative error of water 
head variation for a specific node varies around the final training error 0.00177. 
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Input data that have never been used for training to test the neural network.  Table 3 and Table 4 show 
the water head variations at nodes that are not monitored, e.g., nodes A, B, C and D for breaks 

=0.05 and =0.15 at link 9, 20, 24, 25, 26, 27, 28, 31 and 42, respectively.  As above the 
results in Table 3 and Table 4 are the normalized water head variations, and the values in brackets are the 
relative error with the targets.  From these results it is known that the relative errors are larger than those 
in Table 2, and the maximums are 9.03% and 9.41% for Table 3 and Table 4, respectively, but most are 
below 5%.  This is due to that for the data that have not been used for training the neural network gives 
the interpolations, and their precisions depend on the RMS error and the distance away from the training 
data, and the errors tend to the largest at the middle of two training data.  Table 3 and Table 4 further 
show that there indeed exists the inherent relation between water head variations at different nodes in a 
given water delivery system, and further proves the methodology: the water head variations at 27 nodes 
(that are not monitored in the paper) can well be predicted from the water head variations at 3 nodes (that 
are monitored in the paper).  
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Then locate the damage and estimate the extent of the damage.  Fig. 4 shows the contour maps of 
normalized water head variations at all nodes that are not monitored for break =0.05 (between 
0.02 and 0.1 used for training) at link 28, which are corresponding to the maximal relative error 9.03% in 
Table 3.  In Fig. 4, the upper figure (a) is the target water head variations contour map, and the lower 
figure (b) is the diagnosed water head variations contour map.  From these contour maps, the diagnosed 
water head variations are in good agreement with the target water head variations, and it is easy to locate 
the damage: at the position ⊕ with maximal water head variation, i.e., at link 28, and to estimate the 
extent of the damage: the maximal value of water head variation 0.02< <0.1.   
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Fig. 5 shows the contour maps of normalized water head variations at all nodes that are not monitored for 
break =0.15 at link 28, and again the diagnosed water head variations are in good agreement with 
the target water head variations, and it is easy to locate the damage: at the position ⊕ with maximal water 
head variation, i.e., at link 28, and it is also easy to know the extent of the damage: the maximal value of 
water head variation 0.1< <0.2. 
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As for Fig. 6 and Fig. 7, in the same way, it is easy to locate the damage (link 42), and to estimate the 
extent of the damage (0.02< <0.1 and 0.1< <0.2, respectively). 0/ AAd 0/ AAd
 
From the above results, it can be concluded that the neural network can accurately locate the damage and 
estimate the extent of the damage, which may again indicate that there indeed exists an inherent relation 
between water head variations at different nodes for a given water distribution system, which is the key to 
the methodology; and which may also indicate that 3 monitoring stations are sufficient for the purpose of 
damage location.  
 
Example 2: multiple damage 
When a water distribution system is subjected to an earthquake, there may be multiple damage.  Take 
the case of two breaks for example for the purpose of demonstration.  Assume that there are two breaks 
at any two different pipe links; and as in the above example, the damage ratios ( ) are chosen as 
0.01, 0.02, 0.1, 0.2 and 0.5, respectively.  In this example, the pump station is considered in the way that 
the pump is started when the water head is lower than 53m, and the lift of the pump is 10m.  Then in the 
same procedure, train the neural network using the data developed by hydraulic analysis: 3 neural cells at 
input layer for the water head variations at 3 monitoring stations; 27 cells at output layer for the water 
head variations at nodes that are not monitored.   

0/ AAd

 
Fig. 8 and Fig. 9 show the location of damage and estimation of the extents of the damages at link 28 and 
link 42 for =0.05 and 0.15, respectively.  The upper figures (a) are the target water head 
variations contour maps, and lower figures (b) are the diagnosed water head variations contour maps.  
The diagnosed water head variations are in good agreement with the target water head variations, and it is 
easy to locate the damage: at the position ⊕ with peak water head variations, i.e., at link 28 and link 42, 
and to estimate the extents of the damage, i.e., the peak value of water head variations: 0.02< <0.1 
and 0.1< <0.2, respectively. 
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CONCLUSIONS 
 
This paper proposes a methodology to locate seismic damage in a water distribution system by 
monitoring water head online at three nodes in the water distribution system, in which, a artificial neural 
network-based inverse analysis method is developed to estimate the water head variations at all nodes that 
are not monitored based on the water head variations at the nodes monitored.  It is found that the 



methodology provides a quick, effective, and practical way in which seismic damage in a water 
distribution system can be located.   
 
The methodology has the following advantages.  First, the method deals with the problem from the point 
of systems.  For a given water distribution system, any break at pipe links or nodes will affect the water 
head at all other links or nodes; and the different extents of the break will result in different effects; and 
the same break will bring different effects for links or nodes at different positions.  Based on this 
principle, this paper proposes to locate damages in a water distribution system by monitoring the most 
sensitive parameter for damage --- water head variations before and after the event at three nodes, and to 
establish the relation between the water head variations at the nodes that are not monitored and the water 
head variations at the nodes monitored.  Second, by using artificial intelligence of neural network 
technique, this relation can be established offline, then once there are damage, and the damage may be 
located online based on the water head variations only at the monitoring nodes.  Depending on the water 
distribution system, this process may only need several seconds to several minutes.  Third, by utilizing 
its advantage in nonlinear mapping of neural network technique, this relation can be established much 
more accurately overcoming difficulty of other mathematical methods, e.g., regression analysis, in 
dealing with strongly nonlinear problem.  Fourth, using neural network technique may also use its 
advantage in error’s tolerance to greatly reduce the possibility of mistakes in diagnosis.  Finally, using 
neural network technique can also fully utilize the SCADA technology in urban water distribution 
systems available.  It should be pointed out that the method might also be used for diagnosis of water 
sources and pumps, etc., and for location of a fire fighting and monitoring of its flow status. 
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Fig. 2:  The example water distribution system with one source, 30 nodes and 51 pipe links, where water 
head at three nodes are monitored. 
 

 
 

Table 1:  The diameter and length of pipe links in the example water distribution system. 
Link 
No. 

D 
(m) 

L 
(m) 

Link 
No. 

D 
(m) 

L 
(m) 

Link
No. 

D 
(m) 

L 
(m) 

Link 
No. 

D 
(m) 

L 
(m) 

1 0.80 50 14 0.50 1000 27 0.40 1000 40 0.50 2000
2 0.60 1000 15 0.50 1000 28 0.35 1000 41 0.40 2000
3 0.60 1000 16 0.40 1000 29 0.50 2000 42 0.40 2000
4 0.50 1000 17 0.40 1000 30 0.50 2000 43 0.35 2000
5 0.50 1000 18 0.60 2000 31 0.40 2000 44 0.35 2000
6 0.40 1000 19 0.50 2000 32 0.40 2000 45 0.30 2000
7 0.60 2000 20 0.50 2000 33 0.35 2000 46 0.40 1000
8 0.60 2000 21 0.40 2000 34 0.35 2000 47 0.40 1000
9 0.50 2000 22 0.40 2000 35 0.50 1000 48 0.35 1000
10 0.50 2000 23 0.35 2000 36 0.40 1000 49 0.35 1000
11 0.40 2000 24 0.50 1000 37 0.40 1000 50 0.30 1000
12 0.40 2000 25 0.50 1000 38 0.35 1000    
13 0.60 1000 26 0.40 1000 39 0.35 1000    
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Fig. 3:  The training curve of artificial neural network where the RMS error tends to converge after 
10000 cycles training, and 0.00177 after 100000 cycles training. 
 

 

Table 2: The diagnosed water head variations at nodes A, B, C and D that are not monitored for break 
=0.1 at link 9, 20, 24, 25, 26, 27, 28, 31 and 42. 0/ AAd

Break 
at link 
No. 

Water head 
variation 
at node A 

Water head 
variation 
at node B 

Water head 
variation 
at node C 

Water head 
variation 
at node D 

9 0.5813 
(0.41%) 

0.4763 
(0.13%) 

0.5333 
(0.39%) 

0.5565 
(0.80%) 

20 0.5753 
(0.79%) 

0.4832 
(0.10%) 

0.5805 
(0.19%) 

0.5857 
(0.10%) 

24 0.5227 
(0.48%) 

0.4874 
(1.29%) 

0.5712 
(0.21%) 

0.5499 
(0.48%) 

25 0.5510 
(0.56%) 

0.4975 
(2.83%) 

0.5986 
(2.18%) 

0.5797 
(0.05%) 

26 0.4682 
(0.26%) 

0.3758 
(0.66%) 

0.4813 
(2.36%) 

0.4904 
(0.22%) 

27 0.5125 
(0.18%) 

0.3731 
(0.11%) 

0.4696 
(0.06%) 

0.5482 
(0.59%) 

28 0.4612 
(0.81%) 

0.3297 
(0.57%) 

0.4049 
(0.15%) 

0.5086 
(1.88%) 

31 0.4412 
(1.12%) 

0.3755 
(1.00%) 

05141 
(2.24%) 

0.4796 
(0.25%) 

42 0.4506 
(0.74%) 

0.3779 
(0.56%) 

0.5553 
(1.24%) 

0.4982 
(0.50%) 

 
 
 
 
 



Table 3:  The diagnosed water head variations at nodes A, B, C and D that are not monitored for break 
=0.05 at link 9, 20, 24, 25, 26, 27, 28, 31 and 42. 0/ AAd

Break 
at link 
No. 

Water head 
variation 
at node A 

Water head 
variation 
at node B 

Water head 
variation 
at node C 

Water head 
variation 
at node D 

9 0.5625 
(3.71%) 

0.4792 
(6.73%) 

0.4970 
(1.23%) 

0.5231 
(0.65%) 

20 0.5440 
(0.13%) 

0.4697 
(3.16%) 

0.5460 
(0.22%) 

0.5480 
(0.24%) 

24 0.5057 
(3.31%) 

0.4944 
(8.90%) 

0.5416 
(0.95%) 

0.5215 
(1.44%) 

25 0.5231 
(0.58%) 

0.4967 
(8.85%) 

0.5608 
(0.32%) 

0.5422 
(0.17%) 

26 0.4346 
(2.05%) 

0.3802 
(5.26%) 

0.4538 
(2.12%) 

0.4578 
(1.29%) 

27 0.4927 
(2.26%) 

0.3608 
(1.32%) 

0.4443 
(0.05%) 

0.5056 
(1.27%) 

28 0.4399 
(1.59%) 

0.3306 
(3.60%) 

0.3882 
(0.54%) 

0.5132 
(9.03%) 

31 0.4160 
(1.61%) 

0.3564 
(1.57%) 

0.4785 
(3.24%) 

0.4459 
(1.35%) 

42 0.4186 
(1.23%) 

0.3487 
(2.84%) 

0.5044 
(4.36%) 

0.4576 
(3.09%) 

 
 
 
Table 4:  The diagnosed water head variations at nodes A, B, C and D that are not monitored for the 
break =0.15 at link 9, 20, 24, 25, 26, 27, 28, 31 and 42. 0/ AAd

Break 
at link 
No. 

Water head 
variation 
at node A 

Water head 
variation 
at node B 

Water head 
variation 
at node C 

Water head 
variation 
at node D 

9 0.6139 
(0.23%) 

0.4952 
(1.43%) 

0.5670 
(0.11%) 

0.5924 
(0.50%) 

20 0.6200 
(0.60%) 

0.5278 
(3.49%) 

0.6095 
(1.41%) 

0.6249 
(0.27%) 

24 0.5459 
(0.89%) 

0.4701 
(7.55%) 

0.6031 
(0.84%) 

0.5751 
(0.91%) 

25 0.5932 
(0.88%) 

0.5593 
(9.41%) 

0.6426 
(1.12%) 

0.6169 
(0.21%) 

26 0.5102 
(3.07%) 

0.4107 
(3.87%) 

0.5122 
(3.23%) 

0.5208 
(0.33%) 

27 0.4962 
(8.33%) 

0.3554 
(8.68%) 

0.4809 
(2.97%) 

0.5369 
(7.08%) 

28 0.4889 
(1.45%) 

0.3489 
(1.39%) 

0.4294 
(1.06%) 

0.5142 
(2.52%) 

31 0.4840 
(3.09%) 

0.4188 
(5.62%) 

0.5535 
(0.65%) 

0.5222 
(3.45%) 

42 0.4781 
(1.57%) 

0.4036 
(2.80%) 

0.6025 
(0.89%) 

0.5445 
(2.87%) 

 
      

 



   
(a) Target water head variation               (a) Target water head variation 

 

   
(b) Diagnosed water head variation           (b) Diagnosed water head variation 

 
Fig. 4: Location of damage at link 28 for =0.05.  Fig. 5: Location of damage at link 28 for =0.15. 0/ AAd 0/ AAd

 
 

   
(a) Target water head variation               (a) Target water head variation 

 

   
(b) Diagnosed water head variation           (b) Diagnosed water head variation 

 
Fig. 6: Location of damage at link 42 for =0.05.  Fig. 7: Location of damage at link 42 for =0.15. 0/ AAd 0/ AAd



 

   
(a) Target water head variation               (a) Target water head variation 

 

   
(b) Diagnosed water head variation           (b) Diagnosed water head variation 

 
Fig. 8: Location of damage at link 28 and link 42    Fig. 9: Location of damage at link 28 and link 42 
for =0.05.                              for A =0.15. 0/ AAd 0/ Ad
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