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SUMMARY 
 
An active diagnosis method using support vector machines is presented. The support vector machine is a 
recently developed pattern recognition method that has some similarities with the neural network. It has a 
strong pattern recognition capability with relatively easy implementation processes. By introducing the 
support vector machines, a flexible and accurate damage diagnosis procedure is formulated. The 
procedure proposed here can be extended to an automatic diagnosis with strong learning capability. The 
multi-dimensional feature vectors that represent the features of damages are generated by active sensing 
technologies based on ultrasonic wave propagation. Piezoelectric transducers were used for generating 
ultrasonic Lamb waves in a plate and for sensing the traveling ultrasonic waves. A network of 
piezoelectric elements attached to neighbors of a bolted joint is utilized to obtain the inputs and outputs 
combinations in the time domain. The recorded time histories are converted to multi-dimensional feature 
vectors to teach support vector machines. Simplified bolted joints were fabricated using aluminum plates 
and bolts. The excitation frequency of the ultrasonic wave is 50KHz. Another pattern recognition method, 
the correlation analysis, is also applied to the same feature vectors. The better accuracy of the proposed 
method is successfully presented compared with the correlation analysis. It is also shown that the 
application of wavelet transform exhibits a drastic improvement of recognition accuracy. 
 

INTRODUCTION 
 
Structural health monitoring systems may increase the reliability of structures and reduce the maintenance 
costs drastically if the performance of the systems is satisfactory. Among others, piezoelectric transducers 
(PZT) are very promising as they can be used for actuators and sensors. Arbitrary vibration signals 
especially in the ultrasonic range can be transmitted and detected by the same PZT. In addition, as they 
can be integrated into a structural member, it is ideal for making a structure smart. However, conventional 
diagnosis technologies using ultrasonic waves heavily rely on the experienced engineers to conduct good 
damage diagnosis. Therefore, it is our purpose to propose an automatic diagnosis method using PZTs. We 
will show that introducing the support vector machine (SVM) and wavelet transform can achieve 
excellent discernment performance. The proposed method can identify the number of bolts and their exact 
locations using simple feature vectors generated from impulse responses. 
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ACTIVE DAMAGE DIAGNOSIS 
 
Flow chart and components of proposed method 
The flow chart of the proposed method is shown in Fig. 1. It consists of three components, smart sensing, 
signal processing, and pattern recognition as shown in Fig. 2. Each component is briefly explained. 
 
Smart sensing 
PZT elements are used both for actuators and sensors. Each element is adhered to specimens using conductive 
glue. As we use aluminum plates for experiment, the specimen itself is used as the electrical ground. One of 
PZTs will be excited by the impulse signal to be measures by other PZTs. 
 
Signal processing 
The effectiveness of applying wavelet transform to the recorded data has been reported by Sung [1] and Jeong 
[2]. The wavelet transform is used to extract the data that are well correlated to excitation signals. From the 
transformed data, feature vectors are generated. In this paper, average amplitudes over prescribed durations are 
used.  
 
Pattern recognition 
The support vector machine (SVM)and correlation analysis are used. The latter is just for comparison. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Flow chart of proposed method. 
 

 
 
 
 
 
 
 

Figure 2. Three components of proposed method. 
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Generate an impulse signal. 

Amplify the voltage. 

Apply the signal to a PZT. 

Acoustic waves are generated. 

Measure wave signals by other PZTs. 

Record the signals by the logger. 

Repeat the above steps if necessary. 

Apply wavelet transformation. 

Extract feature vectors. 

Identify the damage using SVM. 



Support Vector Machine 
The Support Vector Machine (SVM) is a mechanical learning system that uses a hypothesis space of 
linear functions in a high dimensional feature space (see Vapnik[3] and Christianini [4]). The simplest 
model is called Linear SVM (LSVM), and it works for data that are linearly separable in the original 
feature space only.  In the early 1990s, nonlinear classification in the same procedure as LSVM became 
possible by introducing nonlinear functions called Kernel functions without being conscious of actual 
mapping space.  This extended technique of nonlinear feature spaces is called Nonlinear SVM (NSVM) 
shown in Fig.3. Assume the training sample S  consisting of vectors n

i R∈x  with Ni ,...,1= , and each 
vector ix  belongs to either of two classes thus is given a label { }1,1−∈iy .  The pair of ),( bw  defines a 
separating hyper-plane of equation as follows: 
 
 ( ) ( )( )NN yyS ,,...,, 11 xx=  (1) 
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However, Eq.(2) can possibly separate any part of the feature space, therefore one needs to establish an optimal 
separating hyper-plane (OSH) that divides S  leaving all the points of the same class on the same side, while 
maximizing the margin which is the distance of the closest point of S .  The closest vector ix  is called support 
vector and the OSH )','( bw  can be determined by solving an optimization problem.  The resulting SVM is 
called Hard Margin SVM.  In order to relax the situation, Hard Margin SVM is generalized by introducing 
non-negative slack variables ),,,( 21 Nξξξξ K=  as follows: 
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The purpose of the last term of the ∑ iC ξ , where the sum of Ni ,...,1=  is to keep under control the number 
of misclassified vectors.  The parameter C  can be regarded as a regularization parameter.  The OSH tends to 
maximize the minimum distance of w1  with small C , and minimize the number of misclassified vectors 
with large C . To solve the case of nonlinear decision surfaces, the OSH is carried out by nonlinearly 
transforming a set of original feature vectors ix  into a high-dimensional feature space by mapping 

ii zxΦ a:  and then performing the linear separation.  However, it requires an enormous computation of 
inner products ))()(( ixΦxΦ ⋅  in the high-dimensional feature space.  Therefore, using a Kernel function 
which satisfies the Mercer’s theorem given in Eq.(4) is required to significantly reduce the calculations to 
solve the nonlinear problems.  In this study, we used the Gaussian kernel given in Eq.(5) as the kernel 
function.   
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Figure 3. Nonlinear SVM. 
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Correlation analysis 
The correlation coefficients between two vectors, A and B, are defined by 
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where jiA ,  is the j th value of the i th feature vector, and jkB , , the j th value of the k th feature vector. 
By selecting a class that gives the largest correlation coefficient, we can use this analysis as a pattern 
recognition tool. The analysis is done for comparing with SVM. 
 
 

EXPERIMENTS USING SPECIMEN WITH BOLTED JOINTS 
 
An experimental specimen of bolted joints is shown in Figs. 4 and 5. The bolted joints were made with 2 
aluminum plates 3mm)300(200 ×× jointed with 2 short aluminum plates 2mm)40(200 ×× . Ten 5mm 
diameter steel bolts with washers and nuts were used. Total length of the bolted joints part was 40mm. The 
PZT has a diameter of 10mm, and a thickness of 0.2mm. Four PZTs were bonded at a distance of 20mm from 
the bolted joints by using conductive adhesive. For a signal generation, a two-peak narrow-band, modulated 
sinusoidal burst waveform was selected for the actuator signal to simulate a transient wave. The command 
voltage signal used here is shown in Fig. 6. 
 
The excitation frequency was 50kHz to generate the PZT 1 as an actuator, and propagating wave was acquired 
by PZT 2-4 as the sensors. The signal generation, PZT selection, signal filtering, A/D signal conversion and 
data acquisition were done using the SMART Suitcase (Mark [5]). The photo of the acquisition system is 
shown in Fig. 7. The excitation frequency was decided based on the efficiency of the wave transmission and 
the wave length ratio with the damage dimension. Damage was introduced by extracting the bolts from the 
joints. At first, the robust state of bolted joints was measured. Then, total of 44 different patterns of missing 
bolts were performed after that. Those are 10 different patterns of 1 bolt missing, 13 patterns of 2 bolts missing, 
6 patterns of 4 bolts missing, 5 patterns of 5 bolts missing, 5 patterns of 6 bolts missing and 5 patterns of 8 
bolts missing. All these were measured for twice in order to collect the training data and the verification data in 
pattern recognition.  

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4. Aluminum specimen with bolted joints. 
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Figure 5. Bolted joints and PZT. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6. Command signal used for generating impulse. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7. Data acquisition system. 
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Feature vectors 
For the damage detection using pattern recognition methods, creation of the feature vectors is needed. In this 
study, we divided waveforms of the time domain into four 0.1ms intervals, then calculated the sum of the 
second power average of the amplitude for each interval (Fig.8). Therefore, four values can be acquired from 
one sensor, and a total of 12 values can be obtained from all sensors as shown in Table 1 for a typical 
experimental data.  This procedure was applied to one robust and all 44 damage patterns, which were used as 
the feature vectors for pattern recognition in this study. 
 

Table 1. Typical feature vector. 
Time interval Sensor No. Data No. Second Power 

 PZT#2 1 1.547 
0.05 – 0.15ms PZT#3 2 5.935 

 PZT#4 3 0.987 
 PZT#2 4 0.865 

0.15 – 0.25ms PZT#3 5 1.651 
 PZT#4 6 0.523 
 PZT#2 7 1.128 

0.25 – 0.35ms PZT#3 8 3.347 
 PZT#4 9 0.979 
 PZT#2 10 1.656 

0.35 – 0.45ms PZT#3 11 3.888 
 PZT#4 12 1.227 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8. Extraction of feature vector. 

0.05ms 0.15ms 0.25ms 0.35ms 0.45ms
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Damage diagnosis using correlation analysis 
The location of the missing bolts was estimated by using the calculated feature vectors. In this method, 45 
different kinds of damage patterns were utilized as the standard data.  Then the data of extracting arbitrary 
positions of bolts was compared with the standard data and from the largest correlation coefficient, one can 
estimate the location of the missing bolts in a simple manner. The results of damage detection using 
correlation coefficients are shown in Table 2 )10~0( =i .  The meaning of “after applying WT” is the case 
where the feature vector was created using the waveform extracted from 50kHz domain only, from the sensor 
signal. For the results in all damage patterns )44~0( =i , 31 out of 45 were correct for before applying WT, 
and 38 out of 45 were correct for after applying WT.  Although there were some unforced errors, the damage 
detection using the correlation coefficients and applying wavelet transform to extract the waveform of a certain 
specific frequency for creation of the feature vector, the location of missing bolts could be identified at a 
certain level of accuracy. 
 
 

Table 2. Diagnosis results using correlation coefficients. 
 Before applying WT After applying WT 

i 
Extracted bolt 

number Correct Incorrect Correct Incorrect 
0 none 0.999  0.999  
1 1  0.982  0.986 
2 2  0.982  0.983 
3 3 0.979  0.978  
4 4 0.989  0.989  
5 5  0.990 0.992  
6 6 0.997  0.998  
7 7 0.994  0.994  
8 8 0.993  0.994  
9 9 0.998  0.998  

10 10  0.965  0.972 

 
 
Damage diagnosis using 45 SVMs 
The 45 different kinds of damage classes were recognized by the SVM. As the feature vectors were 
complicated enough, application of the LSVM is not possible. Therefore, the Gaussian kernel was applied as 
the kernel function to build optimal NSVM by following: (1) it is based on the classification, which divides 
each class and the other into two classes.  (2) Slack variables are introduced as Soft Margin SVM. 
Consequently, 45 NSVMs were built in total, and the parameters of each NSVM, σ  as in Eq.(5), and C as in 
Eq.(3) were determined to minimize the misclassified data. If the l-o-o (leave-one-out bounds) represents the 
probability of the data that does not exist in a margin, the boundary of classes that has a 100% correctness and 
l-o-o close to 100% were determined to raise the accuracy of discernment results. 
 
The verification of SVM was performed with the same sets of data acquired for second 
measurement )44~0( =k .  As an example, the outputs of first 10 damage patterns using built SVMs are 
shown in Table 3. The data number of positive output indicates the location of the damage recognized by 
the SVM, and SVM with training data shows good results within the verification data. The influence of  
WT to SVM is shown in Table 4. For the results in all damage patterns )44~0( =i , 33 out of 45 were 
correct for before applying WT, and 45 out of 45 were correct for after applying WT. Therefore, the effect 



of WT appeared in SVM as well as correlation coefficient.  Moreover, SVM could identify the damage 
with very strong discernment capability. 

 
Table 3. Outputs from SVM 

 Verification data 
i \ k 0 1 2 3 4 5 6 7 8 9 10 
0 1.000 -1.000 -1.030 -1.000 -1.001 -1.905 -2.832 -1.000 -1.000 -2.308 -3.410 
1 -0.914 0.213 -0.782 -1.646 -1.529 -1.554 -2.122 -0.926 -0.606 -1.805 -0.767 
2 -1.034 -1.002 0.126 -2.904 -0.964 -2.340 -1.474 -0.994 -1.654 -0.539 -0.912 
3 -0.941 -0.971 -1.293 0.542 -1.048 -2.021 -2.524 -0.960 -2.590 -0.129 -4.245 
4 -1.047 -0.968 -1.217 -1.986 0.014 -1.727 -1.471 -0.862 -1.291 -1.045 -2.005 
5 -0.984 -1.062 -1.470 -1.933 -2.958 0.452 -2.630 -0.965 -2.222 -1.076 -2.731 
6 -1.050 -0.965 -1.043 -2.515 -1.077 -0.430 0.773 -0.971 -0.424 -0.679 -2.607 
7 -0.918 -0.913 -1.495 -1.765 -0.872 -2.196 -1.467 0.234 -1.426 -2.207 -1.434 
8 -1.130 -1.038 -1.334 -2.311 -0.915 -1.543 -0.465 -0.941 0.433 -0.737 -0.871 
9 -1.011 -0.919 -0.890 -2.441 -1.754 -1.371 -1.503 -0.982 -1.368 0.834 -1.156 
10 -1.052 -1.101 -1.266 -3.269 -0.076 -2.356 -0.015 -0.963 -0.334 -1.104 0.215 

 
Table 4. Correctness of diagnosis using SVM. 

 Before applying WT After applying WT 
i Extracted bolt number Correct Incorrect Correct Incorrect 
0 none 1.000  1.000  
1 1  -0.082 0.213  
2 2  -0.199 0.126  
3 3 0.600  0.542  
4 4  -0.301 0.014  
5 5 0.482  0.452  
6 6  -0.413 0.773  
7 7 0.343  0.234  
8 8 0.205  0.433  
9 9 0.047  0.834  

10 10  -0.293 0.215  

 
 
Damage diagnosis using 7 SVMs 
In this diagnosis, an SVM was built for each number of extracted bolts so that the information on the location 
was neglected. They are; a class of robust state, class of 1 bolt missing, 2 bolts missing, 4 bolts missing, 5 bolts 
missing, 6 bolts missing and 8 bolts missing. Therefore, total of 7 NSVMs were built with the training data 

)44~0( =i . For parameters σ  and C of each NSVM, we determined them by 100% correctness and l-o-o 
close to 100% as the same way as 45 classified damage patterns described before. In addition to that, the 
parameters σ  and C  were selected to minimize the number of Support Vectors as shown in Fig.9. From the 
Figure, it is recognized that an NSVM tends to minimize the number of Support Vectors with small σ  and 
with large C . 
 
Fig. 10 shows the results of seven classified damage detection after applying WT.  In the x-axis, data number 1 
denotes the class of robust state and No.2~11, No.12~24, No.25~30, No.31~35, No.36~40 and No.41~45 
represent the class of 1 bolt missing, 2 bolts missing, 4 bolts missing, 5 bolts missing, 6 bolts missing and 8 
bolts missing, respectively.  The data number of positive output indicates the division of damage classified 
with the number of extracted bolts, and SVMs indeed show promising results that classified the data into 7 
classes, perfectly. 
 



Based on the above results, it can be concluded that we can arbitrarily set up the index of the damage and can 
define what indicates as the damage. For example, if two or more missing bolts are chosen as damage, then a 
designer should simply build an SVM with the data of robust state to 2 missing bolts as a class 1 which are 
data number 1~11 in the experiment and choose other as class 2 for index of the damage.  However, to 
improve the proposed method for practical use, the use of simulation data for creating training data may be 
necessary.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 9. Number of support vectors. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 10. Outputs from 7 SVMs. 
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CONCLUSIONS 
 
An active diagnosis method using support vector machine (SVM) and impulse responses was proposed. 
The effectiveness of the method was demonstrated by experiments using an aluminum specimen with 
bolted joints. The feature vectors needed for pattern recognition were created by calculation of second 
power average of the amplitude from the sensor signals obtained by PZTs. They were successfully used as 
the training as well as verification data for SVM. By applying the wavelet transform to time-frequency 
analysis, the accuracy of pattern recognition was drastically raised. Moreover, each SVM could identify 
the damage with very strong discernment capability. The accuracy was confirmed excellent and was better 
than the pattern recognition based on the correlation analysis. 
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