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SUMMARY 
 
The three dimensional method that is presented in this paper is specialized for prediction of permanent 
deformation of ground induced by seismic liquefaction. This method is characterized by an assumption of 
lateral displacement modes that consists of a half and a quarter period of sinusoidal function and the 
modeling of liquefied subsoil as viscous fluid. A series of example analysis is carried out for a model that 
presumes subsidence of heavy footings into liquefied subsoil to check the feature of the presented 
method. Since these results, the possibility of that soil solidification to connect the footings reduces the 
subsidence of the footings into liquefied ground is suggested. The mitigative effect of sheet pile walls on 
deformation of liquefied ground is taken into account, and its mitigative effect is confirmed by the series 
of example analysis. 
 

INTRODUCTION 
 
Seismic liquefaction is one of the major disaster in geotechnical engineering. In the case of Philippine 
earthquake in 1990, numerous facilities and buildings in Dugpan City lost their serviceability due to large 
displacement of its foundations induced by loss of the strength and the stiffness of the liquefied ground, 
ACACIO[1]. There are two kinds of damage of structures on liquefied ground by earthquake. One of 
them is of the effect of inertia force by strong motion. This pattern could be traceable by conventional 
finite element analysis for liquefied ground based on solid mechanics. However, another type of damage 
that is caused by the loss of the strength and large distortion of the liquefied ground after complete 
liquefaction is difficult to reproduce by the analysis since this is large deformation problem and it is 
important to consider the influence of the geometric nonlinearity. 
 A two dimensional analytical method was presented by Towhata[2] for prediction of the ground 
deformation after complete liquefaction. However, the liquefied ground flow is affected by its three 
dimensional configuration, thus the extend of the method to three dimensional model is significant for the 
prediction. Therefore, a three dimensional numerical method is presented for the prediction of liquefied 
ground deformation after complete liquefaction in this paper. This method takes the effect of large 
deformation into account, thus the effect of geometric nonlinearity is properly considered. And the 
mitigative effect of soil solidification and sheet pile walls are implemented in this method and is 
investigated by a series of example analysis that is on the assumption of centrifuge tests on subsidence of 
heavy footing into liquefied ground. 
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PREDICTION OF GROUND FLOW DISPLACEMENT RELATED LIQUEFACTION 

 
The discretized method is presented for prediction of 
ground flow induced by seismic liquefaction. This 
method assumes that liquefied ground behaves as 
viscous fluid due to the velocity dependant nature of 
the liquefied sand that was observed by past element 
tests and shaking table tests by Nishimura[3] and 
Towhata[4]. And the effect of inertia force by strong 
motion is omitted from this method due to the 
dominant component of driving force to liquefied 
ground during the strong motion is gravity force as 
indicated by shaking table test, Sasaki[5]. 
 
Modeling of target ground 
Liquefied ground is subdivided into column elements 
as illustrated in Fig.1. The elevation of the base, B, the 
thickness of liquefiable layer, H, the thickness of the unsaturated surface layer, T, and the magnitude of 
surcharge that includes the dead weight of the surface soil layer is interpolated by a first order linear 
interpolate function for horizontal coordinate x and y for each column element. 
 B = a1x + a2y + a3xy + a4  (1) 
 H = b1x + b2y + b3xy + b4  (2) 
 T = c1x + c2y + c3xy + c4  (3) 
 P = d1x + d2y + d3xy + d4  (4) 
Each coefficient in these equations are determined by the specified B, H, T, P at each nodal points. The 
thickness B, H, T and the magnitude of surcharge P at nodal points are decided by existing investigation 
method such as the standard penetration test, effective stress analysis and others. 
  Lateral displacement of liquefied ground is defined as superimposition of two deformation modes that 
were found by shaking table tests, Mizutani[6], Toyota[7]. These modes are described as a quarter and 
half period of sinusoidal function that are illustrated in Fig.2. Hereafter, the quarter period mode and the 
half period mode are named F and J mode, respectively. If the lateral displacement of liquefied ground in 
x and y direction is independently grows up, the lateral displacement in x-direction, u , and y-direction, 
v  are: 

 u(x, y,z, t) = Fu(x, y,t)sin
π (z − B)

2H
+ Ju(x, y,t)sin

π (z − B)

H
 (5) 

 v(x, y,z,t) = Fv (x, y,t)sin
π (z − B)

2H
+ Jv (x, y,t)sin

π (z − B)

H
 (6) 

where Fu(x,y, t) , Ju(x,y,t) , Fv (x,y, t) , Jv (x,y,t)  denote maximum value of each deformation 
mode. Each of them are discretized on horizontal plane to reproduce the three dimensional variation of 
lateral displacement distribution. 

 Fu(x,y,t) = Ni(x, y)Fui(t)∑  (7) 

 Ju(x, y,t) = Ni(x, y)Jui(t)∑  (8) 

 Fv (x,y,t) = Ni(x, y)Fvi(t)∑  (9) 

 Jv (x, y,t) = Ni(x, y)Jvi(t)∑  (10) 

where Ni(x, y) is an interpolate function around nodal point i , and Fui(t) , Jui(t) , Fvi(t), Jvi(t) are 
Fu(x, y, t), Ju(x, y,t), Fv (x, y, t), Jv (x, y,t) at nodal point i . 
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Fig.1 Model ground 



  Vertical displacement of liquefied ground is obtained from constant volume condition that is satisfied 
during liquefaction. 
 

 
∂u

∂x
+ ∂v

∂y
+ ∂w

∂z
= 0  (11) 

Thus, a differential equation is obtained by substituting lateral displacements of Eq.(5) and Eq.(6) to 
Eq.(11) for vertical displacement of liquefied ground. 

 
∂w

∂z
= ∂w1

∂z
+ ∂w2

∂z
+ ∂w3

∂z
+ ∂w4

∂z
 (12) 

 
∂w1

∂z
= −∂Fu

∂x
sin

π (z − B)

2H
− ∂Ju

∂x
sin

π (z − B)

H
 (13) 

 
∂w2

∂z
=

π (a1 + a3y)H + (b1 + b3y)(z − B){ }
H 2

1

2
Fu cos

π (z − B)

2H
+ Ju cos

π (z − B)

H

 
 
 

 
 
 

 (14) 

 
∂w3

∂z
= − ∂Fv

∂y
sin

π (z − B)

2H
− ∂Jv

∂y
sin

π (z − B)

H
 (15) 

 
∂w4

∂z
=

π (a2 + a3x)H + (b2 + b3x)(z − B){ }
H 2

1

2
Fv cos

π (z − B)

2H
+ Jv cos

π (z − B)

H

 
 
 

 
 
 

 (16) 

Consequently, the vertical displacement of liquefied ground is given by solving Eq.(12) with boundary 
condition that vertical displacement is equal to zero at the bottom liquefiable layer, z = B. 
 
Potential Energy, Kinetic energy and Dissipation energy of liquefied ground 
 
The potential energy of liquefied ground is calculated in terms of Fu(x, y, t), Ju(x, y,t), Fv (x, y, t), 
Jv (x, y,t). Since the complete loss of the strength and stiffness of the liquefied subsoil, the strain energy 

Fig.3 Liquefied sandy ground after shaking, Toyota[7] 

Fig.2 Deformation mode of liquefied ground 



component of the potential energy is omitted for 
liquefied ground in this method. Therefore, only 
gravitational component of potential energy is taken 
into account. 
  Fig.3 shows the saturated sandy slope after 
shaking, Toyota[7]. This figure indicates that 
ground flow stopped when the ground surface is 
horizontal. This fact implies that the driving force 
varies with the deformation of liquefied ground and 
it reaches 0 when gravitational potential energy 
achieved the minimum state. This is the 
characteristic of geometric nonlinearity caused by 
large deformation, and the geometric nonlinearity 
should be taken into account for liquefied ground 
flow prediction.  
  The variation of ground surface elevation is taken into account to consider the geometric nonlinearity. 
If the constant volume condition of a soil column element in liquefied ground is satisfied as indicated in 
Fig.4, the elevation of liquefied ground surface is calculated from lateral displacement of liquefied ground 
from the conservation of mass. The volume of inflow and outflow are obtained by the integration of 
lateral displacement of liquefied ground. 

 VI = u(x,y,z,t) dz dy
B

H +B

∫ + v(x,y,z,t) dz dx
B

H +B

∫  (17) 

 VO = u(x + dx,y,z,t) dz dy
B

H +B

∫ + v(x,y + dy,z, t) dz dx
B

H +B

∫  (18) 

If the conservation of mass is satisfied, the deference between the volume of inflow and outflow is 
directly related with the variation of the ground surface δw  as follows. 

 

δw = VI −VO

dxdy
=

u(x + dx,y,z, t) dz
B

H +B

∫ − u(x,y,z,t) dz
B

H +B

∫
dx

+
v(x,y + dy,z,t) dz

B

H +B

∫ − v(x,y,z,t) dz
B

H +B

∫
dy

 

(19) 

By considering the limiting value, δw  is given by 

 δw = lim
dx→0
dy→0

VI −VO

dxdy
= ∂

dx
u(x, y,z,t) dz +

B

H +B

∫
∂
∂y

v(x, y,z,t) dz
B

H +B

∫  (20) 

Consequently, the elevation of liquefied ground surface is calculated by substituting Eq.(5) and Eq.(6) to 
Eq.(20). 
 δw = −δw1 − δw2 −δw3 −δw4  (21) 

 δw1 = ∂
∂x

u(x,y,z, t) dz
B

H +B

∫ = − 2H

π
∂Fu

∂x
+ ∂Ju

∂x

 
 
 

 
 
 −

2(b1 + b3y)
π

Fu + Ju( ) (22) 

 δw2 = ∂
∂x

v(x,y,z,t) dz
B

H +B

∫ = − 2H

π
∂Fv

∂x
+ ∂Jv

∂x

 
 
 

 
 
 −

2(b1 + b3x)
π

Fv + Jv( ) (23) 

 δw3 = ∂
∂y

u(x,y,z,t) dz
B

H +B

∫ = − 2H

π
∂Fu

∂y
+ ∂Ju

∂y

 

 
 

 

 
 −

2(b2 + b3x)
π

Fu + Ju( ) (24) 

 δw4 = ∂
∂y

v(x,y,z,t) dz
B

H +B

∫ = − 2H

π
∂Fv

∂y
+ ∂Jv

∂y

 

 
 

 

 
 −

2(b2 + b3y)
π

Fv + Jv( ) (25) 

Fig.4 Elevation of ground surface 



Due to the elevation of liquefied ground surface that was given as Eq.(21), the potential energy of 
liquefied ground Pl  is obtained as follow. 

 Pl = ρlgz dz ds
B

H +B +δw

∫
S
∫  (26) 

where ρl  is the mass density of liquefied sand and g  is gravity acceleration. If the variation of the 
gravitational potential energy is concentrated, the variation of the gravitational potential energy of 
liquefied ground is described as follow. 

 dPl = ρlgz dz ds
B

H +B +δw

∫
S
∫ − ρlgz dz ds

B

H +B

∫
S
∫ = ρlgz dz ds

H +B

H +B +δw

∫
S
∫  (27) 

Consequently, the variation of the gravitational potential energy dPl  is given by  

 dPl = ρlgz dz ds
H +B

H +B +δw

∫ = 1
2

ρlg δw2 + 2δw H + B( ){ }ds
S
∫

S
∫  (28) 

This is noteworthy that dPl  contains the variation of liquefied ground surface elevation and the 
geometric nonlinearity is taken into account. Because of this manner, the variation of driving force with 
deformation of liquefied ground is properly considered. 
  Kinetic energy of liquefied ground is obtained by conventional manner. Since the lateral and vertical 
displacement of liquefied subsoil are given, the kinetic energy of liquefied subsoil Kl  is 

 2 2 21
( )

2

H B

l lS B
K u v w dzdsρ

+
= + +∫ ∫ & & &  (29) 

where s is the projection of target district on horizontal plane, and ρl  is the mass density of liquefied 
subsoil as well. 
  Dissipation energy of liquefied ground is computed by modeling the liquefied subsoil as viscous fluid. 
Especially, since this method assumes the liquefied subsoil totally lose its strength and stiffness during 
ground flow, the liquefied subsoil is modeled as Newtonian fluid. Due to the stress tensor of Newtonian 
fluid is described as 

 
1

2
ji

ij
j i

uu

x x

∂∂σ
∂ ∂

  = + 
  

&&
 (30) 

where u1, u2, u3, x1, x2 , x3  are correspond to u , v , w , x , y , w , the dissipation energy of 
liquefied ground Dl  are obtained by 

 

2 22 2 2

4 4 4
H B

l S B

u v u v u v u v
D dzds

x y x y z z y x

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂µ
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

+           = + + + + + +         
          

∫ ∫
& & & & & & & &

 (31) 

where µ is viscosity coefficient of liquefied subsoil. It is note that the constant volume condition is 

applied to Eq.(30) for Eq.(31), and the component related with 
w

x

∂
∂
&

 and 
w

y

∂
∂
&

 are ignored since the 

effect of these term is smaller than the others in case of real ground because the inclination of the real 
ground surface is only few percent in general, and the horizontal shear strain of liquefied ground is 
sometimes over 100 percent. 
 
Governing Equation 
 
Lagrange equation of motion is employed as a governing equation of motion. 

 
1

2i i i

d L L D

dt q q q

∂ ∂ ∂
∂ ∂ ∂

 
− = − 

 & &
 (32) 

in which, 
 L = K − P  (33) 



where K  is kinetic energy, P  is potential energy, qi  and iq&  are generalized displacement and 

velocity, respectively. These are correspond to Fui(t) , Jui(t) , Fvi(t), Jvi(t), ( )uiF t& , ( )uiJ t& , ( )viF t& , 

( )viJ t&  in this method. This method is characterized by the definition of lateral displacement of liquefied 

subsoil that is described as superimposition of two deformation mode of analytical functions, and the 
modeling of liquefied soil as Newtonian fluid. The number of degree of freedom is drastically reduced 
than typical three dimensional finite element analysis since nodal points is not required in vertical 
direction except ground surface. This characteristic contributes saving of computation time. The cost of 
ground investigation is also reduced because the constitutive equation of liquefied subsoil is simple, and 
consists of only viscosity of liquefied subsoil. 
 

DISCONTINUOUS BOUNDARY 
 
The definition of lateral displacement and geometric configuration of liquefied subsoil contribute saving 
of computational time as mentioned in previous section. However, on the other hand, these conditions 
require the continuity of the geometric configuration in liquefied ground. However, this condition is 
sometimes incompatible with a situation of real ground. For example, if a foundation is deeper than the 
thickness of unsaturated surface crust as illustrated in Fig.5, the thickness of liquefied layer is irregular 
around the structure. 
 Discontinuous boundary condition is presented to take the irregular into account by the conservation of 
mass. If the volume of flux is conserved between both side of the discontinuous boundary as illustrated in 
Fig.6, the following boundary condition is fulfilled. 
 VL1 −VL 2 = 0 (34) 
in which, 

 VL1 = n ⋅U dz dl
B

H +B

∫
l
∫  (35) 

 
VL 2 = n ⋅U dz dl

B

H +B

∫
l
∫  (36) 

 U = u(x,y,z,t),v(x,y,z,t){ }t

 (37) 

Fig.5 Discontinuity of the thickness 
of liquefiable layer 
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Fig.6 Discontinuous boundary 



where VL1 and VL 2  are the influx volume of 
liquefied subsoil from liquefied ground to 
discontinuous boundary and the efflux volume 
from discontinuous boundary to liquefied ground, 
and n  is a normal vector to the discontinuous 
boundary as shown in Fig.7. Note that exchange 
of potential energy between the both side of the 
discontinuous boundary is automatically 
considered since the conservation of mass is 
fulfilled. 
 
 

SHEETPILE WALL 
 
Modeling of Sheet Pile Wall 
Sheet pile wall is modeled as an elastic bending slab to take its mitigative effect into account. If the 
displacement of the sheet pile wall is given by ρ , the boundary condition between the sheet pile wall 
and, upstream and downstream side of liquefied sand are derived from the conservation of mass as well as 
discontinuous boundary condition as indicated in Fig.8. 

 B1 = ξ1 n ⋅ U1 dzdl
B1

H1 +B1∫
l
∫ − ρ dzdl

B1

H1 +B1∫
l
∫( ) (38) 

 B2 = ξ2 n ⋅ U2 dzdl
B2

H2 +B2∫
l
∫ − ρ dzdl

B2

H2 +B2∫
l
∫( ) (39) 

where ξ1 and ξ2 are Lagrangian multipliers, n  is a vector which direction is normal to the sheet pile 
wall. These boundary conditions reveal that the volume of influx from liquefied subsoil is the same with 
the volume of the void that is generated by the deformation of the sheet pile. 
  The strain energy of the sheet pile wall is given by the conventional theory of elastic beam. 

 
1 1

1

22

2

1

2

H B

s p pl B
E E I dzdl

z

∂ ρ
∂

+  
=  

 
∫ ∫  (40) 

By substituting the functional that is given as the summation of the Lagrangian and boundary conditions 
that are described as Eq.(38) and Eq.(39) to Lagrangian equation of motion, the consequent equation is 
given by 

 1 21
0

2
l l l s

i i i i i i

K D P E B B

q q q q q q

∂ ∂ ∂ ∂ ∂ ∂
∂ ∂ ∂ ∂ ∂ ∂

+ + + + + =
&& &

 (41) 

For this equation of motion, ξ1, ξ2 and ρ j  that are parameters to determine the shape of sheet pile 

wall deformation are appended to the list of the generalized displacement qi to employ these boundary 

Fig.8 Boundary condition for sheet pile wall model 

Fig.7 Vector n for discontinuous boundary 
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condition. Consequently, following equation is fulfilled during ground flow. 

 

1 1 2 2

1 2
1 2

1 2

1
0

2

H B H B

l B l Bl l l

i i i i i

n U dzdl n U dzdlK D P

q q q q q

∂ ∂∂ ∂ ∂ ξ ξ
∂ ∂ ∂ ∂ ∂

+ +
⋅ ⋅

+ + + + =
∫ ∫ ∫ ∫

&& &
 (42) 

 
∂B1

∂ξ1

= n ⋅ U1 dzdl
B1

H1 +B1∫
l
∫ − ρ dzdl

B1

H1 +B1∫
l
∫ = 0  (43) 

 
∂B2

∂ξ2

= n ⋅ U2 dzdl
B2

H 2 +B2∫
l
∫ − ρ dzdl

B2

H 2 +B2∫
l
∫ = 0  (45) 

 
∂Es

∂ρ j

+ ∂B1

∂ρ j

+ ∂B2

∂ρ j

= 0 (46) 

By substituting Eq.(38), Eq.(39) and Eq.(40) to Eq.(46), 

 
1 1 1 1 2 2

1 1 2

22

1 22

1
0

2

H B H B H B

p pl B l B l B
j j j

E I dzdl dzdl dzdl
z

∂ ∂ ρ ∂ ∂ξ ρ ξ ρ
∂ρ ∂ ∂ρ ∂ρ

+ + + 
− − = 

 
∫ ∫ ∫ ∫ ∫ ∫  (47) 

is obtained. This equation is developed by the integration by parts, 

 

1 1 1 1

1 1

2 2 3

12 3
0

H B H B

p p p pl l
j j jB B

E I dl E I dl C
z z z

∂ ρ ∂ ρ ∂ ρ ∂ρ ∂ρ
∂ ∂ ∂ρ ∂ ∂ρ ∂ρ

+ +
   

− + =   
      
∫ ∫  (48) 

is given as an equivalent boundary condition. For Eq.(48), following boundary condition is employed by 
the conventional theory of elastic beam. 
 ρ = 0 at z = B (49) 

 
∂ρ
∂z

= 0 at z = B (50) 

 
2

2
0

z

∂ ρ
∂

=  at z = H + B (51) 

 
3

3
0

z

∂ ρ
∂

=  at z = H + B (52) 

Therefore, 

 
1 1

1

4
2

1 1 24
1

0
H B

p pl B

H
C E I dzdl

z H

∂ ρ ξ ξ
∂

+
= − − =∫ ∫  (53) 

is satisfied during the ground flow induced by liquefaction. Consequently, 
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2
1 24

1

1

p p

H

z E I H

∂ ρ ξ ξ
∂

 
= + 

 
 (54) 

is fulfilled as a boundary condition. This reveals that the lateral earth pressure that acts on a sheet pile 
wall is taken into account as homogeneous lateral pressure. In this case, the deformation shape of sheet 
pile wall in liquefied ground flow is able to be determined by only one parameter, for example, ρm  that 
is the displacement of the top of the sheet pile wall. 
 

EXAMPLE ANALYSIS AND RESULTS 
 
Simple element test 
A series of example analysis for a simple model is carried out to check the mitigative effect of the sheet 
pile model. Fig.9 shows the model consists of two element, and a sheet pile wall is installed between the 
elements. The resultant deformation of the model is investigated by changing the bending stiffness of the 



sheet pile wall, the deference of initial elevation of ground surface and viscosity of liquefied sand as 
indicated in Table.1 for this model. Fig.10 compares the elevation of ground surface of element No.1 and 
No. 2 with Case 1, 2, 3 and 4 in which the stiffness of the sheet pile wall is changed. As shown in Fig.10, 
the elevation of the ground surface of the elements at ultimate equilibrium state varies with the bending 
stiffness of the sheet pile wall. This result is consistent with a common sense that stiffer sheet pile wall 
can reduce the lateral displacement of the liquefied ground more effectively. Fig.11 compares the 
resultant elevation of each element with Case 1, 5, 6, and 7 in which the deference of initial elevation of 
the ground surface is changed. This figure shows that deformation of the elements become smaller with 
the difference of initial elevation of each element, and the elements does not deform in Case 7 that the 
deference of initial elevation of each element is equal to zero since the lateral earth pressure that affects 
from both side to the sheet pile wall is balanced. Fig.12 compares the resultant elevation of ground 
surface of each element with Case 1, 8, 9, 10 in which the viscosity of liquefied sand is changed. 
According to Fig.12, the viscosity of liquefied subsoil affects the velocity of element deformation, 
however, it does not contribute to the deformation at the ultimate equilibrium. 
 
Subsidence of separated footing  
Fig. 13 shows a model of separated footings. This model is made on the assumption that centrifuge test 
was conducted, and this model has four separated shallow footings of 1.9[m] depth, the thickness of the 
liquefied layer is 17.5[m] in real scale. Fig. 14 illustrates numerical model for the model of separated 
footings that was illustrated in Fig.13. For this analysis, these footings are modeled as surcharge on the 
surface of liquefied ground. Equivalent mass that the weight of the mass is the same with the weight of 

Fig.9 Simple Model 

Fig.10 Elevation of ground surface 
of each element 

Fig.11 Elevation of ground surface of 
each element 

Table.1 Material Parameters for 
Simple Model 

EI[N･m2/m] H1[m] H2[m] μ [Pa・s]
Case1 200 2.0 1.00 5000
Case2 250 2.0 1.00 5000
Case3 300 2.0 1.00 5000
Case4 350 2.0 1.00 5000
Case5 200 2.0 1.25 5000
Case6 200 2.0 1.50 5000
Case7 200 2.0 2.00 5000
Case8 200 2.0 1.00 2500
Case9 200 2.0 1.00 7500
Case10 200 2.0 1.00 10000



the footings and tower is added to consider the inertia force of the footing and superstructure. Table. 2 
shows the parameters that are employed for this analysis. The mass density of liquefied subsoil is decided 
as 1900[kg/m3] that is typical mass density of liquefied subsoil, and the viscosity of the liquefied subsoil 
was determined by referring to the results of element test, Chaminda[8]. The surcharge is calculated by 
assuming that the dead weight of a footings and superstructure is distributed homogeneously at the 
bottom of the footings. This is noteworthy that there is a discontinuity of the thickness of liquefiable layer 
between under the footings and the others. This discontinuity of the thickness of liquefiable layer is 
absorbed by discontinuous boundary condition that are presented in previous section. Fig.15 shows the 
time history of footing subsidence. It is note that the subsidence of each footing is the same in this model 
since this model is axi-symmetric for each footing as indicated in Fig.16. Therefore, one footing is picked 
up for investigation. According to Fig.15, the subsidence of the footing is extremely large in this case 
since the footing subsides until the buoyancy at the bottom of a footing is balance with the dead weight of 
the footing and tower. And the viscosity of liquefied subsoil contributes only the velocity of subsidence as 
well. 
 
 

Fig.13 Target model 

Fig.14 Numerical model for separated 
footings 

Footing

Fig.12 Elevation of ground surface of each
element 

Table.2 Material Property for the 
centrifuge model 

Mass Density[kg/m3] Viscosity[kPa･s]
Case1 1900 50000
Case2 1900 100000
Case3 1900 150000
Case4 1900 200000



Subsidence of connected footing 
The deformation of liquefied ground is large deformation problem, and geometric nonlinearity is 
important for the prediction of the deformation as stated. In a previous section, the subsidence of the 
separated footing was investigated, and the equilibrium was achieved when the buoyancy is equal to the 
total dead weight of the footing and the tower. This result suggests that the subsidence is able to be 
reduced if the buoyancy per unit subsidence is increased. As a way to increase the buoyancy to the 
footing, the enlargement of the cross section of footing by soil solidification at the surface of liquefied 
ground which connects all footings is considered. Fig.17 shows the mesh for connected footing model. 
For this model, the circle area was defined for the area of ground improvement and it is assumed that the 
total weight of footings and tower is distributed homogeneously on the ground surface of the improved 
area. The equivalent mass is installed to consider the inertia force of footings, tower and soils that are 
solidification as well. Fig.18 compares the time history of the subsidence of the connected footing and the 
separated footing. According to Fig.18, the subsidence of the footings is drastically reduced by the soil 

Fig.15 Time history of separated footing 
subsidence 

Soil Solidification Area

Fig.17 Numerical model for connected 
footing 

Fig.16 Contour of uplift of ground 
after 20[s] 

Fig.18 Comparison of separated footing 
and connected footing 



solidification. The effect of the reduction of deformation depends on the extent of the soil solidification 
since large area soil solidification gives more buoyancy. This result indicates that the possibility of 
mitigation of damage that is caused by subsidence of the real structures induced by seismic liquefaction.  
 
Subsidence of energy transmitting tower with sheet pile wall 
Sheet pile wall is employed as another type of mitigation of the deformation of liquefied ground. The 
each footing are surrounded by embedded sheet pile walls that are presented in previous section as 
illustrated in Fig.19. For this model, the mitigative effect is investigated by changing the bending stiffness 
of the sheet pile walls. Fig.20 compares the time history of the subsidence of the footings. Fig.20 shows 
that the subsidence of the footings is prevented by the sheet pile walls, and the effect varies with the 
bending stiffness of the sheet pile wall.  
 

CONCLUSIONS 
 
The three dimensional numerical method for prediction of subsidence of structures that takes the effect of 
geometric nonlinearity into account was presented in this paper. This method was applied to a model of 
heavy footing on liquefied ground that is on assumption that centrifuge test was conducted, and the 
subsidence of the footing into liquefied ground was investigated. Two kinds of mitigation of liquefied 
ground deformation were investigated for the model. The result of the analysis that employs soil 
solidification as a mitigation of liquefied ground deformation suggests the possibility of that the 
subsidence of the footings is reduced by enlarging the cross section of the footings. The mitigative effect 
of sheet pile walls is considered by modeling the sheet pile wall as elastic beam, and the results of the 
analysis indicates the mitigative effect of the sheet pile walls. 
 

REFERENCES 
 
1. Alexis A. Acacio, Yoshikazu Kobayashi, Ikuo Towhata, R. Bautista and Kenji Ishihara. 

“Subsidence of building foundation resting upon liquefied subsoil; Case studies and assessment”, 
Soils and Foundations, 2001, Vol.41 No.6, 111-128 

2. Ikuo Towhata, Roland P. Orense, Hirofumi Toyota, “Mathematical principles in prediction of 
lateral ground displacement induced by seismic liquefaction”, Soils and Foundations, 1999, Vol.39 
No.2, 1-19 

Fig.19 Numerical model for separated
footing with sheet pile walls 

Sheet Pile Walls

Fig.20 Comparison of subsidence of footing 
with various bending stiffness of 
sheet pile wall 



3. Satoshi Nishimura, Ikuo Towhata and Tsuyoshi Honda, “Laboratory shear tests on viscous nature 
of liquefied sand”, Soils and Foundations, 2002, Vol.42 No.4, 89-98 

4. I. Towhata, W. Vargas-Monge, R. P. Orense, M. Yao, “Shaking table tests on subgrade reaction of 
pipe embedded in sandy liquefied subsoil”, Soil Dynamics and Earthquake Engineering, 1999, 18, 
347-361 

5. Yasushi Sasaki, Ikuo Towhata, Ken-Ichi Tokida, Kazuhiro Yamada, Hideo Matsumoto and Yukio 
Tamari, “Mechanism of permanent displacement of ground caused by seismic liquefaction”, Soils 
and Foundations, 1992, Vol32 No.3, 79-96 

6. Hirofumi Toyota, “Shaking table tests and analytical prediction on lateral flow of liquefied 
ground”, Ph.D thesis, 1995, Department of Civil Engineering, School of Engineering, The 
University of Tokyo 

7. Mizutani, T., Towhata, I., Shinkawa, N., Ibi, S., Komatsu, T., and Nagai, T,. ”Shaking table tests on 
mitigation of liquefaction-induced subsidence of river dikes”, Proc. 16th ICSMGE, Istanbul, 2001, 
Vol2, 1207-1210 

8. Chaminda. P. K. Gallge, “Laboratory shear tests on rate dependant nature of liquefied sand with 
fines”, Master thesis, 2002, Department of Civil Engineering, The University of Tokyo 


	Return to Main Menu
	=================
	Return to Browse
	================
	Next Page
	Previous Page
	=================
	Full Text Search
	Search Results
	Print
	=================
	Help
	Exit DVD



