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A STUDY ON CHARACTERISTICS OF RUBBER BEARINGS
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ROTATION ANGLE AND COMPRESSIVE FORCE DEPENDENCE

Takafumi MIYAMA !, Keiji MASUDA 2, Demin FENG *

SUMMARY

Base-isolated buildings with high aspect ratios are becoming increasingly popular. For those buildings, the
rubber bearings must bear large axial stress, large fluctuation of axial stress and large horizontal
deformation. When the isolation systems are installed in the middle level of structure, the effects of
rotation deformation must be taken into account. In this paper, a simple mechanical model is proposed to
include the effects of axial stress, horizontal deformation as well as many other things on rotational and
horizontal stiffness. The expression of the vertical deformation of rubber bearings is theoretically
introduced considering the rotation effect. The dependence of shear deformation on axia stiffness and
dependence of axia force on shear stiffness are evaluated. It was confirmed that the results of proposed
model agree well with the experimental results, through the static loading test of rubber bearings and the
shaking table test of base-isolated building with high aspect ratios. We also found that careful attention to
the influence of vertical vibration on the development of a large axial force and deformation is required.
Thisis caused in connection with horizontal, vertical and rocking vibration.

INTRODUCTION

Base isolation buildings with high rise and high aspect ratios are becoming increasingly popular. For those
buildings, the rubber bearings must bear large axial stress because the natural period of these buildingsis
long. Also, fluctuations in axial stress become large because the rocking moment is large. The top and
bottom ends of rubber bearings are fixed to the rotation of a conventional base isolation building. Many
tests of the rubber bearing have been conducted with the rotation-fixed condition. The extreme case of the
effects by axial force and rotation has been considered in the conventional design. However, the detailed
case is not considered. Large axia stress, fluctuation in axial stress, large horizontal strain and large
rotation has not been required in the design for these base isolation buildings.

Buildings installed base isolation system in the middle level of a structure or the gap between piles and
basements are required to reduce the construction cost. For these buildings, the effects of rotation
deformation in the top/bottom end of the rubber bearing must be taken into account.
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We have conducted tests on rubber bearings to investigate the effects of rotation, axial stress and large
horizontal deformation. In this paper, a simple model is proposed to account for the effects of axial stress,
horizontal deformation and as well as other things on rotational and horizontal stiffness. The dependency
is evaluated from test results and theoretical values. The vertical deformation is theoretically obtained in
the case where rotation is considered. The theoretical value is verified by the test results. The dynamic
response analysis is conducted using a proposed model and verified by the shaking table test of high rise

isolated building.
PREVIOUSTHEORETICAL RESEARCH ON THE RUBBER BEARING

The Horizontal Stiffness of the rubber bearing
Fig.1 shows a rubber bearing supporting a vertical force P, a shear force Q and a bending moment M .
Its mechanical characteristics were described by Haringx[1,2,3]. The balance of forces are given in aform
of differential Eq.(1) and Eq.(2).
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The symbol y, isanomina shear strain after subtracting the bending rotation from the shear strain y .
The shear strain ¥ is the quotient that the horizontal deformation is divided by the total of rubber sheets
height. Eq.(3) and Eq.(4) are obtained by solving the Eq.(1) and Eq.(2).
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And the symbol nt, shows the total height of
rubber sheets (n:layers x t, :thickness), h is the
total height of rubber and steel plates, G shows
the shear modulus, E, shows the bending
modulus corrected by the volume modulus, |
shows the geometrical moment of inertia and A
shows the area.

The horizontal stiffness of the rubber bearing K,
is obtained under the boundary condition that the
bottom end is fixed (x(0)=6(0)=0) , the

rotation of the top end isfixed (8(h) =0) and the B
shear forceis F = Q, = -Q, . h :steel and rubber sheets
K < P ©) nt :rubber sheets

[kaqtanqzh— Phj Fig.1 Rubber Bearing



The buckling load is given when the denominator of Eq.(5) becomes infinity, and it is approximated by
Eq.(6).
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Eq.(5) can be approximately expressed in Eq.(7) by using Eq.(6).
2
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The stiffness matrix of horizontal deformation and rotation components
lizuka[4] derived stiffness matrix, shown in Eq.(8), by using Eq.(3), and Eq.(4). The rotation stiffness and
the geometrical non-linearity are considered in this equation.
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The components in the matrix are shown with trigonometrical functions of axial force, horizontal stiffness
and bending dtiffness. It is difficult to clarify the mutual effects of components and axial force. It is aso
difficult to deal with the material nonlinearity such as the hardening caused by large deformation or the
yielding by the tension force.

Vertical deformation caused by horizontal and rotation defor mation
The vertical deformation of the rubber bearing 6, shown in Eq.(9) is obtained as the sum of the
geometrical deformation &, caused by bending-shear deformation and the axial deformation 6, caused
by axial strain. o, is divided into 6_,_,, which is the vertical deformation when the rotation of the top
and bottom end is O, and J_,,, which is the deformation caused by the rotation of both ends. In the same
manner, J_, is divided into J,,, and ., . J.,,_, IS aso divided into Pnt /AE, , which is the
deformation when the shear deformation is 0, and J_,,_,, which is the deformation caused by the shear
deformation.
0,=0,+90,

= (5c19:0 + 0y )+ (5c26:0 + 0z )

Pnt ,
= (5(:149:0 + 5(:149 )+ [A—Er + §c20=0 + §c29J (9)
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Fuller[5] deduced the vertical deformation, shown in Eq.(10) caused by bending-shear deformation based
on Eq.(1) and Eq.(2) , when the rotations of both ends are 0.
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Uryu[6] deduced the vertlcal deformatl on of which result is same to Eq.(10). He also made an
approximation with the Taylor series shown in Eq.(11).
Pnt, F?h*  P+Kk
Ouapeo = ’ ’
A 12k kG P
He then obtained the vertical deformation caused by axia force shown in Eq.(12), when the rotations of
both sides are fixed to O.
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He applied the_ Taylor seriesto Eq.(12) regarding P/k, asvery large. He obtained Eq.(13).
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Those equations show the deformation when the rotation of both ends of rubber bearing are fixed. When

the both ends rotate, the vertical deformation has not yet been shown.

(13)

A PROPOSAL OF NEW MODEL FOR RUBBER BEARINGSTO EVALUATE THE VARIETY
OF DEPENDENCE

Proposed model
The new model shown in Fig.2 is proposed to deal with rotation and horizontal deformation at the same
time and also to deal with non-linearity of material and variety of dependence, such as axia pressure
dependence or horizontal deformation dependence. Horizontal spring and rotation spring, which are
aggregating the characteristics of rubber bearings, are installed in the intermediate height and are
connected by two rigid bars. The nonlinearity and dependence is easily accounted for using those springs.
The equation of equilibrium is shown in Eq.(14).
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Co_mpari ng Eq.(14) to Eq.(8), the stiffness of two springs in the elastic range are obtained in Eq.(15) and
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The matrix [K H] indicates the bending-shear. It is represented by the well-known horizontal stiffness
K, . The matrix [K F,] indicates the secondary moment PA and the shear force caused by it. The matrix
[K . ] indicates the uniform moment and shear force caused by the rotation of top or bottom end. The
stiffness K istherotationa stiffnessinstalled at an intermediate height.

The effects of axial force

In the elastic range, the horizontal stiffness K, is same as Eq.(5). Accordingly the effect of axial force is
aso shown in Eq.(7). And the effects of the axial force on rotation stiffness K| is as same as horizontal
stiffness in the elastic range. The effect of axial force is shown in the same way in Eq.(17).
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THE VERTICAL DISPLACEMENT BY THE ROTATION OF THE RUBBER BEARING

Thevertical defor mation caused geometrically by bending-shear deformation

The infinitesimal vertical deformation Ad,, in the infinitesimal height Az of the rubber bearing is shown
in Eqg.(18) and Fig.3. This shows the sum of vertical deformation caused by bending deformation and
shear deformation.
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Fig.2 Proposed M odel Fig.3 Vertical Defor mation
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The boundary condition is defined as the bottom end is fixed (x(0) = #(0) = 0) , and the rotation of the top
end is applied (6(h) =46,) . These boundary conditions are taking into the solution of a differential
equation shown in Eq.(3) and Eq.(4). The results are applied to Eq.(18) and integrated over the whole
height. Therefore the geometrical deformation caused by bending-shear deformation is obtained by
Eq.(19).
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Adding the boundary condition that the rotation of the top end is fixed (6(h)=0) and M, being
expressed by F, EQ.(19) is in agreement with Eq.(10). Eqg.(11) is given by the approximation with the
Taylor series from Eq.(19). Furthermore, Eq.(20) is given on the condition that the P/k_ is sufficiently
larger.
_ *Pnt Gy
W0 12A02

The approximation of vertical deformation J,, caused by the rotation 8, of the top end is supposed to
be produced by the uniform moment. The horizontal deformation 6, is caused by @, is shown in
Eq.(21).

0,=05h6, (21)

The approximation of vertical deformation o, caused by the rotation of the top end is obtained in
Eq.(22) by integration, when the shear strain dx/dz =y isuniform along the height, higher order terms of
small quantities are neglected, and paying attention that the total height of rubber isnot h but nt, .

nt, ¢hdx
Sow =" [ 5,0

(20)
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Thevertical defor mation caused by the axial stress
The axid force N isthe sum of vertical load P and the axial component of horizontal force F in Fig.1.
N is shown in EQ.(23), when the 6(z) is obtained when the bottom end of the rubber bearing is fixed
(x(0)=0,6(0)=0).
N(x) = P-Fé(z)

2 2
=P—%cosqx+ I:MBsinqx+F (23)
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The vertical deformation caused by the vertical deformation J., is shown in Eq.(24) by integrating axial
stress caused by the axial force shown in Eq.(23). In this equation, equivalent compressive stiffness E_ is
used, and the attention is paid to the total rubber height nt, in the domain of integral 0< x<h.
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Adding the boundary condition that the rotation of the top end is fixed (6(h)=0), M is expressed by
F, and applying the approximation with the Taylor series as P/P, is sufficiently smaller, Eq.(24) is
simplified to Eq.(25).
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The approximation of vertical deformation J,, caused by the rotation 6, of the top end is obtained by
the uniform moment in the same manner of Eq.(22). Theresult is shown in Eq.(26). In this approximation,
the condition that P/P, is sufficiently smaller is used. In this equation, é.,, is a negative value and it
decreases as rotation angle ¢, or horizontal shear strain y increases.
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Eq.(20), Eq.(22), Eq.(25) and Eq.(26) are summarized as EQ.(27).
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Therefore, G/E_, issmall enough to neglect, in this equation.

APPLICATION OF PROPOSED MODEL TO THE NON-LINEAR BEHAVIOR OF THE
RUBBER BEARING

The evaluation of non-linear behavior

Eq.(14) enable us to evaluate the characteristics of rubber bearing from small to large range of
deformation by considering non-linearity and dependence in K, and K. In this paper, axial force
dependence and horizontal deformation dependence are considered. These dependencies are thought to be
independent. The summarized characteristics of aggregated spring K, and K are supposed to be the
products of those factors as shown in Eq.(28) and Eq.(29), when the effects of axia force and horizontal
deformation applied simultaneously.

K: =20, (P @
K =52, (P9 9
Where,

@, (P) : Factor of dependency by the axial force to the horizontal stiffness.

¢, (X) : Factor of dependency by the horizontal deformation to the horizontal stiffness.

@, (P) : Factor of dependency by the axial force to the rotation stiffness.

#.. (X) : Factor of dependency by the shear deformation to the rotation stiffness.
In the following chapters, The characteristics of those factors are investigated independently. It is also
confirmed that the product of each dependency shown in Eq.(28) and Eq.(29) is in agreement with test
result, when the axial force and horizontal deformation are applied simultaneously.



A experiment to investigate the dependence

Authorg[Miyama, 7,8,9] conducted experiment to clarify the effects of rotation of the top/bottom end of
the rubber bearing and the effects of axial force. Conducted experiments are as follows.

A) Rotation performance tests under the constant shear strain and vertical force

B) Vertical performance test under the constant shear strain and fixed rotation

C) Horizontal performance tests under the constant vertical force and fixed rotation

D) Horizontal performance tests under the varying vertical force and fixed rotation

E) Horizontal performance tests under the constant vertical force and varying rotation

F) Horizontal performance tests under the varying vertical force and varying rotation

The rubber bearings, which have a diameter of 300mm, the first shape factor of $=23.1, the second shape
factor of $=4.8, are used in these experiments.

Case-E is supposed as the column in the center or the building. In this case, rotation is increases as the
horizontal deformation increases under the constant axia force. Case-F is supposed as the outside column.
In this case, axial force and rotation angle increase as the horizontal deformation increases. Fig.4 shows
the loading schedule of the Case-D, Case-E and Case-F schematically. The positive rotation angle of the
top end causes as the moment of the bottom end increases. From these experimental results, the
dependence of each factor is clarified.

Axial stressdependenceto horizontal stiffness and rotation stiffness

Axial stress dependence to horizontal stiffness is theoretically obtained as shown in Eq.(5), and is
approximated by Eq.(7). In these equations, the horizontal stiffness decreases as the axial stress increases.
The experimental results show the general trends of these equations. But it was pointed out that the effects
differ from the manufacturing methods of rubber bearing.

Fig.5 shows the results of axial force dependence to rotation stiffness obtained from Case-E. It also shows
the other test results, which are obtained from different rubber bearings with different shape factors. In
these rotational performance tests, when the rotation exceeds the yield point, the stiffness becomes
smaller. In this figure, elastic value and the theoretical value are shown. Those theoretical value are
obtained from the top end moment and rotation angle under the condition that the bottom end is fixed and
top end is rotated. This value is additionaly
affected by the horizontal stiffness K, and axial
force P, as shown in Eq.(14), but those effects
are small compare with rotation stiffness K .

Because a rubber bearing has partia tension
stress zone when the axial pressure is small, the
rotation stiffness is very small. As the axial stress

Axial Stress (MPa)

increase, the rotation stiffness increases. And it c 27 ; | ‘
reaches the peak when the axial stress is around S | /\ /\ /\ |
3Mpa. The theoretical value is smaller than test T w /\ A /\ /\ /\ !
result when the axial stress is less than 5Mpa. 9 VY \/ \/ \/ \/ \/ l
When the axial stress increases to more than s 1 | |
10Mpa, the theoretical value is amost same as 2 - |
the experimental results. From these results, the 0.02

rotation stiffness decreases as the axial force 001

increases when the rubber bearing doesn’t have
tension stress zone, and the axid force
dependence is larger than the theoretical vaue.
But considering the effects of manufacturing ‘
method, quantity of experimental results, and the step

theoretical value agrees well when the axial stress Fig.4 L oading Schedule
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is larger then 10Mpa, the axial stress dependence to rotation stiffness ¢, (P) used in Eq.(29) is defined
from theoretical value shown in Eq.(17).
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The horizontal defor mation dependenceto horizontal stiffness
The horizontal stiffness decreases as the horizontal deformation increases. Further deformation causes a
hardening of stiffness or an unstable condition. These phenomena are generaly evauated from test
results. The mean secant horizontal stiffness is obtained for severa horizonta strain ranges. Fig.6 shows
the experimental result of horizontal deformation dependence to horizontal stiffness normalized by the
stiffness at 100% horizontal shear strain. Fig.6 aso shows the approximation of function as described
below.
-0.16
X
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The horizontal defor mation dependenceto the rotation stiffness
The former information about the horizontal deformation dependence to the rotation stiffness is limited.
Fig.7 shows the test results. They show the average value of tangent stiffness in the elastic range for two
specimens. It decreases as the horizontal deformation increases. They are affected by the horizontal
stiffness K, and axial force P, as shown in Eq.(14). But, those are neglected from the evaluation of the
dependence, because they are small compared with rotational stiffness K . The decrease of the stiffness

under the assumption that the second moment of overlapped area of top and bottom end shown in Eq.(32)
lineally affects the rotation stiffness. It agree well with the test results.
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In this figure, the axia force dependence is not clear when the horizontal deformation is large. It is
considered that the dependence becomes immeasurable because the horizontal deformation dependence is
larger than the axial force dependencein the test results.
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The effects of axial force and horizontal defor mation applied simultaneously

To confirm that the effects of dependence are expressed by Eq.(14), when the axia force and horizontal
deformation applied simultaneously, Eq.(14) is compared with the test results. The horizontal stiffness
used in Eq.(14) is derived from Fig.6 when shear strain is 100% and axial stress is 10Mpa. The used
rotational stiffnessisthe maximum valuein Fig.5.

Fig.8 shows the relationship between horizontal force and horizontal deformation for the Case-F. The test
results agree well with the results of EQ.(14). It shows, in the positive direction, that the horizontal force
decreases, when the rotation angle and axial stress increases as the horizontal deformation increase. On
the contrary, the shear force doesn’t decrease because the axial forceisn’t small in the negative direction.
Fig.9 shows the relationship between moment and rotation angle for Case-E. Because there is some
friction in the testing machine, the moment value is different between the increasing stage and the
decreasing stage of the moment. The friction value is almost same along the loading and unloading. The
average value can be said to be the corrected value. The moment value of the test result matches with the
result of Eq.(14). In this figure, the moment increases as the rotation angle increases when the shear
deformation is small. But when the shear deformation is large, the moment increases by the shear force
and secondary moment PA even the rotation angle is small.The positive direction of the moment by the
rotation is defined to be the direction that the rotation decrease moment by positive shear force.
Eventually, the relationship between moment and rotation angle, when the shear strain is large, shows the
negative gradient.

Fig.10 shows the relationship between horizontal force and rotation angle for the Case-E. The results of
Eq.(14) matches with the test results when the shear strain is large. The decline of the stiffness is shown
properly, when the shear strain is small. From those results, Eq.(14) is well agreed with the test results.
Fig.11 shows the relationship between moment and rotation angle, and Fig.12 shows the relationship
between shear force and rotation angle for the Case-F. The axial force increases, when the rotation angle is
positive, and vice verse in this case. Consequently, the shear force is different by the plus minus of
rotation angle. In this case, the results of Eq.(14) agree well with the test results. It can be said that this
equation shows the appropriate agreement and may be used for the evaluation of characteristics when the
dependence is considered.
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THE COMPARISON OF VERTICAL DEFORMATION BETWEEN THE TEST RESULTSAND
THEORETICAL VALUE

Vertical stiffnesswhen therotation angleisO

The vertical stiffness is measured by the range of 10+ 3Mpa for several horizontal strains. Fig.13 shows
the normalized stiffness by calculating the stiffness when the shear deformation is 0. In this figure, the
results of Eq.(27) and the results of an experimental equation by Fujita]10] are also shown. The
longitudina axisis also normalized by the vertical stiffness Ko when the shear deformation is 0.

The vertical stiffnessis greater than the result of Eq.(27) when the shear strain is greater than 200%. It is
considered that the rubber bearing is affected by the hardening of rubber caused by the large horizontal
deformation. The result is the intermediate value of Eq.(27) and Fujita’s value when the shear strainisless
than 150%. From those results, the effects of horizontal force to the vertical stiffness can be evaluated by
Eq.(27).

Thevertical deformation by therotation

From the test results of Case-A, the relationship between the angle of rotation and vertical deformation is
compared with the results of EQ.(27). Because attention is paid to the effects of rotation in this
comparison, the effects of the axia force and/or the horizontal force are removed from the experimental
results. Therefore, the experimental results are shifted to coincide with the theoretical value when the

Fig.11 Moment — Rotation Relation
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rotation angleisO.

Fig.14 shows the experimental results and theoretical value. The theoretical value in case of the shear
strain is 20% match the test result when the rotation angle is small. When the rotation angle is greater than
0.0lrad., the vertical deformation decreases to the negative direction. This is because of the tensile
yielding of the rubber. It is confirmed by the relationship between the moment and angle of rotation.
When the shear deformation is large, EQ.(27) agree well with the test results. From those results, the
validity of the Eq.(27) is confirmed

THE DYNAMIC RESPONSE ANALY SIS CONSIDERING DEPENDENCY

Therelationship between horizontal force and horizontal defor mation

The dependency of axial force and horizontal deformation are considered in Eq.(14). To examine the
equation for its validity in the dynamic response analysis, shaking table test results of the isolated building
are compared with the analytical results. The shaking table test is performed with a one 12th scale model
that has an aspect ratio of 5, height is 4m and weight is 19t[Miyama, 11,12]. This model is supported by

3
1.5, ¢ NZlBMPaMXperiment

1.2

1.0

0.8 g nalysys
& iment
06 5 Xperimen
3 L
04 ° Experiment ~ £ alysis
>
02 | Ba27) or inont
= = = = by Fuiit T2348
OO | | | —
0 0.5 1 1.5 2 2.5 -0.02  -0.01 0 0.01  0.02  0.03
Shear Strain Rtation (Rad.)
Fig.13 Vertical Stiffness Fig.14 Vertical Defor mation
Experimer Analysis
10 -
BD 7/
~—~ —~~ 5 I~
2 < nCH
3 0
B 4o 20 4 o &40 -20 /£ Q 20 40
8  [Tension sideg E o
o / i |Tendonsid 10 L
/] Conmpression iz
1 =15 / -
Compresson Sde
20— — 28
Horizontap Disp (mm) Horizontal Disp (mm)
Experiment Analysis

Fig.15 Shear Force - Horizontal Deformation



four rubber bearings and 2 oil dampers. 150
The damping force of those dampers is
proportional to velocity. Considering the
capacity of shaking table, the natural 100
frequency is set to be a little short at the
value of 0.77sec.

Fig.15 shows the relationship between

Experiment Eq.(27)

Axial Force (kN)

shear force and shear deformation of the 0f5
rubber bearing. It shows both the 0. 010
experimental results and response analysis g-£

results. The compression side shows the -0.50 0.00 0.50 1.00 1.50
results of the rubber bearing whose axial

force increases as the horizonta 50

deformation increases. On the contrary, the Vertical Deformetion (mm)

tensi_on side show_sthe results of the rubber Fig.16 Vertical Deformation

bearing whose axial force decreases as the

horizontal deformation increases.

Consequently, the results of compression side covered upward and the results of tension side covered
downward even though the experimental results have same energy absorption. The results of response
analysis don’t have energy absorption because it is considered linear characteristics. It is aso the same
tendency by the axial force to the test results.

The vertical stiffness

Fig.16 shows the result of axia stiffness. This figure also shows the results of two-response analysis, one
is assumed that the vertical stiffness is affected by the horizontal deformation and another is assumed to
be elastic. The test results show the energy absorption. When the horizontal deformation is large, the
rocking moment and axia force is generaly large in the compression side. Consequently, the vertical
stiffness reduces and vertical deformation increases. The experimenta results show this tendency. The
response analysis results don't show the energy absorption because the rubber bearing is assumed to be
elastic. But, the effect of axial force matches with the test results. From those results, it is shown that the
axial deformation is underestimated if the horizontal dependency is not considered.

CONCLUSION

To gain an understanding of the force-deformation relationships of base-isolation rubber bearings with
forced rotation angles at their top/bottom end and to clarify the effects of large axial force, a simple model
is proposed. It coincides with Haringx’ s theory when the rubber is assumed to be elastic. The axia force
dependency to the rotation stiffness is theoretically obtained. Also the vertical deformation is obtained
when the rotation is theoretically considered.

The dependencies of horizontal deformation and axia force to the stiffness are obtained from the test
results. It is confirmed that this model can be used when the axial dependency and horizontal dependency
are considered simultaneously. The theoretical vertica deformation considering rotation is confirmed by
the test results. Those proposed models are applied to a dynamic response analysis, and the results are
confirmed by the shaking table test.

From those results, it is verified that the evaluation of the effects of rotation, large axial stress and large
horizontal deformation become possible by the proposed models.
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