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SUMMARY 
 
Base-isolated buildings with high aspect ratios are becoming increasingly popular. For those buildings, the 
rubber bearings must bear large axial stress, large fluctuation of axial stress and large horizontal 
deformation. When the isolation systems are installed in the middle level of structure, the effects of 
rotation deformation must be taken into account. In this paper, a simple mechanical model is proposed to 
include the effects of axial stress, horizontal deformation as well as many other things on rotational and 
horizontal stiffness. The expression of the vertical deformation of rubber bearings is theoretically 
introduced considering the rotation effect. The dependence of shear deformation on axial stiffness and 
dependence of axial force on shear stiffness are evaluated. It was confirmed that the results of proposed 
model agree well with the experimental results, through the static loading test of rubber bearings and the 
shaking table test of base-isolated building with high aspect ratios. We also found that careful attention to 
the influence of vertical vibration on the development of a large axial force and deformation is required. 
This is caused in connection with horizontal, vertical and rocking vibration. 
 

INTRODUCTION 
 
Base isolation buildings with high rise and high aspect ratios are becoming increasingly popular. For those 
buildings, the rubber bearings must bear large axial stress because the natural period of these buildings is 
long. Also, fluctuations in axial stress become large because the rocking moment is large. The top and 
bottom ends of rubber bearings are fixed to the rotation of a conventional base isolation building. Many 
tests of the rubber bearing have been conducted with the rotation-fixed condition. The extreme case of the 
effects by axial force and rotation has been considered in the conventional design. However, the detailed 
case is not considered. Large axial stress, fluctuation in axial stress, large horizontal strain and large 
rotation has not been required in the design for these base isolation buildings. 
Buildings installed base isolation system in the middle level of a structure or the gap between piles and 
basements are required to reduce the construction cost. For these buildings, the effects of rotation 
deformation in the top/bottom end of the rubber bearing must be taken into account. 
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We have conducted tests on rubber bearings to investigate the effects of rotation, axial stress and large 
horizontal deformation. In this paper, a simple model is proposed to account for the effects of axial stress, 
horizontal deformation and as well as other things on rotational and horizontal stiffness. The dependency 
is evaluated from test results and theoretical values. The vertical deformation is theoretically obtained in 
the case where rotation is considered. The theoretical value is verified by the test results. The dynamic 
response analysis is conducted using a proposed model and verified by the shaking table test of high rise 
isolated building. 
 

PREVIOUS THEORETICAL RESEARCH ON THE RUBBER BEARING 
 
The Horizontal Stiffness of the rubber bearing 
Fig.1 shows a rubber bearing supporting a vertical force P , a shear force Q  and a bending moment M . 
Its mechanical characteristics were described by Haringx[1,2,3]. The balance of forces are given in a form 
of differential Eq.(1) and Eq.(2). 
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The symbol sγ  is a nominal shear strain after subtracting the bending rotation from the shear strain γ . 
The shear strain γ  is the quotient that the horizontal deformation is divided by the total of rubber sheets 
height. Eq.(3) and Eq.(4) are obtained by solving the Eq.(1) and Eq.(2).  
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And the symbol rnt  shows the total height of 
rubber sheets ( n :layers × rt :thickness), h  is the 
total height of rubber and steel plates, G  shows 
the shear modulus, rbE  shows the bending 
modulus corrected by the volume modulus, I  
shows the geometrical moment of inertia and A  
shows the area. 
The horizontal stiffness of the rubber bearing hK  
is obtained under the boundary condition that the 
bottom end is fixed )0)0()0(( == θx , the 
rotation of the top end is fixed )0)(( =hθ  and the 
shear force is BA QQF −== . 
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Fig.1 Rubber Bearing 



The buckling load is given when the denominator of Eq.(5) becomes infinity, and it is approximated by 
Eq.(6). 
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Eq.(5) can be approximately expressed in Eq.(7) by using Eq.(6). 
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The stiffness matrix of horizontal deformation and rotation components 
Iizuka[4] derived stiffness matrix, shown in Eq.(8), by using Eq.(3), and Eq.(4). The rotation stiffness and 
the geometrical non-linearity are considered in this equation.  
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The components in the matrix are shown with trigonometrical functions of axial force, horizontal stiffness 
and bending stiffness. It is difficult to clarify the mutual effects of components and axial force. It is also 
difficult to deal with the material nonlinearity such as the hardening caused by large deformation or the 
yielding by the tension force. 
 
Vertical deformation caused by horizontal and rotation deformation 
The vertical deformation of the rubber bearing cδ  shown in Eq.(9) is obtained as the sum of the 
geometrical deformation 1cδ  caused by bending-shear deformation and the axial deformation 2cδ  caused 
by axial strain. 1cδ  is divided into 01 =θδ c , which is the vertical deformation when the rotation of the top 
and bottom end is 0, and θδ 1c , which is the deformation caused by the rotation of both ends. In the same 
manner, 2cδ  is divided into 02 =θδ c  and θδ 2c . 02 =θδ c  is also divided into cbr AEPnt , which is the 
deformation when the shear deformation is 0, and 02 =′ θδ c , which is the deformation caused by the shear 
deformation. 
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Fuller[5] deduced the vertical deformation, shown in Eq.(10) caused by bending-shear deformation based 
on Eq.(1) and Eq.(2) , when the rotations of both ends are 0. 
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Uryu[6] deduced the vertical deformation of which result is same to Eq.(10). He also made an 
approximation with the Taylor series shown in Eq.(11). 
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He then obtained the vertical deformation caused by axial force shown in Eq.(12), when the rotations of 
both sides are fixed to 0. 
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He applied the Taylor series to Eq.(12) regarding skP  as very large. He obtained Eq.(13). 
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Those equations show the deformation when the rotation of both ends of rubber bearing are fixed. When 
the both ends rotate, the vertical deformation has not yet been shown. 
 
A PROPOSAL OF NEW MODEL FOR RUBBER BEARINGS TO EVALUATE THE VARIETY 

OF DEPENDENCE 
 
Proposed model 
The new model shown in Fig.2 is proposed to deal with rotation and horizontal deformation at the same 
time and also to deal with non-linearity of material and variety of dependence, such as axial pressure 
dependence or horizontal deformation dependence. Horizontal spring and rotation spring, which are 
aggregating the characteristics of rubber bearings, are installed in the intermediate height and are 
connected by two rigid bars. The nonlinearity and dependence is easily accounted for using those springs. 
The equation of equilibrium is shown in Eq.(14). 
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Comparing Eq.(14) to Eq.(8), the stiffness of two springs in the elastic range are obtained in Eq.(15) and 
Eq.(16).   
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The matrix [ ]HK  indicates the bending-shear. It is represented by the well-known horizontal stiffness 

hK . The matrix [ ]PK  indicates the secondary moment ∆P  and the shear force caused by it. The matrix 
[ ]RK  indicates the uniform moment and shear force caused by the rotation of top or bottom end. The 
stiffness *

rK  is the rotational stiffness installed at an intermediate height. 
 
The effects of axial force 
In the elastic range, the horizontal stiffness *

hK  is same as Eq.(5). Accordingly the effect of axial force is 
also shown in Eq.(7). And the effects of the axial force on rotation stiffness *

rK  is as same as horizontal 
stiffness in the elastic range. The effect of axial force is shown in the same way in Eq.(17).  
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THE VERTICAL DISPLACEMENT BY THE ROTATION OF THE RUBBER BEARING  

 
The vertical deformation caused geometrically by bending-shear deformation 
The infinitesimal vertical deformation 1cδ∆  in the infinitesimal height z∆  of the rubber bearing is shown 
in Eq.(18) and Fig.3. This shows the sum of vertical deformation caused by bending deformation and 
shear deformation.  
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The boundary condition is defined as the bottom end is fixed )0)0()0(( == θx , and the rotation of the top 
end is applied ))(( Ah θθ = . These boundary conditions are taking into the solution of a differential 
equation shown in Eq.(3) and Eq.(4). The results are applied to Eq.(18) and integrated over the whole 
height. Therefore the geometrical deformation caused by bending-shear deformation is obtained by 
Eq.(19). 
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Adding the boundary condition that the rotation of the top end is fixed )0)(( =hθ  and BM  being 
expressed by F , Eq.(19) is in agreement with Eq.(10). Eq.(11) is given by the approximation with the 
Taylor series from Eq.(19). Furthermore, Eq.(20) is given on the condition that the skP is sufficiently 
larger.  
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The approximation of vertical deformation θδ 1C  caused by the rotation Aθ  of the top end is supposed to 
be produced by the uniform moment. The horizontal deformation Aδ  is caused by Aθ  is shown in 
Eq.(21). 
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The approximation of vertical deformation θδ 1C  caused by the rotation of the top end is obtained in 
Eq.(22) by integration, when the shear strain γ=dzdx  is uniform  along the height, higher order terms of 
small quantities are neglected, and paying attention that the total height of rubber is not h  but rnt . 
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The vertical deformation caused by the axial stress 
The axial force N  is the sum of vertical load P  and the axial component of horizontal force F  in Fig.1. 
N  is shown in Eq.(23), when the )(zθ  is obtained when the bottom end of the rubber bearing is fixed 
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The vertical deformation caused by the vertical deformation 2Cδ  is shown in Eq.(24) by integrating axial 
stress caused by the axial force shown in Eq.(23). In this equation, equivalent compressive stiffness cbE  is 
used, and the attention is paid to the total rubber height rnt  in the domain of integral hx ≤≤0 .   
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Adding the boundary condition that the rotation of the top end is fixed )0)(( =hθ , BM  is expressed by 
F , and applying the approximation with the Taylor series as crPP  is sufficiently smaller, Eq.(24) is 
simplified to Eq.(25). 
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The approximation of vertical deformation θδ 2C  caused by the rotation Aθ  of the top end is obtained by 
the uniform moment in the same manner of Eq.(22). The result is shown in Eq.(26). In this approximation, 
the condition that crPP  is sufficiently smaller is used. In this equation, θδ 2C  is a negative value and it 
decreases as rotation angle Aθ  or horizontal shear strain γ  increases. 
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Eq.(20), Eq.(22), Eq.(25) and Eq.(26) are summarized as Eq.(27). 
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Therefore, cbEG is small enough to neglect, in this equation. 
 

APPLICATION OF PROPOSED MODEL TO THE NON-LINEAR BEHAVIOR OF THE 
RUBBER BEARING 

 
The evaluation of non-linear behavior 
Eq.(14) enable us to evaluate the characteristics of rubber bearing from small to large range of 
deformation by considering non-linearity and dependence in *

hK  and *
rK . In this paper, axial force 

dependence and horizontal deformation dependence are considered. These dependencies are thought to be 
independent. The summarized characteristics of aggregated spring *

hK  and *
rK  are supposed to be the 

products of those factors as shown in Eq.(28) and Eq.(29), when the effects of axial force and horizontal 
deformation applied simultaneously. 
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Where, 
  )(Phϕ : Factor of dependency by the axial force to the horizontal stiffness. 
  )(xhφ  : Factor of dependency by the horizontal deformation to the horizontal stiffness. 
  )(Prϕ  : Factor of dependency by the axial force to the rotation stiffness. 
  )(xrcφ : Factor of dependency by the shear deformation to the rotation stiffness. 
In the following chapters, The characteristics of those factors are investigated independently. It is also 
confirmed that the product of each dependency shown in Eq.(28) and Eq.(29) is in agreement with test 
result, when the axial force and horizontal deformation are applied simultaneously.  
 



A experiment to investigate the dependence 
Authors[Miyama, 7,8,9] conducted experiment to clarify the effects of rotation of the top/bottom end of 
the rubber bearing and the effects of axial force. Conducted experiments are as follows. 
A) Rotation performance tests under the constant shear strain and vertical force 
B) Vertical performance test under the constant shear strain and fixed rotation 
C) Horizontal performance tests under the constant vertical force and fixed rotation 
D) Horizontal performance tests under the varying vertical force and fixed rotation 
E) Horizontal performance tests under the constant vertical force and varying rotation 
F) Horizontal performance tests under the varying vertical force and varying rotation 
The rubber bearings, which have a diameter of 300mm, the first shape factor of S1=23.1, the second shape 
factor of S2=4.8, are used in these experiments. 
Case-E is supposed as the column in the center or the building. In this case, rotation is increases as the 
horizontal deformation increases under the constant axial force. Case-F is supposed as the outside column. 
In this case, axial force and rotation angle increase as the horizontal deformation increases. Fig.4 shows 
the loading schedule of the Case-D, Case-E and Case-F schematically. The positive rotation angle of the 
top end causes as the moment of the bottom end increases. From these experimental results, the 
dependence of each factor is clarified. 
 
Axial stress dependence to horizontal stiffness and rotation stiffness 
Axial stress dependence to horizontal stiffness is theoretically obtained as shown in Eq.(5), and is 
approximated by Eq.(7). In these equations, the horizontal stiffness decreases as the axial stress increases. 
The experimental results show the general trends of these equations. But it was pointed out that the effects 
differ from the manufacturing methods of rubber bearing.  
Fig.5 shows the results of axial force dependence to rotation stiffness obtained from Case-E. It also shows 
the other test results, which are obtained from different rubber bearings with different shape factors. In 
these rotational performance tests, when the rotation exceeds the yield point, the stiffness becomes 
smaller. In this figure, elastic value and the theoretical value are shown. Those theoretical value are 
obtained from the top end moment and rotation angle under the condition that the bottom end is fixed and 
top end is rotated. This value is additionally 
affected by the horizontal stiffness *

hK  and axial 
force P , as shown in Eq.(14), but those effects 
are small compare with rotation stiffness *

rK . 
Because a rubber bearing has partial tension 
stress zone when the axial pressure is small, the 
rotation stiffness is very small. As the axial stress 
increase, the rotation stiffness increases. And it 
reaches the peak when the axial stress is around 
3Mpa. The theoretical value is smaller than test 
result when the axial stress is less than 5Mpa. 
When the axial stress increases to more than 
10Mpa, the theoretical value is almost same as 
the experimental results. From these results, the 
rotation stiffness decreases as the axial force 
increases when the rubber bearing doesn’t have 
tension stress zone, and the axial force 
dependence is larger than the theoretical value. 
But considering the effects of manufacturing 
method, quantity of experimental results, and the 
theoretical value agrees well when the axial stress 
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is larger then 10Mpa, the axial stress dependence to rotation stiffness )(Prϕ  used in Eq.(29) is defined 
from theoretical value shown in Eq.(17). 
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The horizontal deformation dependence to horizontal stiffness 
The horizontal stiffness decreases as the horizontal deformation increases. Further deformation causes a 
hardening of stiffness or an unstable condition. These phenomena are generally evaluated from test 
results. The mean secant horizontal stiffness is obtained for several horizontal strain ranges. Fig.6 shows 
the experimental result of horizontal deformation dependence to horizontal stiffness normalized by the 
stiffness at 100% horizontal shear strain. Fig.6 also shows the approximation of function as described 
below. 
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The horizontal deformation dependence to the rotation stiffness 
The former information about the horizontal deformation dependence to the rotation stiffness is limited. 
Fig.7 shows the test results. They show the average value of tangent stiffness in the elastic range for two 
specimens. It decreases as the horizontal deformation increases. They are affected by the horizontal 
stiffness *

hK  and axial force P , as shown in Eq.(14). But, those are neglected from the evaluation of the 
dependence, because they are small compared with rotational stiffness *

rK . The decrease of the stiffness 
under the assumption that the second moment of overlapped area of top and bottom end shown in Eq.(32) 
lineally affects the rotation stiffness. It agree well with the test results. 
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Where 

Dd

δθ =cos         (33) 

In this figure, the axial force dependence is not clear when the horizontal deformation is large. It is 
considered that the dependence becomes immeasurable because the horizontal deformation dependence is 
larger than the axial force dependence in the test results. 
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The effects of axial force and horizontal deformation applied simultaneously 
To confirm that the effects of dependence are expressed by Eq.(14), when the axial force and horizontal 
deformation applied simultaneously, Eq.(14) is compared with the test results. The horizontal stiffness 
used in Eq.(14) is derived from Fig.6 when shear strain is 100% and axial stress is 10Mpa. The used 
rotational stiffness is the maximum value in Fig.5. 
Fig.8 shows the relationship between horizontal force and horizontal deformation for the Case-F. The test 
results agree well with the results of Eq.(14). It shows, in the positive direction, that the horizontal force 
decreases, when the rotation angle and axial stress increases as the horizontal deformation increase. On 
the contrary, the shear force doesn’t decrease because the axial force isn’t small in the negative direction. 
Fig.9 shows the relationship between moment and rotation angle for Case-E. Because there is some 
friction in the testing machine, the moment value is different between the increasing stage and the 
decreasing stage of the moment. The friction value is almost same along the loading and unloading. The 
average value can be said to be the corrected value. The moment value of the test result matches with the 
result of Eq.(14). In this figure, the moment increases as the rotation angle increases when the shear 
deformation is small. But when the shear deformation is large, the moment increases by the shear force 
and secondary moment ∆P  even the rotation angle is small.The positive direction of the moment by the 
rotation is defined to be the direction that the rotation decrease moment by positive shear force. 
Eventually, the relationship between moment and rotation angle, when the shear strain is large, shows the 
negative gradient. 
Fig.10 shows the relationship between horizontal force and rotation angle for the Case-E. The results of 
Eq.(14) matches with the test results when the shear strain is large. The decline of the stiffness is shown 
properly, when the shear strain is small. From those results, Eq.(14) is well agreed with the test results. 
Fig.11 shows the relationship between moment and rotation angle, and Fig.12 shows the relationship 
between shear force and rotation angle for the Case-F. The axial force increases, when the rotation angle is 
positive, and vice verse in this case. Consequently, the shear force is different by the plus minus of 
rotation angle. In this case, the results of Eq.(14) agree well with the test results. It can be said that this 
equation shows the appropriate agreement and may be used for the evaluation of characteristics when the 
dependence is considered. 
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THE COMPARISON OF VERTICAL DEFORMATION BETWEEN THE TEST RESULTS AND 
THEORETICAL VALUE 

 
Vertical stiffness when the rotation angle is 0 
The vertical stiffness is measured by the range of 10 ± 3Mpa for several horizontal strains. Fig.13 shows 
the normalized stiffness by calculating the stiffness when the shear deformation is 0. In this figure, the 
results of Eq.(27) and the results of an experimental equation by Fujita[10] are also shown. The 
longitudinal axis is also normalized by the vertical stiffness Kv0 when the shear deformation is 0. 
The vertical stiffness is greater than the result of Eq.(27) when the shear strain is greater than 200%. It is 
considered that the rubber bearing is affected by the hardening of rubber caused by the large horizontal 
deformation. The result is the intermediate value of Eq.(27) and Fujita’s value when the shear strain is less 
than 150%. From those results, the effects of horizontal force to the vertical stiffness can be evaluated by 
Eq.(27). 
 
The vertical deformation by the rotation 
From the test results of Case-A, the relationship between the angle of rotation and vertical deformation is 
compared with the results of Eq.(27). Because attention is paid to the effects of rotation in this 
comparison, the effects of the axial force and/or the horizontal force are removed from the experimental 
results. Therefore, the experimental results are shifted to coincide with the theoretical value when the 
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rotation angle is 0. 
Fig.14 shows the experimental results and theoretical value. The theoretical value in case of the shear 
strain is 20% match the test result when the rotation angle is small. When the rotation angle is greater than 
0.01rad., the vertical deformation decreases to the negative direction. This is because of the tensile 
yielding of the rubber. It is confirmed by the relationship between the moment and angle of rotation. 
When the shear deformation is large, Eq.(27) agree well with the test results. From those results, the 
validity of the Eq.(27) is confirmed 
 

THE DYNAMIC RESPONSE ANALYSIS CONSIDERING DEPENDENCY 
 
The relationship between horizontal force and horizontal deformation 
The dependency of axial force and horizontal deformation are considered in Eq.(14). To examine the 
equation for its validity in the dynamic response analysis, shaking table test results of the isolated building 
are compared with the analytical results. The shaking table test is performed with a one 12th scale model 
that has an aspect ratio of 5, height is 4m and weight is 19t[Miyama, 11,12]. This model is supported by 
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four rubber bearings and 2 oil dampers. 
The damping force of those dampers is 
proportional to velocity. Considering the 
capacity of shaking table, the natural 
frequency is set to be a little short at the 
value of 0.77sec. 
Fig.15 shows the relationship between 
shear force and shear deformation of the 
rubber bearing. It shows both the 
experimental results and response analysis 
results. The compression side shows the 
results of the rubber bearing whose axial 
force increases as the horizontal 
deformation increases. On the contrary, the 
tension side shows the results of the rubber 
bearing whose axial force decreases as the 
horizontal deformation increases. 
Consequently, the results of compression side covered upward and the results of tension side covered 
downward even though the experimental results have same energy absorption. The results of response 
analysis don’t have energy absorption because it is considered linear characteristics. It is also the same 
tendency by the axial force to the test results. 
 
The vertical stiffness 
Fig.16 shows the result of axial stiffness. This figure also shows the results of two-response analysis, one 
is assumed that the vertical stiffness is affected by the horizontal deformation and another is assumed to 
be elastic. The test results show the energy absorption. When the horizontal deformation is large, the 
rocking moment and axial force is generally large in the compression side. Consequently, the vertical 
stiffness reduces and vertical deformation increases. The experimental results show this tendency. The 
response analysis results don’t show the energy absorption because the rubber bearing is assumed to be 
elastic. But, the effect of axial force matches with the test results. From those results, it is shown that the 
axial deformation is underestimated if the horizontal dependency is not considered. 
 

CONCLUSION 
 
To gain an understanding of the force-deformation relationships of base-isolation rubber bearings with 
forced rotation angles at their top/bottom end and to clarify the effects of large axial force, a simple model 
is proposed. It coincides with Haringx’s theory when the rubber is assumed to be elastic. The axial force 
dependency to the rotation stiffness is theoretically obtained. Also the vertical deformation is obtained 
when the rotation is theoretically considered.  
The dependencies of horizontal deformation and axial force to the stiffness are obtained from the test 
results. It is confirmed that this model can be used when the axial dependency and horizontal dependency 
are considered simultaneously. The theoretical vertical deformation considering rotation is confirmed by 
the test results. Those proposed models are applied to a dynamic response analysis, and the results are 
confirmed by the shaking table test. 
From those results, it is verified that the evaluation of the effects of rotation, large axial stress and large 
horizontal deformation become possible by the proposed models. 
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