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SUMMARY 
 
The purpose of this study is to propose a simple geometrical index that characterizes the ground motions 
in various shapes of alluvial valleys. We introduce and define an equivalent flat layer model of an alluvial 
valley with respect to the dispersion characteristics of surface waves. The thickness of the equivalent flat 
layer is proposed as a new simple index to quantify the degree of geometrical irregularities and their 
influence on ground motions. Fundamental examinations for two- and three-dimensional alluvial valleys 
with simple configurations show the potential utility of newly introduced index to characterize ground 
motions in alluvial valleys. 
 

INTRODUCTION 
 
Geological lateral irregularities such as alluvial valleys may induce localized large amplifications of 
ground motions during earthquakes. Bard [1,2] pointed out that locally generated surface waves play an 
important role to characterize the response of alluvial valleys. The features of surface waves and 
consequent surface amplifications of alluvial valleys depend greatly on the valley shape, the velocity 
contrast, and the incident wave field. Their wide and complex variations make difficult to describe 
generally the influence of various geological irregularities on ground motions.  
 
The purpose of this study is to propose a simple geometrical index that characterizes the ground motions 
in various shapes of alluvial valleys. We introduce and define an equivalent flat layer model of an alluvial 
valley with respect to the dispersion characteristics of surface waves. Using the thickness of  the 
equivalent flat layer, we attempt to quantify the degree of irregularity of  alluvial valleys. As fundamental 
study, the equivalent thicknesses are calculated for two- and three-dimensional models of alluvial valleys 
with simple configurations.  Through some examinations, we estimate the potential utility of the newly 
introduced geometrical index to characterize the ground motions in various shapes of alluvial valleys. 
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RESPONSE TIME HISTORIES OF ALLUVIAL VALLEYS 
FOR INCIDENT SH, P, AND SV WAVES 

 
Figure 1 shows the two-dimensional (2D) and three-dimensional (3D) models of alluvial valleys to be 
analyzed in this study. An alluvial valley consists of an elastic half-space R0 and a soft elastic inclusion R1. 
The material properties in R0 are given by the mass density ρ0, the shear rigidity µ0, and the Poisson’s ratio 
ν0. The material properties in 1R  are designated by subscript 1. Two geometrical types of alluvial valleys 
are considered in 2D analysis; one is a half-ellipse referred to as E(2D), and another is a half-cycle cosine 
referred to as C(2D). For each model, two shape ratios b/a=1/2 and 1/ 4  are considered, where a is the 
half-width of the valley and b is the maximum depth. In 3D analysis, two types of axi-symmetric valleys 
E(3D) and C(3D) are considered. Each of them has the same vertical section as the corresponding 2D 
model. Two sets of material properties are assumed; for the hard model (low velocity contrast): ρ1/ ρ0=1.0, 
µ1/µ0=0.2, ν0=0.25, ν1=0.30, and for the soft model (high velocity contrast): ρ1/ ρ0=1.0, µ1/µ0=0.1, 
ν0=0.25, ν1=0.30. 
 

 
Figure 1.   2D and 3D alluvial valley models   

 
The ground motions under incident plane SH, P, and SV waves were calculated by using a hybrid method 
of the Riccati equation approach (Marsh [3]) for the elastic wave fields in 1R  and the direct BEM for R0. 
In generalized coordinates conforming to the boundary shape of the alluvial valley, we expressed the wave 
fields in R1 by means of “up-going” and “down-going” propagator matrices and impose the boundary 
conditions at the R0-R1 interface using the Somigliana integral equation (Matsuda [4]). Trough the 
discretization of the boundary, wave field solutions are computed in the frequency domain. Time domain 
solutions are synthesized by using the FFT algorithm. 
 
As numerical examples, Fig. 2 shows the displacement time histories of the hard E(3D) model with 
b/a=1/2 at the receivers along the x-axis under vertical incidence of plane SH waves (corresponding to the 
disturbance in the y-direction), P waves (in the z-direction), and SV waves (in the x-direction) . The 
incident time function was given by the Ricker wavelet with the characteristic period of tc=2a/β0, where β0 
denotes the shear wave velocity in R0. In Fig. 2, the horizontal time axis ( t ) is scaled by a/β0, and the 
vertical axis (x) is scaled by a (then the values ±1 correspond to the valley edges).  



 

 
Figure 2.   Displacement time histories of the hard E(3D) model 

 
In this figure, it is observed that the first direct waves are followed by surface waves generated at the 
valley edges and propagating laterally to the other edges. For the cases of incident P and SV waves, the 
surface waves appear rather clearly in the z-component. Later phases with relatively large amplitudes are 
observed at the central region of the alluvial valley in the z-component for incident P waves and in the x-
component for incident SV waves. They are probably because of the symmetric properties of the 
disturbances and the valley’s shape. The disturbances are axi-symmetric for vertical incidence of P waves, 
so that the surface waves arrive at the same time and in phase at the center of the valley. For vertical 
incidence of SV waves, the disturbances are symmetric about the x−z plane, so that the surface waves 
meet in phase at the points on the x-axis. 
 



EQUIVALENT FLAT LAYER MODEL 
 
Figure 3 shows the contour maps of the displacement amplitude in the ω−kx (circular frequency-
wavenumber in the x-direction) domain plotted on the ω−ω /kx plane for the same cases shown in Fig. 2. 
The vertical axis (ω /kx) scaled by β0 indicates the phase velocity in the positive x-direction. The horizontal 
axis (ω) is scaled by β0/a. The dispersion characteristics of the surface waves generated in the alluvial 
valley are observed from the trains of peaks in Fig. 3. The phase velocity varies from about β0 to β1 (<β0) 
as the frequency increases, where β1 denotes the shear wave velocity in the alluvial valley. 
 

 
Figure 3.   Displacement amplitudes in the frequency-wavenumber domain and dispersion curves 
 
Here, we introduce an equivalent flat layer model: a single flat layer overlying a half-space with the same 
velocity contrast as the alluvial valley model. The thickness Heq of the equivalent flat layer is determined 
so that the theoretical dispersion curve of the fundamental Love or Rayleigh wave in the flat layer fits best 
to the one in the alluvial valley estimated from the ω−ω /kx diagram by using the least squares fitting 
technique. For the cases of incident SH waves, the surface waves generated in the alluvial valleys are 
assumed to be Love waves. In Fig. 3(a), the theoretical dispersion curve of the fundamental Love wave in 
the flat layer with the thickness Heq is plotted by a solid symbol line. The fundamental Rayleigh waves 
are assumed for the cases of incident P and SV waves. The equivalent thickness Heq is estimated from the 
ω−ω /kx diagram of the z-component, in which the surface waves are rather distinct. Within the range of 
this analysis, the difference is small between the equivalent thicknesses estimated from the P and SV  



waves incidence. The theoretical dispersion curve of the fundamental Rayleigh wave in the equivalent flat 
layer model are also plotted in Fig. 3(b) and (c).  
 
Table 1 and 2 list the Heq estimated from the 2D and 3D analyses, respectively, where we can obtain 
common properties of the Heq in 2D and 3D as follows. (1) The Heq/b is less than unity, i.e., the Heq is 
smaller than the maximum depth of the valley. (2) The Heq for Love waves is smaller than that for 
Rayleigh waves. (3) The Heq for the type C (a half-cycle cosine) model is small compared to that for the 
type E (a half-ellipse)  model with the same b/a. (4) The Heq/b for b/a=1/4 is smaller than that for 
b/a=1/2. The average depth of the alluvial valley is proportional to the maximum depth b for all the 
models in this analysis: (π/4)b=0.785b for E(2D), (2/π)b=0.637b for C(2D), 2b/3=0.667b for E(3D), and 
4(π-2)b/π 2=0.463b for C(3D). Contrary to our ordinary expectation, the obtained Heq is not proportional 
to b. (5) The Heq for the 3D model is smaller than that for the corresponding 2D model. There is no 
exception, at least in Table 1 and 2, to the rules governing Heq mentioned above. The difference between 
the equivalent thicknesses for the hard and soft models seems to be small, and we cannot find any simple 
relations. Taking into account of errors coming from the fitting process, it seems that the Heq might be  
more strongly governed by the geometrical properties of the alluvial valley than by the material properties. 
 

Table 1 .   The thickness of the equivalent flat layer model estimated from the 2D analysis 
Shape E(2D) C(2D) E(2D) C(2D) 

Depth (b/a) 1/2 1/4 1/2 1/4 1/2 1/4 1/2 1/4 
Material property Hard Soft 
Love Heq/a 0.340 0.192 0.317 0.189 0.331 0.200 0.301 0.189 
wave Heq/b 0.679 0.770 0.633 0.755 0.663 0.801 0.602 0.755 

Rayleigh Heq/a 0.378 0.235 0.370 0.220 0.393 0.227 0.378 0.220 
wave Heq/b 0.775 0.939 0.740 0.878 0.786 0.908 0.755 0.878 

 
Table 2.    The thickness of the equivalent flat layer model estimated from the 3D analysis  
Shape E(3D) C(3D) E(3D) C(3D) 

Depth (b/a) 1/2 1/4 1/2 1/4 1/2 1/4 1/2 1/4 
Material property Hard Soft 
Love Heq/a 0.278 0.170 0.232 0.154 0.286 0.174 0.248 0.162 
wave Heq/b 0.556 0.679 0.464 0.617 0.571 0.694 0.495 0.648 

Rayleigh Heq/a 0.317 0.208 0.301 0.185 0.332 0.208 0.301 0.197 
wave Heq/b 0.633 0.832 0.602 0.740 0.663 0.832 0.602 0.786 

 
 

DISCUSSION 
 
As the thickness Heq decrease, the Airy-phase frequency in the equivalent flat layer shifts toward a higher 
frequency. Therefore, the frequency range lower than the Airy-phase frequency becomes wider, within 
which the surface flat layer and the half-space move “in phase” with the phase velocity close to that for 
the half-space. From this theoretical viewpoint, the equivalent thickness Heq of an alluvial valley defined 
in this study could give a measure of the constraints imposed by the surrounding half-space. The smaller 
Heq means the stronger constraints. Therefore, the smaller Heq for the type C valley than that for the type 
E valley is interpreted as the stronger constraints to the type C valley probably because of its relative 
shallowness and the gentle slope of its shoulders. 
 
The surface waves generated in the alluvial valley induce some complicated patterns in the spatial 
distribution of amplifications. Figure 4 shows the contour maps of the surface amplifications in the x−ω 



domain. Figure 4(a) is that of the hard E(3D) model for vertical incidence of SH waves (corresponding to 
the case shown in Fig. 2(a)), and Fig. 4(b) is that for the oblique incidence making an angle of 30° with 
the positive z-axis and traveling in the x−z plane. The number of peaks in space grows with the frequency, 
but large amplifications concentrate gradually in the central region of the alluvial valley. For case of the 
oblique incidence, large amplifications shift toward the opposite side to the incidence.  
 

 
Figure 4.   Amplifications and nodal lines of interferences 

 
The distributions of amplification nodes observed in Fig. 4 can be explained as follows. Consider the 
interferences among the first direct wave with travel time t(x) and the surface waves generated on the 
valley edges x= ma at the time t(ma ) and propagating laterally to the other edges with the phase velocities 
±v(ω). Using the theoretical phase velocities of the fundamental Love wave in the equivalent flat layer as 
the ( )v ω , the nodal lines of interferences among these waves are plotted by dashed lines in Fig. 4. These 
nodal lines well coincide with those observed in the amplifications. This example is limited to the cases 
that the first direct wave and the fundamental mode of the surface waves are predominant. However, the 
simple explanation like this may be helpful, especially from the engineering viewpoint, to understand 
intuitively the real complicated phenomena arising in the alluvial valley during earthquakes. 
 

CONCLUSION 
 
We have introduced and defined the equivalent flat layer model of an alluvial valley with respect to the 
dispersion characteristics of surface waves to quantify the degree of geometrical irregularities and their 
influence on ground motions.  Fundamental examinations performed in this study suggest that the newly 
introduced geometrical index could have potential utility to characterize the ground motions in various 
shapes of alluvial valleys. 
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