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SUMMARY 
 
A simplified nonlinear analysis procedure to predict earthquake responses of multi-story asymmetric buildings 
is presented and some examples are shown in this paper. In this procedure, their responses are predicted 
through a nonlinear static analysis of MDOF model and estimation of seismic demand of equivalent SDOF 
model, considering the change in the first mode shape at each nonlinear stage and the effect of the first and 
second mode contribution. The results show that the responses of multi-story asymmetric buildings can be 
satisfactorily predicted by the proposed procedure. 
 
 

INTRODUCTION 
 
The estimation of nonlinear response of buildings subjected to a strong ground motion is a key issue for 
the rational seismic design of new buildings and the seismic evaluation of existing buildings (ATC-40 [1], 
FEMA 356 [2], Otani [3]). For this purpose, the nonlinear time-history analysis of 
Multi-Degree-Of-Freedom (MDOF) model might be one solution, but it is often complicated whereas the 
results are not necessarily more reliable due to uncertainties involved in input data. To overcome such 
shortcomings, several researchers have developed simplified nonlinear analysis procedures using 
equivalent Single-Degree-Of-Freedom (SDOF) model (Saiidi and Sozen [4], Fajfar and Fishinger [5], 
Fajfar [6], and Kuramoto et al. [7]). This approach consists of a nonlinear static (pushover) analysis of 
MDOF model and a nonlinear dynamic analysis of the equivalent Single-Degree-Of-Freedom (SDOF) 
model, and it would be a promising candidate as long as buildings oscillate predominantly in the first 
mode. Although these procedures have been more often applied to planer frame analyses, only limited 
investigations concerning the extension of the simplified procedure to asymmetric buildings have been 
made (Moghadam and Tso [8], Fajfar et al. [9]). 
 
In this paper, a simplified nonlinear analysis procedure to predict earthquake responses of low-rise, 
multi-story asymmetric buildings is presented and some examples are shown. The proposed procedure has 
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three advantages over the traditional procedure. Firstly, it does not need the pushover analysis of 
complicated three-dimensional multi-story building models, but it needs pushover analyses of planer 
frames and a simplified equivalent single-story model proposed in this paper. Secondly, the change in the 
first mode shape at each nonlinear stage is considered to determine the equivalent SDOF model 
properties. Thirdly, it provides a better prediction for the drift demand in each frame from two different 
pushover analyses considering the effect of the first and second mode contributions. 
 
In the examples, the procedure is applied to 4-story asymmetric shear-building models and the results are 
compared with the nonlinear dynamic analysis results. Since the simplified nonlinear analysis procedure 
for single-story asymmetric buildings in the previous study (Fujii et al. [10]) is applicable only to 
torsionally stiff (TS) buildings (Fajfar et al. [9], Fujii et al. [10]), the discussion in this paper is also 
limited to TS buildings. 
 
 

EQUATIONS OF MOTIONS OF THE SIMPLIFIED MODELS 
 
Model Assumptions 
 
The building model considered in this study is an idealized N-story asymmetric shear-building model as 
shown Figure 1. In this paper, following assumptions are made for the model. 
 
1) All floors have the same plan geometry and the same locations of frames. 
2) The centers of mass of all floor diaphragms lie on the same vertical axis. 
3) All floor diaphragms have the same radius of gyration about the vertical axis through center of mass r 

as expressed in Eq. (1). 
 

 (1) 
 

where mi, Ii are mass and moment of inertia of i-th floor, respectively. 
4) All frames are oriented in the X or Y-direction and the structural plan is symmetric about the X-axis 

and properties of the two symmetrically located frames are identical. 
5) Each frame consists of column elements and wall elements. The axial deformation of those vertical 

elements is negligibly small. 
6) The ratio of story stiffness and strength in X- and Y-directions is the same for all stories as expressed 

in Eq. (2). 
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Figure 1 N-Story Asymmetric Shear-Building Model 
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where KXil, and KYil are the stiffness of the l-th frame in i-th story oriented in X- and Y-direction, 
respectively, and VyXil, and VyYil are the yield strength of the l-th frame in i-th story oriented in X- and 
Y-direction, respectively. 

7) All frames have the same vertical distribution of stiffness and strength for the story as expressed in 
Eq. (3). 

 

    
(3) 

 
From these assumptions, the centers of stiffness of all stories lie on the same vertical axis: the eccentricity 
ratio E (= eK / r, eK : elastic eccentricity) and the radius ratio of gyrations of story stiffness J ( = j / r, j : 
radius of gyration of story stiffness) are the same in all stories. 
 
In this paper, the earthquake excitation is considered unidirectional in Y-direction. Therefore 2N degrees 
of freedom (DOFs) are considered for the multi-story model. 
 
Equivalent Single-Story Model 
 
Natural vibration modes and equivalent modal mass ratio of multi-story asymmetric building model 
The equation of motion of undamped free vibration of N-story asymmetric building model shown in 
Figure 1 can be written as Eq. (4). 
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the elastic stiffness matrix of N-story asymmetric building model. By substituting Eq. (5) into Eq. (4), Eq. 
(6) is obtained. 
 
{ } { }θ⋅= rz  (5) 

 
(6) 

 
From Eq. (6), the k-th natural frequency ωk and mode {φk} of the N-story asymmetric building models can 
be obtained from Eqs. (7) to (10) (Shiga [11], Chopra [12]). 
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where ωTi and {φTi}(={φTYi, φTZi}

T) are i-th natural frequency ratio and mode of the associated single-story 
model whose eccentricity ratio and radius ratio of gyration are E and J, respectively, and ωSj and {φSj} are 
the j-th natural frequency and mode of the associated N-story symmetric building model. In this paper, 
this associated single-story model is referred to as “equivalent single-story model”. In this paper, {φTi} 
and {φSj} are normalized so that φTYi equal 1.0 and the component of the top of {φSj} equal 1.0. 
The first modal participation factor Γ1 and the first equivalent modal mass ratio of N-story asymmetric 
building model m1

* can be written by Eq. (11). 
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Where {α} = {{1}T, {0}T}T is the vector defining the direction of ground motion. From Eqs. (7) to (10), 
Eq. (11) can be rewritten as Eq. (12). 
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where ΓT1 and ΓS1 are the first modal participation factor of the equivalent single-story model and the 
associated N-story symmetric shear-building model expressed in Eq. (13), respectively, and mT1

* and mS1
* 

are the first modal mass ratio of the equivalent single-story model and the associated N-story symmetric 
building model expressed in Eq. (14), respectively. 
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Note that the first equivalent modal mass ratio of N-story asymmetric shear-building model m1

* is the 
product of that of equivalent single-story model mT1

* and that of the associated N-story symmetric 
shear-building model mS1

*. Figure 2 shows the contour line of mT1
* on E-J plane for the equivalent 

single-story model, and Figure 3 shows the relationship of mS1
* and N for the associated N-story 

symmetric shear-building model having the same floor mass and inverted-triangular first mode shape   
(N < 7). Figure 2 shows that mT1

* is larger than 0.5 for torsionally stiff (TS) building (J > 1) and smaller 
than 0.5 for torsionally flexible (TF) building (J < 1), as discussed in the previous study (Fujii et al. [10]): 
for Model-A and Model-B studied in ANALYSIS EXAMPLES, mT1

* equals 0.829 and 0.743, 
respectively. And Figure 3 shows that for the associated N-story symmetric shear-building model, mS1

* is 
larger than 0.8: for 4-story symmetric shear-building model, mS1

* equals 0.833. They imply that the 
multi-story TS buildings have relatively larger m1

* value. As is shown in the previous study (Fujii et al. 
[10]), m1

* can be a good index for the first modal contribution to overall response. Therefore response of 
the multi-story TS buildings may be predominantly governed by the first mode. 
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* in E-J Plane Figure 3 Relationship of mS1

* and N 

 
Equation of motion of equivalent single-story model 
The equation of motion of N-story asymmetric building model subjected to unidirectional ground motion 
can be written as Eq. (15). 
 

 
(15) 
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representing restoring force at the center of mass of floor diaphragms and ag is the ground acceleration. 
The j-th mode of the associated N-story symmetric shear-building model ΓSj {φSj} is assumed constant 
even if the building oscillates beyond elastic range. The displacement vector {d} is assumed in the form 
of Eq. (16). 
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Where Yj

* and Θj
* are the displacement at the center of mass and the rotation corresponding to the j-th 

mode of the associated N-story symmetric shear-building model. Eq. (16) is rewritten as Eq. (17), 
assuming the predominant oscillation of the first mode of the associated N-story symmetric shear-building 
model. 
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Substituting Eq. (17), Eq. (15) can be rewritten as Eq. (18). 
 

 
(18) 

 



By multiplying ΓS1{φS1}
T from left side of Eq. (18), the equation of motion of equivalent single-story 

model is obtained as Eqs. (19) through (22). 
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where MT1

* and IT1
* are the equivalent mass and equivalent moment of inertia of equivalent single-story 

model, respectively, and [CT1
*] is the damping matrix of equivalent single-story model, and {DT1

*} and 
{RT1

*} are the displacement and restoring force vector of the equivalent single-story model, respectively. 
 
Equivalent SDOF Model 
 
In the equation of motion of equivalent single-story model (Eqs. (19) through (22)), the displacement 
{DT1

*} and restoring force vector {RT1
*} are assumed in the form of Eq. (23) even if the building responds 

beyond the elastic range. 
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where Di

* and Ai
* are the i-th equivalent modal displacement and equivalent modal acceleration, 

respectively. Note that mode shape of the equivalent single-story model {φTi} varies depending on the 
stiffness degradation. In this study, {φTi} is determined from the secant stiffness defined at the maximum 
deformation previously experienced in the calculation. 
 
Eq. (23) can be rewritten as Eq. (24), by assuming the predominant oscillation of the first mode and 
neglecting the second mode of the equivalent single-story model. 
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By substituting Eq. (24) into Eq. (19) and by multiplying ΓT1{φT1}

T from the left side, the equation of 
motion of equivalent SDOF model is obtained as Eq. (25). 
 

 
(25) 

 
where M1

* is the first equivalent modal mass and C1
* is the first equivalent modal damping coefficient. 

M1
* and C1

* are expressed as Eq. (26). 
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Figures 4(a) and 4(b) show the first mode shape of the equivalent single-story model and corresponding 
equivalent SDOF model, respectively. 
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Figure 4 First Mode of Equivalent Single-Story Model and Equivalent SDOF Model 

In Figure 4(b), the equivalent SDOF model consists of a concentrated mass M1
* located at A, rigid body 

OA, pin connected to the base at O, and nonlinear rotational spring. Denoting that the distance from the 
center of mass of equivalent single-story model G to A is e1, Eq. (27) is obtained from Figure 4: 
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where ρ1 is the distance from G to O expressed as Eq. (28). 
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From Eqs. (27) and (28), Eq. (29) is obtained. 
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Eq. (29) indicates that distance from the center of mass of equivalent single-story model G to the location 
of mass A is inversely proportional to the distance from G and the pin O. Therefore, if the first mode 
response is purely translational in Y-direction ( )∞=1ρ , e1 equals 0 and the location of the mass A 
coincides with G. 
 
Eq. (29) can also be obtained from the following manner. In Figure 4(a), the moment about point O, MOa, 
can be expressed by Eq. (30). And in Figure 2(b), the moment about point O, MOb, can be expressed by 
Eq. (31). Eq. (29) is obtained by equating Moa and Mob in Eqs. (30) and (31). 
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DESCRIPTIONS OF PROPOSED SIMPLIFIED PROCEDURE 
 
In this chapter, a simplified nonlinear analysis procedure for multi-story asymmetric building is proposed. 
The outline of the proposed procedure is described as follows. 
 
STEP 1: Pushover Analysis of planer frame 
STEP 2: Pushover Analysis of equivalent single-story model 
STEP 3: Estimation of the seismic demand of equivalent SDOF model 
STEP 4: Estimation of drift demand in each frame of equivalent single-story model 
STEP 5: Estimation of drift demand in each story of planer frames  
 
Figure 5 shows the outline of the proposed procedure.  
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Figure 5 Outline of the proposed procedure 

STEP 1: Pushover Analysis of Planer Frame 
 
Pushover analysis of each planer frame is carried out to obtain its non-linear force-displacement 
relationship, assuming invariant vertical distribution of displacement ΓS1{φS1} for all frames. 
 
The properties of the equivalent single-story model are determined from the results of these pushover 
analyses. The equivalent mass and equivalent moment of inertia of equivalent single-story model, MT1

*, 
IT1

* are determined from Eq. (20), the equivalent restoring force of each frame VXi
* and VYi

* from Eq. (32), 
and the equivalent displacement of each frame dXi

*and dYi
* from Eq. (33), respectively. 

 
{ } { } { } { }Yi

T
SSYiXi

T
SSXi RVRV 11

*
11

* , φφ Γ=Γ=  (32) 

{ } [ ]{ } { } [ ]{ } *
TYi

T
SS

*
Yi

*
TXi

T
SS

*
Xi Mdmd,Mdmd 111111 φφ Γ=Γ=  (33) 

 
where {RXi},{RYi} and {dXi}, {dYi} are restoring force vector and displacement vector of each frame 
obtained by pushover analysis, respectively. 
 



STEP 2: Pushover Analysis of Equivalent Single-Story Model 
 
Pushover analysis of an equivalent single-story model is carried out to obtain the force-displacement 
relationship, considering the change in the fundamental mode shape at each nonlinear stage. The 
numerical procedure of the pushover analysis can be found in APPENDIX. 
 
The property of the equivalent SDOF model is determined from the results of the pushover analysis. 
Since the deformation shape {DT1

*} having the first mode shape is imposed on the equivalent single-story 
model as described in APPENDIX, the equivalent acceleration A1

*, equivalent displacement D1
* of the 

equivalent SDOF model are determined by the Eqs. (34). 
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The A1

*-D1
* relationship, referred to as capacity diagram, are idealized by elasto-plastic bi-linear curve so 

that the hysteretic dissipation enclosed by the original curve and the bi-linear idealized curve is same. 
 
STEP 3: Estimation of Seismic Demand of Equivalent SDOF Model 
 
The seismic demand of equivalent SDOF model D1

*
MAX is obtained by the equivalent linearization 

procedure (Otani [3]) in this study. The equivalent period Teq and equivalent damping ratio heq of the 
equivalent SDOF model at each nonlinear stage is calculated by Eq. (35). 
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Where µSDOF is the ductility ratio of equivalent SDOF model, D1Y

* is the yield displacement of the 
equivalent SDOF model determined from bi-linear curve, and h0 is the initial damping ratio. In this study, 
h0 is assumed 0.03, because in the dynamic time-history analysis of MDOF model the damping is 
assumed also 3% of critical for the first mode. The response spectral acceleration and displacement are 
factored by Fh determined from Eq. (36). 
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The demand spectrum of an earthquake excitation is constructed by plotting a SDOF response 
acceleration SA(Teq, heq) in the vertical axis and corresponding displacement SD(Teq, heq) in the horizontal 
axis. The seismic demand of equivalent SDOF model is determined by comparing the capacity diagram 
and the demand spectrum. The intersection of the capacity diagram and demand spectrum represents the 
maximum response of the equivalent SDOF model. 
 
STEP 4: Estimation of Drift Demand in Each Frame of Equivalent Single-Story Model 
 
The drift in each frame of the equivalent single-story model based on the first mode response is 
determined from the results of STEP 2 and 3. As discussed in the previous study (Fujii et al. [10]), {DT1

*} 
is obtained by substituting D1

*
MAX obtained in STEP 3 into Eq. (24), and hence the drift demand in each 

frame based on the first mode response can be found. Then, another pushover analysis is carried out using 
the sum of modal force distribution determined from Eq. (37) until D* obtained by Eq. (38) reaches 



D1
*
MAX. The drift demand in each frame of the equivalent single-story model is determined from the 

envelope of both pushover analyses. 
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Where ΓΤ1ie{φT1} and ΓΤ2ie{φT2} are the first and second mode shape at D1

*
MAX , respectively. 

 
STEP 5: Estimation of drift demand in each story of planer frames 
 
The drift demand in each story of frame is determined from the results of STEP 1 and 4. By substituting 
dXi

*
MAX and dYi

*
MAX obtained in STEP 4 into Eq. (39), {dXiMAX} and {dYiMAX} and hence the drift demand in 

each story of frame can be found. 
 
{ } { } { } { } MAX

*
YiSSYiMAXMAX

*
XiSSXiMAX dd,dd ⋅Γ=⋅Γ= 1111 φφ  (39) 

 
 

ANALYSIS EXAMPLES 
 
Building Data and Ground Motion Data 
 
Building Data 
Buildings investigated in this paper are idealized four-story asymmetric shear-building models: they are 
assumed to be symmetric about the X-axis as shown in Figure 4. Their story height is assumed 3.60 m for 
all stories and the unit mass is assumed 1.2 x 103 kg/m2. In this study, two structural plans are studied as 
shown in Figure 6. In each building model, the column element and wall element are placed in frames 
oriented in X or Y-direction. The yield strengths of the i-th story in X and Y-direction, Vi, are determined 
by Eq. (40): the yield base shear in X and Y-direction are assumed 0.60W(where W is the total weight of 
the building model). 
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Figure 6 Plan of the Model Buildings 
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Where w is the weight of each floor. The total yield strength of column elements are assumed one-third of 
Vi, and that of wall element are assumed two-third of Vi. Figure 7 shows the envelope curve of restoring 
force-drift relationship of each element. The envelopes are assumed symmetric in both positive and 
negative loading directions. The Takeda hysteretic model (Takeda et al. [13]) is employed for both 
column and wall elements, assuming that they behave in a ductile manner. 
 
Table 1 shows the yield strengths of column and wall elements, and the model parameters: eccentricity 
ratio E, radius ratio of gyration of story stiffness J, and eccentricity ratio in accordance with the Japanese 
Standard of Seismic Design of Buildings Re. Figure 2 and this table show that J is larger than 1.0 in both 
building models. Figure 8 shows the mode shapes of each building models. As shown in this figure, the 
first modes of all models are governed by the translational component, while their second mode is 
governed by the torsional component. Consequently, all models can be classified as torsionally stiff 
buildings (Fajfar et al. [9], Fujii et al. [10]). Note that the first equivalent modal mass ratios of both 
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Figure 7 Envelope of Restoring Force-Drift Relationship 

Table 1 Yield Strength of Element and Model Parameters 

Yield Strength of Element 
X-Direction Y-Direction 

 

Column Wall Column Wall 
E J Re 

Model-A 1/18 Vi 1/12 Vi 0.495 1.365 0.389 
Model-B 1/12 Vi 

1/3 Vi 1/18 Vi 
1/3 Vi 0.248 1.129 0.225  
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Figure 8 Mode Shapes of Building Models 



models m1
* are larger than 0.6. 

 
Ground Motion Data 
In this study, the earthquake excitation is considered unidirectional in Y-direction, and six artificial 
ground motions are used. Target elastic spectrum with 5% of critical damping SA(T, 0.05) is determined 
by Eq. (41). 
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Where T is the natural period of the SDOF model. The first 40.96 seconds (212 = 4096 data, 0.01 second 
sampling) of following record are used to determine phase angles of the ground motion: the NS 
component of El Centro 1940 record (referred to as ELC), NS component of Taft 1952 record (TAF), EW 
component of Hachinohe 1968 record (HAC), NS component of Tohoku University 1978 record (TOH), 
NS component of Kobe Meteorological Observatory 1995 (KMO) and Fukiai 1995 (FKI) record. Table 2 
shows the maximum acceleration of artificial ground motion and Figure 9 shows the elastic acceleration 
response spectra of artificial ground motion with 5% of critical damping. 
 
Numerical Time-history Analysis Procedures 
In this study, results of proposed procedure are compared with those obtained by nonlinear dynamic 
time-history analysis. In the nonlinear dynamic time-history analysis, the damping matrix is assumed 
proportional to the instant stiffness matrix and 3% of the critical damping for the first mode. The 
Newmark-β method (β = 1/4) is applied in numerical integrations. 
 
Analysis Results and Discussions 
 
Figure 10 shows the comparisons of the maximum displacement at each frame on top floor, and Figure 11 
shows the comparisons of the maximum drift angle at each frame, obtained from time-history analysis of 
multi-story asymmetric building model (mean value of the 6 analysis µ, and mean + standard deviation 
µ + σ are shown) and proposed procedure. These figure shows that the proposed procedure can estimate 
the response of multi-story asymmetric building model satisfactory. 
 
 

Table 2 Input Ground Motion 

Ground Motion 
Record ID 

Artificial Ground 
Motion ID 

Max. Ground 
Acceleration 

(m/s2) 
ELC JCode-ELC 5.703 
TAF JCode-TAF 6.064 
HAC JCode-HAC 5.210 
TOH JCode-TOH 5.676 
KMO JCode-KMO 6.507 
FKI JCode-FKI 5.892  
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Figure 9 Elastic Acceleration Spectra 



CONCLUSIONS 
 
In this paper, a simplified procedure for multi-story asymmetric buildings subjected to unidirectional 
ground motion is proposed, and the results obtained by the proposed procedure are compared with the 
results obtained by nonlinear dynamic time-history analysis. The results show that the nonlinear analysis 
of multi-story asymmetric buildings subjected to unidirectional ground motion can be satisfactorily 
estimated by the simplified procedure proposed in this study. 
 
 

APPENDIX. PUSHOVER ANALYSIS PROCEDURE CONSIDERING THE CHANGE IN THE 
FIRST MODE SHAPE AT EACH NONLINEAR STAGE 

 
The pushover analysis procedure of the equivalent single-story model considering the change in the first 
mode shape at each nonlinear stage is summarized below in a step-by-step form: 
 
1) Set a displacement increment at the next step *

n Y11∆+ . 

2) Determine the first mode vector at the current step { }11 TnTn φΓ . 

3) Assume the first mode vector at the next step as { } { }111111 TnnTnn φφ Γ=Γ ++ . 

4) Calculate the displacement by Eq. (A1): 
 
{ } { } *

nTnTnn Dd 1111111 ++++ ⋅Γ= φ  (A1) 
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Figure 10 Prediction of Maximum Displacement at Each Frame on Top Floor 
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Figure 11 Prediction of Maximum Drift Angle at Each Frame 



where ( )*
n

*
n

Tn

*
n YYD 111

11
11

1 ∆+
Γ

= +
+

+
 (A2) 

 
5) Determine the deformation and restoring force of each element. 
6) Determine the first mode vector { }1111 TnTn φ++ Γ  from the secant stiffness defined at the maximum 

deformation previously experienced. 
7) Repeat steps 4) through 6) until { }1111 TnTn φ++ Γ  calculated in step 6) falls within an allowable band 

from the assumed first mode shape. 
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