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SUMMARY 
 
Discrete time series representation for some commonly used relations in earthquake engineering and 
engineering seismology are presented and the advantages compared with their continuous time 
counterparts are discussed. Seismic source models for simulation of ground motion based on Brune’s 
models are presented in discrete time form as well as model of Savage-Haskell type including directivity. 
The discrete time models are presented as a series of recursive filters (ARMA models) that simplifies the 
simulation process and do not involve the numerical Fourier transform. The source models are presented 
as amplitude Fourier spectra. Corresponding discrete transfer functions, formulated as z-transforms, are 
derived that give similar response as the original continuous time transfer functions. The problem of 
minimising the modelling error favours models that are parameterised based on physical information, as in 
the case of the source models. However, this often calls for more modelling effort and is the main reason 
that the easier to use black-box models are often chosen instead. A discrete time site amplification model 
for vertically propagating S-waves is discussed. This model provides good physical insight into the 
problem of site amplification and facilitates estimation of site characteristics from recorded ground 
motion. Furthermore, a discrete time model of an SDOF-system is presented and a demonstration is made 
of its use for the computation of response spectra.  
 
 

INTRODUCTION 
 
The stochastic approach for simulating acceleration records for structural response studies has been 
practiced for several decades. Housner found that, by adding a large number of sine waves with random 
phase, acceleration record could be generated that had similar spectral characteristics as recorded ground 
motion. Later the simulation process was improved by passing white noise though a SDOF linear filter 
(see Housner[1] and Tajimi [2]). Furthermore, Hanks and McGuire [3] and Boore [4] demonstrated that 
representing the ground motion as band-limited white noise with spectra according to Brune’s model [5, 
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6] gave good agreement with recorded ground motions. Their models are of the following type (see for 
example Change et al. [7]):  
 

2( ) ( ) (R) ( ) ( )A B G E Sω = ω ω ⋅ ⋅ ω ⋅ ω          (1) 
 
where A(ω) is the Fourier spectrum of acceleration, ω is the frequency, B(ω) is the omega squared source 
model, G(R) is the geometrical spreading function, E(ω) is the exponential spectral decay term and S(ω) 
represents site amplification. This model can be used for simulation by using the Eq.(1) to represent a 
filter. The simulated acceleration can be obtained by using band-limited white noise as input into the 
filter. In the following the main emphasis will be on constructing discrete time filter to simulate ground 
motion. Usually an envelope function is also applied to the simulated time series to account for the change 
in variance with time.  
  
The main purpose of this paper is to demonstrate the formulation of the type of model represented by 
Eq.(1) as discrete time series models, parametric models or simply ARMA models. These type of models 
can also be applied as black-box models i.e. not based on the physics of the earthquake process. These 
type of models have been applied to strong-motion modelling by several researchers (see, for instance, 
Conte et al. [8]; Ólafsson and Sigbjörnsson [9]); The parametric time series model approach has also been 
applied to system identification in structural dynamics (see, for example, Imai et al. [10]; Celebi and Safak 
[11]) and are called ARMAX models when the input signal is measurable, where the X stands for 
exogenous (excitation or input signal). 

 
DISCRETE TIME MODELS 

 
A stationary stochastic process, sampled at regularly spaced time intervals may be represented by an 
ARMA model (see, for example, Rabiner and Gold [12]; Marple [13]; Ljung [14]), which is in fact a 
difference equation or a digital filter: 

 

1 1( ) ( 1) ... ( ) ( ) ( 1) ... ( )= − − − − − + + − + + −p qx k a x k a x k p w k b w k b w k q                                           (2) 

 
where, w(k) is a zero mean ‘white’ (Gussian) noise process with finite standard deviation, σw, a1, ..., ap 
and b1, ..., bq are the model parameters, the AR and MA parameters, respectively. Here x(kTS) represents a 
sampled version of the process x(t) for k =1, 2, ..., N, where TS is the sampling interval. In what follows the 
time index will be scaled for convenience so that the sampling interval is TS = 1. The z-transform of x(k) is 
defined as follows, where z = exp(j2πfTS):  
 

X z( ) = Z(x k x k z k

k
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The power spectral density can be written in terms of the model parameters as:  
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and is evaluated over the range -1/2TS ≤f ≤1/2TS.  
 



The order of ARMA models that are to be applied are usually not known in advance. Several methods are 
available for order determination and parameter estimation based on second order statistics [14, 15]. 
These methods have also been developed to estimate time varying parameters (for example, Haykin [15]). 
Some commercially available parameter estimation software is also available [16]. There have also been 
several methods developed to estimate parameters based on higher-order statistics to handle non-linear 
systems where the driving noise is non-white (Swami et al. [17]; Chrysostomos [18]). The advantage of 
using higher-order statistics is that the phase information is preserved.   
 
Several researchers have applied low-order ARMA models to ground-motion acceleration (see, for 
example, [8, 9]). As an example, the ARMA(4,1) for acceleration induced by Icelandic earthquakes is 
given as (Ólafsson [19]). 
 

( ) 3.6 ( 1) 5.11 ( 2) ( ) 0.99 ( 1)x k x k x k w k w k= + − − − + + −                                                                    (5) 
 
Figure 1 shows the input time series (white noise) the simulated acceleration, the pole-zero plot and the 
theoretical and simulated spectra.  
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Figure 1: Simulated acceleration using ARMA(4,1) model. The figure shows a plot of the input to 
the ARMA filter, a white noise sequence, w(k); the output of the ARMA filter (acceleration time 
series, x(k)) and the spectrum of the acceleration time series (x), obtained using Fourier transform, 
plotted along with the theoretical spectrum computed using Eq.(2). 



BRUNE’S FAR-FIELD MODEL 
 
The amplitude spectrum of Brune’s far-field model can be written as follows (Brune [5, 6]):   
 

2
0 1

23 2

2
( ) exp( )

4 (1 ( / ) )
P

c

C R M
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R
θφ ωω = − κω

πβ ρ + ω ω
                 (6) 

 
where M0 is the seismic moment, Rθφ is the radiation pattern, Cp is a reduction factor accounting for the 
partitioning of the energy into two horizontal components, R is a function representing geometrical 
spreading, β is the shear-wave velocity, ωc (= 2πfc) is the corner frequency, and ρ is the material density of 
the crust. The Brune’s model is extended with en exponential term to account for the spectral decay at 
higher frequencies. Here it is assumed, as an engineering approximation, that the spectral decay 
parameter, κ = R/Qβ (Q is a path-averaged quality factor), increases very slowly within distance and is 
near constant within a certain radius of the earthquake source (Anderson [19]; Ólafsson [20]).  
 
The corner frequency is defined as [5,6] 
 
ωc = 2.34β/rB            (7) 
 
where rB is the fault radius. The fault radius of a circular fault is given according to Brune [5, 6] as  
 
rB = (7M0/16∆σ)1/3                          (8) 
 
where ∆σ denotes the stress drop. This is found as a reasonable approximation for the study area, at least 
for moderate-sized earthquakes (Ólafsson et al. [23]). Hence the corner frequency is assumed related to 
seismic moment and stress drop as follows: 
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The impulse response for the low-pass part of Eq.(6) can be written as   
 

( ) e for 0−= ≥th t t t                       (10) 
 
The transfer function can be expressed as 
 

2
c
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and jωTc is an imaginary component where j = (−1)1/2 and Tc = 1/ ωc. 
 
The method chosen here to discretise H(ω) is the impulse-invariant approach (see [13]). Using this 
method, the discrete transfer function H(z) becomes 
 

2
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                           (12) 



 
α = TS/Tc. The digital filter or AR(2) model representing Eq.(6) is as follows: 
 

2 2
1 1 1( ) 2e ( 1) e ( 2) ( )x k x k x k w k−α − α= − − − + α              (13)                    

 
The double differentiation in Eq.(6), (jω)2, can be represented by the discrete transfer function 
 
  1 2 2

2 S( ) (1 ) /H z z T−= −                   (14) 
 
The corresponding filter can be written as follows (MA(2) filter): 
 

x k
T

x k x k x k2 1 1 1

1
2 1 2( ) ( ( ) ( ) ( ))= − − + −

S
2

                                        (15) 

 
A time series with the same spectral characteristics as in Eq.(1) can be simulated by passing white noise 
sequence through the filter of Eq.(13) and using the output as input to the double differentiation filter 
represented  by Eq.(15). The filters can also be merged into one filter, representing a ARMA(2,2) model. 
Examples of the output of the filters in Eq.(13) and Eq.(15) are shown in Figure 2. 
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Figure 2: Simulation example. Upper left. Simulated displacement using Eq.(13). Upper right. 
Spectrum of displacement.  Lower left graph. Acceleration simulated with Eqs.(13) and (15).  Lower 
right graph. Fourier spectrum of simulated acceleration.  



SPECTRAL DECAY FUNCTION  
 
An additional filter is need to obtain the attenuation of high frequency components that is represented by 
the following function  
 

H3
2( ) /ω = e−κω                   (16) 

 
If –κω/2 is small then a first order approximation can be applied to discretise Eq.(16) (see, for example, 
Safak [23]). Here, however, a use is made of the Fourier transform pair  
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The discrete form of the transfer function H3(z) can be arrived at by z-transforming, the sampled version of 
h3(t), that is h3(t) = h3(kTS). This gives the following: 
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The exponential function can therefore be realised by filter with the transfer function  
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where Np is the number of filter coefficients. Here the impulse response is 
 

2 1 0 1 2( ) ,....., , , , , ....,
p pN Nh n b b b b b b b =            (20) 

 
and 
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The filter can be expressed as  
 

2 1

2
1

( ) ( ) ( )
pN
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x k h n x k n
+

=

= −∑           (22) 

 
The filter in Eq.(22) is a FIR filter where the infinite-duration impulse response is truncated. The filter 
also satisfies the condition h(n) = h(Np-1-n), which ensures a linear phase (see for example Oppenheimer 
[24]). This property of FIR filters is important for processing time-series (for example low-pass and band-
pass filtering) where the preservation of the phase is important. An example of output from the spectral 
decay filter can be seen in Figure 3 when the input is white noise. The theoretical spectral attenuation 
(Eq.(16)) is also shown. Figure 3 also shows the application of the filter (Eq.(22)) to shape the high 
frequency of acceleration simulated with Brunes’s model (Eqs (13) and (15)). A low-pass filter with cut-
off frequency of 24 Hz is applied to band-limit the white noise driving sequence. 
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Figure 3: Effects of the spectral decay function. Graph on left. Spectral decay filter (Eq.(22)) driven 
by a white noise sequence plotted along with Eq.(16).  Graph on right.  Spectral decay filter applied 
to acceleration simulated with Brune’s model (Eqs. (13) and (15)).  

 
 

SITE AMPLIFICATION  
 
A discrete time site amplification model for vertically propagating S-waves has been presented by Safak 
[23]. Here the model for a single soft layer over bedrock will be considered. The transfer function of the 
model, for large values of Q0, is given as follows: 
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where r is the reflection coefficient at the junction of the soft layer and bedrock, τ is the travel time in the 
soft layer, Q0 is the attenuation in the soil layer. The resonant peaks of the amplification are equally 
spaced at frequencies 
 
fsi i i= =/ ( ) , , ,....4 1 3 5τ           (24) 

 
Assuming a large value of Q0, so that 1/(2Q0) ≈ 0 is a reasonable approximation, the transfer function in 
Eq.(23) can be written in terms of z = exp(j2πfTS), as 

 

E z
r z

rz

T

T
( )

( ) /

/
= +

+

−

−

1

1 2

τ

τ

S

S
           (25) 

 
The discrete time model can be written as   

 
x k rx k n r w k m( ) ( ) ( ) ( )= − − + + −1          (26) 
 
where  
 
n T m TS S= =round round( / ) ( / )2τ τ         (27) 



 
Figure 4 shows the amplitude of the site amplification transfer function, Eq.(25). Also shown is the 
simulated acceleration using Brune’s model, Eqs. (13), (15) and (22), as well as the site amplification 
filter, Eq. (26 ). Also shown is the Fourier transform of the simulated acceleration.  
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Figure 4: Site amplification. Upper left graph. Amplitude of transfer function represented by Eq. 
(25).  Upper right graph. Fourier transform of simulated acceleration. Bottom graph. Simulated 
acceleration using Eqs.(13), (15), (22) and (26). 

 
 

BRUNE’S NEAR-FIELD  MODEL 
 
The model in Eqs.(6) can be applied to far-field data. For short epicentral distances Brune’s near-field 
model is a better choice [5, 6]. The amplitude spectrum of Brune’s near-field model, extended with an 
exponential function, can be written as  
 

0

3 2 2

7 1( ) exp( )o28 B
R

C Mp
A

r −

ωω = − κ ω
ρ β ω + τ

        (28) 

where κo is the spectral decay of the near-field spectra and τR is the so-called rise time. The following 
discrete time models can be applied to simulate time sequences with spectral characteristics described by 
the low-pass part and the differentiation in Eq.(28).   



 

( ) e ( 1) ( )1 1
dx k x k d w k−= − + ⋅            (29) 

 

2 1 1
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( ) ( ( ) ( 1))x k x k x k

T
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where d = Ts/τ. The exponential term is accounted for by passing the output sequences that have passed 
through the filters of Eqs.(29) and (30), through a similar filter spectral decay as represented by Eq.(22).  
 

SAVAGE-HASKELL MODEL  
 
For an earthquake that can be approximated as a point source Brune’s models are found to be good 
approximations for engineering purposes. For an earthquake on a fault where one dimension is much 
greater than the other and directivity is considered then the Haskell-Savage model can be applied (see 
Haskell [25] and Savage [26]. The amplitude of the acceleration spectrum is expressed as A second source 
model used in what follows is a model put forward by Savage [26] and is based on a theory by Haskell 
[25]. The amplitude displacement spectra for this model can be written as 
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where Tc = 1/ (1.078ωc) and F is a directivity function of the rupture (see [26] or [27] for details). 
 
The directivity function F = F1, assuming a uni-lateral propagation, is written as follows: 
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with τ0 defined by  
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where vc represents either α (P-wave velocity) or β (S-wave velocity). The parameters θ and φ are angles 
defining the direction from the source to the measurement site, vr is the rupture velocity, and L is the 
length of the fault. For a bi-directional rupture the directivity F(ω,τ0,τp) is represented by the following 
expression 
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where τ0 is obtained as in Eq.(33) by replacing L with L0 and τπ   is similarly obtained in a similar fashion 
by replacing L in Eq.(33) with Lπ.   
 
For finding the discrete representation of the sinc function in Eq.(32), the following relation can be used  
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By using (1−z−1)−1 for the integrating factor, (jω)−1, the discrete time transfer function can be written as 
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where 
 
M F1 0 2= round S( / )τ    M F2 2= round S( / )τπ        (37) 

 
Furthermore by using the following relation  
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where B = (τ0−τp)/2TS, the discretised function F(z) can be written as follows: 
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where 
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The low-pass part of the transfer function A(ω) in Eq. (31) can be written as 
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and can be represented by the following discrete transfer function  
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where a = TS/Tc. This can be realised by the discrete time equation 
 

1 1( ) e ( 1) ( )ax k x k aw k−= − +              (43) 
 
The following recursive equation represents the directivity function of Eq.(34) 
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where A1 = L0/2M1, and B1 = Lπ/2M2.  
 
The transfer function amplitudes of the continuous model (Eq. (34)) and the average Fourier spectrum of 
10 simulation runs (N = 4000, TS = 0.01, Np = 120) using the discrete model were compared and the 
results are shown in Figure 5. The parameters used were  vr, L0 and Lπ. 
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Figure 5: The Savage-Haskell model. The solid curve represents the theoretical model of Eq.(31) but 
the dashed line represents the average Fourier spectrum of x acceleration sequences simulated with 
Eq.(44). Left graph. Unilateral rupture. Right graph. Bi-lateral rupture.  

 
 

RESPONSE SPECTRUM MODELS  
 
The displacement response spectra are defined as the maximum value of the response of a second-order 
system subjected to a subjected to earthquake motions a(t), at a certain undamped natural frequency ω0, 
and damping ratio ζ, that is  
 
S y td ( , ) ( )
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ω ζ0 =              (45) 

 
The second-order system in Figure  can be described by the following equation (see, for instance, 
Clough[28] or Langen and Sigbjörnsson [29]) 
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where y(t) is the relative displacement of the mass m with respect to the ground,  is the undamped natural 
frequency, and ζ = c/2mω0 is a fraction of critical damping. The general solution of Eq.(46) is  
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where h(t) is the impulse response of the system and is written as 
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where ωd is the damped natural frequency and can be expressed as follows: 
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The discretised impulse response can be written as 
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The discretised transfer function, H(z),  of the system in Eq. (50) can be obtained using the z-transform 
and can be written as follows.  
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A filter for the displacement response determined from the transfer function H(z) of Eq. (51) is written as 
follows: 
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The transfer function can also be obtained from the autocorrelation function. Similarly filters for 
computing the velocity- and acceleration-response can be realised.   
 
The velocity response spectra can be expressed as (Hudson [30]): 
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The discretised impulse reponse for the first term in Eq.(53), can be expressed as 
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The discrete transfer function H1(z) can be written as 
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The recursive discrete time equation for the velocity response, yv(k), can now be written as 
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The recursive Eq.(55) was used to compute the velocity response spectra for 10 accelerograms that were 
simulated with Brune’s model. The results are shown in Figure 6 (left graph). The solid (red) curve 
represents one the spectrum for one realisation and the dashed (blue) curve represent the average of the 10 
realisations. In the graph on the right hand side of Figure 6 the results from the computation of the velocity 
response of the 10 simulations using the ARMA(4,1) of Eq.(5).  
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Figure 6: Velocity response spectra of 10 accelerograms simulated using.  Graph on left. Brune’s 
model.  Graph on right.  ARMA(4,1) model of Eq.(5). The solid (red) curve represents the spectrum 
for one realisation and the dashed (blue) curve represent the average of the 10 realisations.  
 

DISCUSSION 
 
The discrete time series models are either based on models that have some physical meaning as in the case 
of the models that are considered in this paper for ground motion modelling. Another approach is the so-
called black-box approach where no attempt is made to attach physical meaning to the parameters. 
  
The discrete time counterparts of the strong-motion models that are formulated in continuous time are 
derived here. The resulting filter equations that can be used for simulation have not been scaled so that the 
variance of the output is the same as the variance of the input signal. The scaling can be done by 
integrating the transfer function of the filter and using the result as a normalising factor. Usually the 
output variance from these models is normalised afterwards and scaled with respect to pga or rms-
acceleration obtained from attenuation relations.  
 
Using discrete time models has some clear advantages. These advantages have made them extremely 
popular for modelling and estimation in control, signal processing and system identification. Once you 



have the parameters the simulation is extremely straightforward. It is just a matter of passing a noise 
sequence through recursive filter equations. Another advantage is link between the recursive filter 
equations and the discrete transfer function. This means that when the parameters are known then the 
transfer function can also be determined using the parameters. The parametric time series models have 
also advantages as consistent spectral estimator as compared with the classical periodogram where the 
bias decreases but not the variance with added information. 
 
The main disadvantages are for example the order determination problem for black box models and also 
the parameter estimation algorithms for determining ARMA parameters usually require non-linear 
optimisation. This means somewhat more complex estimation algorithms as opposed to simply applying 
the FFT. For the discrete time models there is a trade-off between model complexity or entropy and 
lowering the variance. The models are also bound by the limitations that digital filters in general have 
such as round-off noise and quantization effects.   
 

CONCLUSIONS 
 
This paper demonstrates the use of parametric time series models for simulating strong-ground motion and 
structural response. It is demonstrated that a discrete time counterpart of models that are formulated in 
continuous time can be conveniently obtained. Once the discrete time counterparts have been derived then 
filter with parameters that have physical meaning can be easily applied for simulating ground-motion.  
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