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SUMMARY 
 
The information presented in this paper is one part of a larger discussion on the inner workings of 
catastrophe models and how they assess risk from natural hazards. In particular, this discussion focuses on 
the role of uncertainty in catastrophe models by examining the sources, nature, and impact of uncertainty 
on assessing natural hazard risk. An illustrative example of assessing earthquake risk in South Carolina 
enables one to understand how uncertainty in the modeling process affects the risk between stakeholders. 
The larger discussion, to be published in 2004, brings together researchers at the Wharton School of the 
University of Pennsylvania with the collective wisdom of three leading modeling firms (Risk Management 
Solutions, EQECAT, and AIR Worldwide). Catastrophe Modeling: A New Approach to Managing Risk 
will be available from Kluwer Academic Publishers. 
 

INTRODUCTION 
 
Catastrophe modeling is a complex tool to assess the risk from natural hazards. The four components of 
hazard, inventory, vulnerability, and loss (Figure 1) require information from a range of sources and the 
expertise of an array of professionals. Natural hazard, engineering and economic data are the foundation 
of catastrophe models. Limitations in data and assumptions about the model’s parameters, in the hazard, 
inventory, and vulnerability modules, affect a catastrophe model’s loss estimates and the certainty 
associated with these estimates.  This paper explores the sources, nature, and impact of uncertainties in a 
catastrophe model. Prevalent methods to represent and quantify uncertainty through the components of the 
catastrophe model are discussed. Finally, the impact of uncertainty on exceedance probability (EP) curves 
used by risk managers to quantify their catastrophe risk potential is illustrated by examining potential 
losses to residential property from earthquakes in Charleston, South Carolina. Quantification and 
classification of uncertainty provides opportunities to reduce risk. With accurate measures of uncertainty, 
stakeholders can potentially lower the cost of dealing with catastrophe risk. Furthermore, since the risk 
affects stakeholders in dissimilar ways, the robustness of a risk management strategy can be made clear to 
each stakeholder if uncertainty is delineated. 
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Figure 1: Catastrophe model components. 
 

CLASSIFICATIONS OF UNCERTAINTY 
 
There is a great deal of information needed to develop the hazard, inventory, vulnerability, and loss 
components of a catastrophe model. Therefore, all stakeholders in the management of risk value new 
information regarding these modules. For example, an insurer values additional information on the 
likelihood of disasters and potential damage to properties in its portfolio in order to more accurately 
manage the risk. Local government officials value a thorough understanding of the hazards in the region in 
order to plan for emergency response and recovery efforts following a disaster. Model developers value 
any additional information to validate and calibrate their catastrophe models.  
 
Since catastrophe modeling is a fairly new field of application, there are no historical classifications of 
catastrophe modeling uncertainty, per se. However, building on the concepts from probabilistic hazard 
analyses, uncertainty can be characterized as either aleatory or epistemic in nature [1]. Aleatory 
uncertainty is the inherent randomness associated with natural hazard events, such as earthquakes, 
hurricanes, and floods. It cannot be reduced by the collection of additional data. In contrast, epistemic 
uncertainty is the uncertainty due to lack of information or knowledge of the hazard. Unlike aleatory 
uncertainty, epistemic uncertainty can be reduced by the collection of additional data. 
 
 While the advantage of differentiating between aleatory and epistemic uncertainty in an analysis is clear 
(only epistemic uncertainty can be reduced), the necessity of distinguishing between aleatory and 
epistemic uncertainty is not. “Epistemic and aleatory uncertainties are fixed neither in space…nor in time. 
What is aleatory uncertainty in one model can be epistemic uncertainty in another model, at least in part. 
And what appears to be aleatory uncertainty at the present time may be cast, at least in part, into epistemic 
uncertainty at a later date” [2]. Therefore, developers of catastrophe models do not necessarily distinguish 
between these two types of uncertainty; instead, model developers concentrate on not ignoring or double 
counting uncertainties and clearly documenting the process in which they represent and quantify 
uncertainties. 
 

SOURCES OF UNCERTAINTY 
 
Limited scientific knowledge, coupled with a lack of historical data, leave open several possible and 
competing explanations for the parameters, data, and mathematical models underlying each of the 
components in a catastrophe model. Simply put, the science and impact of natural hazards are not 
completely understood; in addition, the cross-disciplinary nature of a catastrophe model leads to 
complexity. Experts in seismology or meteorology who model the hazard must interact with structural 
engineers who model the vulnerability; similarly structural engineers who model the vulnerability must 
interact with actuaries who model the loss. Basically, as each discipline’s modeling assumptions are added 
to the process, more uncertainty is added to the estimates.  



 
In catastrophe modeling, epistemic and aleatory uncertainties are reflected in the four basic components of 
a model. Aleatory uncertainty is reflected via probability distributions. The frequency of a hazard 
occurrence and the fragility of a building are examples of aleatory uncertainty. Since the exact time of 
occurrence in the future and the precise level of structural damage cannot be known in advance of a 
hazard event, the recurrence rate and the vulnerability of the inventory exposed to the natural hazard are 
characterized using probability distributions.  Similarly the capacity of individual structural elements of a 
building during a severe event and the resulting cost of repair cannot be determined beforehand.  
Probability distributions are also used to characterize these parameters in a catastrophe model. 
 
A larger issue in quantifying uncertainty is the lack of data for characterizing the four components in a 
catastrophe model. For example, the recurrence of earthquake events on fault sources can be modeled 
using a magnitude-frequency model [3], a characteristic earthquake model [4], or a combination of both 
models. In California, estimates of ground shaking probabilities on certain fault segments are established 
by combining the two recurrence models for earthquake magnitude-frequency distributions [5]. Historical 
earthquake records are used to establish a recurrence curve, or the Gutenberg-Richter relationship, for the 
smaller magnitude events, while geologic data (most importantly, a fault’s slip rate) is used to estimate the 
recurrence of the larger, characteristic events. The availability of seismological data describing earthquake 
occurrence in California for only a few hundred years makes the updating of the recurrence distributions 
problematic. When more data become available, in the form of fault slip rates or seismograph recordings, 
these relationships could potentially be improved.  
 
The deficiency of information regarding repair costs and business interruption costs affect the accuracy of 
the loss component of a catastrophe model. For example, the increased cost to repair or rebuild after an 
event is often taken into account using a demand surge adjustment. This is simply the percentage increase 
in costs due to the limited supply of construction material and labor immediately following a disaster. 
Further, due to the growing understanding of indirect losses, estimates of business interruption costs to 
commercial property owners are continually validated and calibrated with the latest loss information. 
 
Another source of epistemic uncertainty in a catastrophe model is the lack of available data to create the 
GIS databases within the modeling software. For any model, recognizing the importance of input data is 
essential. The GIGO (garbage in, garbage out) principal holds irrespective of how advanced or state-of-
the-art a model may be. GIS maps of hazard sources and geologic features characterize hazard and GIS 
maps of structure locations characterize inventory for an earthquake model.  
 
An incomplete description of a hazard source or the geology (e.g., underlying soil) can cause erroneous 
results. For example, having accurate information on the underlying soil in a region is very important.  A 
structure built on rock-like material is likely to sustain much lower losses compared to a structure built on 
soft clay-like material.  Inaccurate information on soil conditions can lead to large errors in estimation of 
loss due to an earthquake. In fact, past observations from earthquakes confirm that soil condition plays a 
very important role in building performance. As expected, buildings on soft ground or steep slopes usually 
suffer more significant damage in comparison to those on firm and flat ground. Since soil condition may 
vary dramatically within a small area, such as the Marina District in San Francisco (where soil conditions 
vary from bay mud to rock site), using zip code to identify a location may not be sufficiently accurate.  At 
a particular location, high-resolution geocoding should be used as it can pin down the accurate soil 
condition more accurately. 
 
Partial information on a structure’s characteristics can also result in an inaccurate estimate of future 
damage. For example, most structural engineers would agree that the construction type, age, height, 
occupancy, assessed value and the location of a structure are needed – at a minimum – for the inventory 



component of a catastrophe model.  If more specific information regarding the structure such as its 
location relative to other structures and previous damage to the structure were available, a more accurate 
estimate of damage or vulnerability would result. 
 
An additional source of epistemic uncertainty in the modeling process is lack of accurate information on 
true market value of the properties under consideration.  For determining the appropriate coverage limit, 
many residential policies use property tax assessment data, which are generally outdated and under-
valued. Under-valued exposures will result in under-estimating potential loss.  For example, suppose a 
home’s property value is assessed at $600,000 when its true worth is $1 million. Furthermore, suppose it 
is insured with a 15% deductible and full coverage based on the lower assessed value. If an earthquake 
occurs and causes major damage and the cost to repair the structure is 35% of true value of the home, the 
resulting monetary loss is $350,000. A $600,000 insurance policy with a 15% deductible translates to the 
homeowner being responsible for $90,000, with the insurer covering the remaining $260,000 of the loss. 
If the insurance coverage had been based on the home’s true worth of $1 million, the homeowner would 
have to cover the first $150,000 of the loss and the insurer would only have claim payments of  $200,000.  
 
Incomplete or inaccurate information on an inventory's description is a concern not only to insurers but 
also to all risk management stakeholders. To improve on the amount of such information available, an 
effort to document the types of housing structures worldwide was initiated in 2000 to assess the 
vulnerability of the world’s population to earthquake hazard. Under the guidance of the Earthquake 
Engineering Research Institute (EERI) and the International Association of Earthquake Engineering 
(IAEE), the World Housing Encyclopedia has a web-based listing of housing construction types from 
earthquake-prone countries around the world [6]. In addition, the Institute for Business and Home Safety 
relies on INCAST, a data inventory tool used in conjunction with the HAZUS catastrophe model, to store 
inventory information on the homes that are a part of their "Fortified…for safer living" program. These 
homes are reinforced to withstand many natural hazards, including high winds, wildfire, flood, hail, and 
earthquake.  
 
Epistemic uncertainty is also found in the use of laboratory testing (e.g., shake table tests) and expert 
opinion to develop the vulnerability component of a catastrophe model. For a portfolio risk assessment, 
damage functions (e.g., Figure 2) have traditionally been constructed using these sources along with 
damage surveys of actual structures. Given that laboratory testing has been restricted to certain types of 
structural materials, there is a limited understanding of how other materials withstand lateral loading.  
 
In the earliest versions of catastrophe models, damage ratios, or the ratios of repair costs to the 
replacement cost of a building, were estimated using the ATC-13 report of Earthquake Damage 
Evaluation Data for California [7]. This report was generated using the Delphi method of collecting 
information from a group of experts [8]. In this method, a series of questionnaires interspersed with 
controlled opinion feedback resulted in a group judgment. In the ATC-13 study, 71 earthquake 
engineering experts were asked to indicated their low, best, and high estimates of damage ratios for 78 
types of structures subject to earthquakes with Modified Mercalli Intensity (MMI) levels of VI through 
XII. Catastrophe model developers used these estimates in their earliest versions of their earthquake loss 
software, skewing estimates of damage due to the use of the Delphi Method.  More recent models employ 
cost models that translate estimates of physical damage into direct monetary loss rather than depending on 
damage ratios. 
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Figure 2: Illustration of a typical damage function. 

 
REPRESENTING AND QUANTIFYING UNCERTAINTY 

 
Guidelines do exist for identifying the sources of uncertainty and incorporating them into catastrophe 
models. The Senior Seismic Hazard Analysis Committee (SSHAC) Report is a comprehensive study 
addressing this issue and the use of expert opinion in a probabilistic seismic hazard analysis [1]. This 
report can also be used for the incorporation of uncertainty of other natural hazards. Additionally, 
guidelines set forth by the Environmental Protection Agency (EPA), requiring that all risk assessments 
possess the core values of "transparency, clarity, consistency, and reasonableness," are relevant for the 
modeling of natural hazards [9].  
 
The most common methods for incorporating uncertainty into catastrophe modeling are logic trees and 
simulation techniques. These two methods are standard approaches for quantifying and propagating 
uncertainty when there is intrinsic aleatory uncertainty, lack of consensus among experts, and lack of data 
used to estimate parameters. 
 
Logic Trees 
In the logic tree approach, alternative parameter values or mathematical relationships are identified within 
the catastrophe model, relative weighting schemes are assigned to each alternative, and estimates of 
parameters or relationships are calculated using a weighted, linear combination of the outcomes. 
Weighting schemes are numerous, with the weights representing the credibility of that alternative in 
relation to the available data. For example, one can use equal weights, weights proportional to the ranking 
of alternatives, or weights based on some comparison of previously assessed estimates with actual 
outcomes. Weights are often established through the use of expert opinion, and therefore, are biased 
towards an expert’s judgment.  
 
Figure 3 depicts a simple example of how a logic tree can be used in a catastrophe model. Suppose that 
there is an earthquake fault that generates a characteristic magnitude event. This event is estimated using a 
recurrence model with two alternatives for the fault’s slip rate, λ1 and λ2, weighted w1 and 1-w1, 
respectively. Next, suppose a single family residential structure is the only structure to be assessed in the 
inventory. However, there is a lack of consensus regarding the type of underlying soil at the site. Thus, 
there are two alternatives for the soil parameter, denoted S1 and S2 with respective weights w2 and 1-w2 in 
Figure 3. 
 



In the next branch of the logic tree, the two estimates of recurrence for a characteristic magnitude event 
and the two alternatives for site-specific soils are combined with two competing attenuation equations 
describing the rate at which the amplitude of the seismic waves decreases as the waves propagate outward 
from the source of the rupture. For example, the Frankel et al [10] attenuation relationship and the Toro et 
al [11] relationship can be used as two competing models of strong ground motion in the Central and 
Eastern United States. These two models, denoted Y1 and Y2 in Figure 3, are weighted w3 and 1-w3, 
respectively. This combination results in estimates of earthquake ground motion for certain magnitude 
events at a certain frequency of occurrence, under certain site conditions, and at certain distances from the 
event’s epicenter. 
 
 

 
Figure 3: Logic tree approach to catastrophe modeling. 

 
Finally, these ground motion estimates are combined with two competing models for damage functions, 
one created using expert opinion and one based on laboratory testing. These functions, D1 and D2, relate 
the expected damage state of the residential building (minor, moderate, severe damage, or collapse) to the 
level of ground motion at the site. Each is weighted accordingly, denoted w4 and 1-w4 in Figure 3. The 
final results of this simple example are sixteen calculations of structural damage to a single-family 
dwelling based on alternative assumptions of characteristic fault slip rates, underlying soils, and empirical 
attenuation models. As is evident, the costs of repair have not yet been incorporated. 
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The logic tree approach to incorporating uncertainty is utilized often in practice because of its tractability 
and its usefulness as a tool to communicate risk to stakeholders. While a set of results grows with each 
alternative assumption added to the analysis, advances in computing power allow the handling of large 
databases; therefore, both parameter and model alternatives can be identified within this type of approach. 
Although the above example shows two alternatives at each branch, a larger (yet finite) number of 
alternatives can be considered, as is typically the case in a catastrophe model. 
 
Simulation Techniques 
Simulation is a method for learning about a real system by experimenting with a model that duplicates the 
essential behavior of the system. It is one of the most widely used quantitative approaches to decision 
making. In contrast to a logic tree, which requires a set of simplifying assumptions, simulation can model 
extremely complex processes. An uncertain parameter is represented by a discrete or continuous 
probability distribution, multiple simulations are run which sample from the distribution, and the analyses 
are completed using these sample values. The results are statistically analyzed to estimate important 
performance measures of the system. In the case of catastrophe modeling, a performance measure is, for 
example, exceedance probability loss.  
 
Although most distributions in catastrophe modeling are continuous, a simulation using a discrete 
distribution is presented here for simplicity. Suppose that a single-family residential structure is subject to 
an earthquake hazard and five levels of damage states are defined (none, minor, moderate, severe, or 
collapse) in a catastrophe model. Suppose further that damage functions are available that represent the 
probability of being in, or exceeding, a certain damage state level given a certain level of ground shaking. 
Now suppose that the residential insurer wants a probabilistic estimate of being in a certain damage state 
given that the peak ground acceleration is 0.25 g.  
 
Simulation can be used to generate this probability distribution. First, the probability of being in one of the 
five damage states is calculated based on the given set of damage functions, indicated by damage state 
probability in Table 1. For example, there is a 5% probability that there will be no damage and a 7% 
probability that the building will collapse.  In this case, an arbitrary range from 00-99 (100 digits) is used, 
with 5% representing the probability of having no damage (00-04), 24% representing minor damage (05-
28), 48% representing moderate damage (29-76), 16% representing severe damage (77-92), and 7% 
representing collapse of the structure (93-99).  Then the cumulative probabilities are calculated for the 
ordered damage states and random numbers are assigned in proportion to these cumulative probabilities as 
shown in Table 1. 
 

Table 1: Simulation example in catastrophe modeling 
Damage 

State 
Damage 

State 
Probability 

Cumulative 
Probability 

Random 
Number 

Lower Bound 

Random Number 
Upper Bound 

None 0.05 0.05 00 04 
Minor 0.24 0.29 05 28 

Moderate 0.48 0.77 29 76 
Severe 0.16 0.93 77 92 

Collapse 0.07 1.00 93 99 
 
To start the simulation, a random number between 00 and 99 is generated. Based on the resulting value, a 
damage state is projected. For example, if the random number is 36, the structure has moderate damage; if 
the random number is 21, the structure sustains minor damage. This random number generation is 



repeated, for example, 1,000 times and the levels of damage are stored. At the end of the 1,000 sample 
runs, a histogram of the sample damage state frequencies is created (Figure 4). This histogram is an 
approximation to the distribution of damage, given a level of peak ground acceleration. 

Figure 4: Histogram of damage state frequency for 1000 simulation runs. 
 
While this is a simple example of a Monte Carlo simulation (and actual simulations in catastrophe 
modeling are much more complicated), it should be noted that this type of modeling is computationally 
intensive and requires a large number of samples. If the time and computer resources required to run a 
full-blown simulation is prohibitively expensive, a degree of computational efficiency can be found 
through the use of Modified Monte Carlo methods, such as Latin Hypercube Sampling, that sample from 
the input distribution in a more efficient manner [12]. In this way, the number of necessary runs compared 
to the Monte Carlo method is significantly reduced. 
 
Uncertainty and the Exceedance Probability Curve 
An exceedance probability curve is a graphical representation of the probability that a certain level of loss 
will be exceeded over a future time period. A widely used technique to create an exceedance probability 
curve in a catastrophe model is a combination of a logic tree with Monte Carlo simulation. Building on the 
simple examples presented earlier, each branch of the logic tree represents an alternative that samples 
from a probability distribution rather than assuming a simple point estimate alternative. For example, 
consider the competing attenuation equations for ground motion presented earlier, denoted Y1 = F1(f, M, r, 
Source, Site) and Y2 = F2(f, M, r, Source, Site). Instead of using the mean estimates of ground motion 
amplitude based on these functions for each branch of the logic tree, Monte Carlo methods can be used to 
sample from the attenuation functions along the branches of the tree. 
 
This blended approach allows the creation, in a systematic way, of a set of curves that represent various 
confidence levels in exceedance probabilities. For example, suppose that there are a set of assumptions, 
A1, A2…An, which represent an exhaustive set of all possible assumptions about the parameters, data, and 
mathematical models needed to generate an exceedance probability curve in a catastrophe model. Further, 
suppose that each set of assumptions is an alternative on one branch of a logic tree and each logic tree 
branch results in an EP curve that is generated when the assumptions Ai are made, characterizing the loss 
L, as shown in Figure 5 (i.e., EP(L,Ai) = P(Loss > L, Ai)). If each of the sets of assumptions are weighted 
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with subjective probabilities, w1, w2…wn, that add up to one and the assumptions, A1, A2…An, give rise to 
a monotonic ordering of their respective EP curves, the mean,  
median and a confidence interval for the resulting collection of EP curves can be defined. 

 
Figure 5: Logic tree and simulation to create a set of exceedance probability curves. 

 
Given the complexity of catastrophe modeling and this discussion of the sources and techniques to 
incorporate uncertainty in a model, it is not surprising that competing catastrophe models will generate 
different EP curves for the same portfolio of structures. When first used in practice, the degree to which 
these curves could differ was surprising to the users of catastrophe models. With more experience, a user 
expects a range of possible EP curves. 
 

A CASE STUDY IN UNCERTAINTY 
 
In the summer of 1999, a meeting was held among representatives of Risk Management Solutions, 
EQECAT, AIR Worldwide and The Wharton School to discuss a sensitivity analysis regarding catastrophe 
models' estimates of earthquake loss [13].  In this section, a case study of earthquake hazard in Charleston, 
South Carolina is presented using data from four catastrophe models: three models developed by the three 
modeling firms involved in this study (denoted Model A, Model B, and Model C), along with the U.S. 
federal government’s catastrophe model, HAZUS. A list of the common assumptions were specified for 
each modeling firm to conduct an assessment of the Charleston region, along with the key elements of 
uncertainty for the Wharton team to consider in an analysis they would undertake using the HAZUS 
model. 
 
Composite Model Curves 
The first goal of this case study was to discover not only the range of differences between results 
generated by the three competing catastrophe models, but also to compare a set of exceedance probability 
curves that represent the 5th percentile, mean, and 95th percentile level of loss. With these curves, a 90% 
confidence interval on loss is created.  In other words, each model created three EP curves for comparison: 
a best estimate of loss, defined by its mean exceedance probability curve, and two additional curves 
representing a symmetric 90% confidence level about the mean loss. 
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As previously mentioned, the exceedance probability curves produced were expected to be dissimilar, 
given the degree of uncertainty associated with earthquake recurrence in the Charleston, South Carolina 
region. In fact, the degree of uncertainty amongst the models was expected to be quite great due to the 
lack of understanding of the seismic sources in this region. Charleston region is a low earthquake hazard 
area and the moment magnitude 7.3 earthquake event in 1886 is the only known historical event of note. 
 
The assumptions for the analysis are summarized in Table 2. Four counties in the southeastern region of 
South Carolina, which surround the city of Charleston, comprised the study region. One hundred and 
thirty four census tracts are contained within the counties of Berkeley, Dorchester, Charleston, and 
Colleton. The HAZUS database of structures, as defined by the HAZUS97 release [14], was assumed for 
the inventory at risk. This database consists of seven occupancy classes of structures, namely residential, 
commercial, industrial, agricultural, religious, government, and educational occupancies. There were 
roughly 170,000 buildings in the data set, with approximately 97% of them classified as residential 
structures.  
 
Using this common inventory database, each catastrophe model was run unaltered. In other words, no 
additional common information was used to define the hazard component, the vulnerability component, 
and the loss component of each model; the proprietary portion of each model remained as such for the 
study. The generated exceedance probability curves with the relevant confidence intervals were 
constructed by each of the modeling firms for the loss associated with building damage only (i.e., ground 
up loss); no insurance parameters were considered in the analysis. 
 

Table 2: Charleston, South Carolina earthquake hazard analysis assumptions 
Component Assumptions 

Hazard • Fault and area sources defined by model  
• Recurrence defined by model 
• Site specific characteristics defined by model 

Inventory • 134 census tracts containing 170,000 structures 
• 97% residential structures 

Vulnerability • Damage functions/fragility curves defined by 
model 

Loss • Repair costs defined by model 
• Building damage loss only 

 
Given the proprietary nature of the competing models, each model’s set of curves is not presented here. 
Instead, composite curves developed by the Wharton research team are shown. (The individual and 
composite curves were reviewed by Professor Robert Whitman of the Massachusetts Institute of 
Technology, as part of the Technical Advisory Committee input to the project.) In Figure 6, a composite 
EP curve for the mean loss is shown that represents an equally weighted linear combination of the data 
(1/3 of each). For example, suppose an estimate of the probability of exceeding a loss of $1 billion (EP(L) 
= P(Loss > $1 billion) is needed for the study area. Model A’s probability of exceedance of 0.0091 is 
combined with Model B’s exceedance probability of 0.0051 and Model C’s exceedance probability of 
0.0053 to estimate: P(Loss > $1 billion) = (0.0091 + 0.0053 + 0.0051)/3 = 0.0065 or 0.65% probability of 
exceedance (a 1-in-154 year return period), as seen in Figure 6.  
 
Bounding the composite mean EP curve are composite symmetric 90% confidence interval curves: a lower 
bound on loss, representing the 5th percentile loss, and an upper bound on loss, representing the 95th 
percentile loss. Since the range of exceedance probabilities varied greatly for a particular loss level for 



these bounded curves, an equally weighted linear combination was not used (as it was in the mean case). 
Instead, the extreme value points across the three models were utilized in constructing the  
confidence intervals. Thus, the tendency to favor one model over the other two models was avoided.  
 

Figure 6: Composite exceedance probability curves for Charleston region. 
 
To illustrate the difference between the two approaches, consider the following example. Suppose that the 
5th percentile of exceeding a loss of $15 billion (EP(L) = P(Loss > $15 billion)) is required to determine a 
risk management strategy, which represents a large loss on the right-hand tail of the EP curve. Model A 
estimates a return period of 5,080 years, Model B estimates a return period of 1,730 years, but Model C’s 
curve does not extend beyond 1,000 years because there is too much modeling uncertainty beyond this 
point. If the weighted linear combination of these two estimates were calculated equally, ignoring Model 
C, the result would be a return period of 3,405 years or 0.029% probability of exceedance.  
 
Using the extreme value points for the lower and upper bound curves, the 5th percentile loss of $15 
billion has a return period of 5,080 years or approximately 0.02% probability of exceedance rather than 
the average of 0.029%. In this way, the 90% confidence level on the mean curve is an envelope of the 
three model curves, capturing the true bounds on the uncertainty across the three models.   
 
Reconsidering the loss levels presented earlier for these curves, the probability that the loss to the 
inventory of structures in the Charleston region will exceed $1 billion or EP(L) = P(Loss > $1 billion) is, 
on average, 0.0065 or 0.65% with lower and upper bounds of 0.27% and 1.17%, respectively. The mean 
probability that the loss to the inventory of structures will exceed $15 billion = P(Loss > $15 billion) = 
0.00064 or 0.064% with a lower bound of 0.02% and an upper bound of 0.22%. 
 
A specific loss level for the region could be determined, given a probability of exceedance, using the same 
data. Using the example of the range of losses for the 0.2% probability of exceedance or the 1-in-500 year 
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event, it can be determined from Figure 6 that the mean loss to these structures is $4.6 billion with a lower 
bound of $1.5 billion and an upper bound of $17.1 billion. It should be clear that in dealing with 
catastrophe modeling, there is a wide variation in the probability of exceedance given a level of monetary 
loss and a wide variation in loss given a probability of exceedance. 
 
HAZUS Analysis 
A related objective of the Charleston analysis was to generate an exceedance probability curve utilizing 
the HAZUS model and to test the sensitivity of the loss output to a few key assumptions in the model. For 
more details and the complete analysis, see Grossi and Windeler [15]. While the HAZUS methodology is 
more transparent than the approaches used in the three competing models (Model A, Model B, and Model 
C), it requires the development of additional software to create an EP curve [16]. The 1997 HAZUS 
earthquake model in its basic form was not designed to create an exceedance probability curve [14]. It 
could create either an estimate of loss based on one scenario event or based on a probabilistic seismic 
hazard map, such as the ones created by the USGS team of researchers [10]. 
 
The software tools that enable the creation of an exceedance probability curve using the HAZUS model 
consist of a pre-processor, designated Scenario Builder and a post-processor, designated HAZUS-EP. As 
shown in Figure 7, Scenario Builder defines a finite set of earthquake events, j = 1,2…N, which represent 
a minimum set of data points needed to create an EP curve. Each event j is defined by its source, 
magnitude, rupture location, recurrence and attenuation (the hazard component of a catastrophe model). 
The data and assumptions used to develop the stochastic event set generally follow those described in the 
USGS National Seismic Hazard Map project [10]. Notably, the attenuation relationship to describe the 
rate at which ground motion decays from source to site is an equally weighted linear combination of the 
Frankel et al [10] and the Toro et al [11] empirical equations. In this way, all information available is 
incorporated into the model. 
 

 
Figure 7: Scenario Builder-HAZUS-HAZUS-EP to create an exceedance probability curve. 

 
The total set of events, N = 156, was chosen so that there was a wide enough spectrum of events capable 
of affecting the Charleston study region. The operative assumption in defining events was that variation in 

 



losses would decrease with distance from the study area.  Therefore, the greatest number of events would 
be required within the study counties; the seismicity of progressively larger areas outside these counties 
could be represented by single events. Similarly, smaller magnitude events were eliminated with 
increasing distance. As in the earlier analysis to create the composite set of EP curves from Models A, B, 
and C, the database of inventory structures are defined by the HAZUS97 release [14], consisting of 
approximately 170,000 buildings of various occupancy classes. 
 
With the portfolio of structures in Charleston, South Carolina, the HAZUS model is run for each event j 
with j = 1,2,…156. The model calculates the damage to the structural and nonstructural building 
components and the resulting direct economic losses, as defined by the HAZUS methodology (the 
vulnerability and loss components of a catastrophe model). The results of each run, including losses by 
census tract and by occupancy type, are stored in a database file for input into the post-processor, HAZUS-
EP. HAZUS-EP consolidates the losses to form an exceedance probability curve for the region. 
 
In the complete analysis of the Charleston region using HAZUS, a collection of exceedance probability 
curves was generated under various assumptions in the hazard and inventory components of the model 
[15]. In this sensitivity analysis, such things as the occupancy mapping of structures, the attenuation 
relationships, the earthquake duration, and the soils mapping schemes were analyzed.  Since a sensitivity 
analysis of every assumption in a catastrophe model cannot be presented here due to the large number of 
parameters, a single example demonstrating the sensitivity of loss to a site’s underlying soil conditions is 
discussed here. The underlying soils across the entire region are classified as stiff soils or soil class D, as 
defined by the NEHRP provisions [17] and assumed in the default mode of HAZUS. To test the sensitivity 
of this assumption, a different GIS map was used which showed underlying soils in the region to be rock, 
stiff soils, and soft soils (soil classes B through E in the NEHRP provisions). This latter scheme, which 
considers varying soil classes, can be considered as a reduction in epistemic uncertainty due to the 
addition of new data on the geology of the region. 
 
The two curves presented in Figure 8 are the mean exceedance probability curves assuming stiff soils and 
assuming a range of soil types (rock, stiff soils, and soft soils). Interestingly, for a given probability of 
exceedance, the loss assuming all stiff soils in the region is greater than the loss assuming a range of soil 
types. It is therefore a conservative assumption in the default mode of HAZUS. For example, at the 0.2% 
probability of exceedance or the 1-in-500 event, the stiff soils mean loss is $8.4 billion and the mean loss 
assuming other soil types is $6.65 billion. Therefore, the assumption of stiff soils everywhere in the region 
serves to establish a conservative estimate of loss. These curves show little expected loss above the 1% 
probability of exceedance level.   
 
Finally, the probability of exceeding a loss of $1 billion using the HAZUS model can be compared with 
the probability of exceeding this same loss calculated from the equally weighted linear combination of the 
three competing catastrophe models. The HAZUS analysis, assuming stiff soils everywhere in the region, 
estimates P(Loss > $1 billion) = 0.0048 or 0.48% or 1-in-208 year event. As noted earlier and shown on 
Figure 6, the composite mean EP curve has P(Loss > $1 billion) = 0.0065 or 0.65% probability of 
exceedance or a 1-in-154 year return period. These two return periods are not very different, a surprising 
result given the uncertainty in the seismicity of the Charleston region. 
 

 



Figure 8: HAZUS mean exceedance probability curves for Charleston region. 
 

SUMMARY AND CONCLUSIONS 
 
This paper examined the complexities of catastrophe modeling, mathematical constructs that allow the 
generation of exceedance probability curves, and the uncertainties inherent in the modeling process. By 
introducing the concepts of epistemic and aleatory uncertainty, the paper explored how to quantify 
uncertainty through the use of logic trees and simulation techniques. A case study in South Carolina 
indicated the importance of understanding where uncertainty lies in a catastrophe model and how it can be 
captured and utilized in the risk assessment process. By constructing exceedance probability curves with 
confidence intervals, the degree of uncertainty associated with natural hazard events, such as an 
earthquake in Charleston, can be appreciated. 
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