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SUMMARY 
 

Friction Pendulum Sliding (FPS) bearings are very efficient and cost effective seismic protection devices, 
which simply alter the force-response characteristics of the structures by a large displacement response at 
isolation level. Maximum dynamic displacement response of an isolated structure is a crucial parameter 
for designing a reliable seismic protection system. The governing equation of the dynamic response of an 
isolated structure supported by (FPS) bearings consists of a non-linear trigonometric term that makes the 
analysis of the isolated structure extremely difficult. Therefore this paper proposes a linear second-order 
ordinary differential equation (ODE) that represents the governing equation of the motions of isolated 
structures by (FPS) bearings.  
The procedure basically starts to design a mathematical model of a two-DOF system that is used to 
analyze the motion of an isolated structure excited by harmonic ground acceleration. In this study, it is 
proven that the non-linear trigonometric term of governing equation is the function of radius of curvature 
of friction pendulum bearings (FPB), damped-natural frequency of isolated structure and relative velocity 
of supported system at isolation level. This functional relationship is basically used to eliminate non-
linear trigonometric term from the governing equation and to derive linear second-order ordinary 
differential equations of the motions of rigid and flexible structures supported by (FPS) bearings. 
Parameter studies are also performed to verify these equations with the results of a recent experimental 
study2. The primary parameters of parameter study are the excitation frequency of π3=w rad/s, peak 
ground accelerations of 1.0g and 0.5g, and radius of curvatures of friction pendulum bearings, which vary 
from R=30 in to R= 250 in. The figures of parameter study illustrate the relative displacement responses, 
absolute acceleration responses and absolute velocity responses of isolated structures. By using the values 
of  maximum acceleration responses, the inertia reductions of isolated rigid structures are calculated.  
As an example, dynamic responses of a 300 kips-rigid structure supported by (FPS) bearings subjected to 
harmonic ground acceleration are also calculated and the results of seismic design properties are 
tabulated. Those results are consistent with the results of experimental studies.  
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INTRODUCTION 
 
The Spherically shaped, articulated sliding bearings are placed at foundation level to support complete 
structures of buildings, bridges and heavy industrial equipment such as heavy electrical transformers and 
large liquid storage tanks. The isolated structure supported by (FPS) bearings undergoes friction 
pendulum motion when excited by ground motion. The magnitude of the lateral force that causes the 
lateral displacement of the supported structure depends primarily upon the curvature of the spherical 
sliding surface, the coefficient of friction mobilized during sliding and the vertical load on the bearings. 
The lateral force is proportional to the vertical load, which minimizes torsional motions in structures. 
The following mathematical model is designed to derive the governing equations of the dynamic 
responses of structures isolated by (FPS) bearings. With this model dynamic response of isolated 
structures are analyzed when such system undergoes harmonic ground excitation. Parameter studies are 
performed for the sizes of radius of curvature of friction pendulum bearings (FPB) of R=30, R=60, R=90, 
R=120, R=150, R=180, R=210, R=250 inches. In this parameter study, the excitation frequency is used as 
of π3=w since the dominant frequency of most major earthquakes is close to π3=w , which corresponds 
to the period of 0.7s.  Peak ground accelerations are used 0.5*g and 1.0*g. 
 
The governing equation of the dynamic response of a structure supported by (FPS) bearings 
The mathematical model shown in Fig. (a) represents the motion of the structures as a single-DOF system 
excited by harmonic ground acceleration. With this model, bM  denotes of the total mass of the structure 

if structure is totally rigid; if not it denotes the mass portion of the structure that vibrates at the frequency 
of friction pendulum bearings. In this case the structure behaves as a flexible structure, and the rest 
portion of the mass of the structure, sM , which vibrates at its own frequency. The equations of the 

motion are derived as follows. 
 
 

 
                      (a)                                                          (b)                                        (c) 
Fig 1. (a) The mathematical model (two-DOF system) for analyzing the dynamic response of the structure 
supported by (FPS) bearings, (b) schematic of an isolated rigid structure by (FPS) bearings (c) schematic 
of an isolated flexible structure by (FPS) bearings 
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Dynamic equilibrium of the structure supported by (FPS) bearings is as follows: 
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by substituting equation (2) and equation (3) into equation (4), the governing equation of  structure, which 
is supported by FPB and subjected to harmonic ground excitation would be derived as follows: 
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)/(cos Χ−=++ θµ      (5) 
It is extremely difficult to solve the above second-order non-linear differential equation (5). Therefore, 

nonlinear trigonometric term, θcos , is eliminated by redefining it with the terms of 
.

, xR  and Dw . In 
order to obtain a linear second-order (ODE) equation from this non-linear differential equation (5),  the 
procedure starts by taking derivative of equation (1) as follows: 
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θ , the angular velocity, which is the natural vibration frequency, Dw , of damped structure supported by 
friction pendulum bearings (FPB) subjected to harmonic ground acceleration.  

The equation (5) is reorganized by substituting sb WWW += ,  sb MMM += ,  )(cos
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Since 21 ξ−= nD ww , and nD ww ≅  when 1<<ξ  , the motion of the supported structure with (FPS) 

bearings is derived as a linear second-order ODE as follows. 
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   Where,  

 MW ,      The total weight, mass of the supported structure 

 bb MW ,     The weight, mass of the structure that vibrates at the frequency of FPB 

 ss MW ,      The weight, mass of the structure that vibrates at its own frequency  

 ΥΧ,          Imaginary fix coordinate system 

 yx,          Translating coordinate system, which is attached to (FPS) bearings 

  V             The lateral force or shear force of bearing at the isolation level  

 RF             Restoring force 

 fF             Friction force 

 
..

, xΧ           Absolute, relative velocity of bearing 

 
....

, xΧ        Absolute, relative acceleration of bearing 

 )(
..

tgΧ        Harmonic ground acceleration( )sin()( 0

....

wtt gg Χ=Χ ) 

 0

..

gΧ           Peak ground acceleration 

 R              The radius of curvature of bearing 

 µ             The coefficient of friction mobilized during sliding (assumed constant) 

 nw       Natural frequency of (FPS) bearing 

 Dw       Damped-natural frequency of isolated structure 

 w       Excitation frequency 

 ξ       Damping 

   nϖ       Dominate-natural frequency of flexible structure supported by (FPS) bearings 
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The equation of the motion for rigid structure in the form of a linear second-order ODE  
0=sM ,  =bM The mass, which is also total mass, since 0=sM  of the supported structure that vibrates 

at the frequency of friction pendulum bearings (FPB). The governing equation of the motion of a 
supported rigid structure by (FPB) would be derived from equation (7) as follows: 
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..
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...
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Where, 2/µξ =  
 
The equation of the motion for flexible structure in the form of a linear second-order ODE 

0>sM , and nϖ , which is dominate-natural frequency of system is 22 )1( n
b

s
n w

M

M+=ϖ . The 

governing equation of the motion of a supported flexible structure by (FPB) would be derived 
from equation (7) as follows: 
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Indeed, the dynamic response of flexible structure is a combination of two vibrations. Those vibrations 
are the vibration of some mass of structure that vibrates at the frequency of FPB, and the vibration of the 
rest of the mass of the structure that vibrates its own dominant frequency. 
The obvious question would be asked about what fraction of the total mass of structure vibrates at the 
frequency of friction pendulum bearings (FPB), or what fraction of the total mass of structure vibrates at 
its own dominant frequency? The stiffness level of the structure would be the answer of this question.  
For example, if stiffness of structure is too large, then whole structure would be assumed rigid, and 

0=sM . But an explicit, formulated answer to this question is not in the scope of this study. 

It is also shown from the above equation that damping, for flexible structure, 2µξ > , and so the 
displacement response of flexible structure would be expected less than displacement response of the 
rigid structure supported by (FPS) bearings excited by harmonic ground motion. 
 
The complete solution of the above linear second-order ordinary differential equation (8) and equation (9) 
would be as follows: 

wtDwtCtwBtwAex DD
twn cossin)sincos( +++= −ξ          (For rigid structure) 

wtDwtCtBtAex DD
twn cossin)sincos( +++= − ϖϖξ         (For flexible structure) 

This general solution contains two distinct vibration components: Transient vibration and steady state 
vibration, where the constants A, B, C and D are defined as follows:  
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For flexible structure, the natural frequency of nw  in the above equations will be replaced by  
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Parameter study 
Parameter studies performed for the rigid and flexible structures when the structures are excited by 
harmonic ground acceleration. Excitation frequency is used as π3=w . Maximum peak accelerations are 
0.5g and 1.0g. For flexible structure mass ratio is assumed 3)/( =bs MM . Mat lab figures of Fig. 2, Fig. 

3 and Fig. 4 illustrate dynamic and free responses- relative displacements, absolute velocities and absolute 
accelerations-of rigid and flexible structures supported by (FPS) bearings for radius of curvature of R=60 
in., R=120 in., 
 
As an example, seismic design properties of a 300 kips rigid structure, which supported by (FPS) bearings 
excited by harmonic ground acceleration are calculated, and the results of seismic design properties are 
tabulated in table1. 
 
 
w=3*pi (excitation frequency), 10.0=µ  (the coefficient of friction mobilized during sliding-assumed 

constant-),  0gX =1.0g (peak ground acceleration) 

 
Radius 

of 
Curvature 

of FPB 
R (in.) 

 
Natural period 

of 
FPB

g

R
Tn π2=  
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Effective damping 

Ratio 

)(
2

R

Deff

+
=

µ

µ
π

ζ

….% 
 

30 1.8 1.14 17.5 44 9627 1.8 9 
60 2.5 0.81 21 64 5102 2.5 14 
90 3.0 0.66 22.5 74 3451 3.0 18 

120 3.5 0.57 24 78 2717 3.4 21 
150 3.9 0.51 27.5 81 2033 3.9 22 
180 4.3 0.47 32 82 1650 4.3 23 
210 4.6 0.43 34 84 1439 4.6 24 
250 5.1 0.40 36 85 1229 5.0 26 

Table 1. Design properties of the dynamic responses of a 300 kips rigid structure supported  
                          by (FPS) bearings subjected to harmonic ground acceleration. 
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Fig. 2 Total dynamic and free responses of a rigid structure supported 

   by (FPS) bearings (Radius of curvature of FPB, R=60 in.) 
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Fig. 3 Total dynamic and free responses of a rigid structure supported 

     by (FPS) bearings (Radius of curvature of FPB, R=120 in.) 
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Fig. 4 Total dynamic responses of a flexible structure supported by (FPS) bearings 

  (Radius of curvature of  FPB, R=60 in. and R=120in., 3)/( =bs MM ) 
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Maximum relative displacement response of a rigid structure supported
 by (FPS) bearings subjected to hormonic ground excitation,

 (excitation frequency: w=3*pi,  peak ground accelerations: 0.5*g, 1.0*g )
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Fig. 5 Maximum relative dynamic displacement response of a rigid structure supported  

                          by (FPS) bearings subjected to harmonic ground acceleration. 
 
 
 

Inertia reductions for a rigid structure supported by (FPS) bearings subjected to 
harmonic ground acceleration
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Fig. 6 Inertia reduction of dynamic responses of a rigid structure supported  

                                   by (FPS) bearings subjected to harmonic ground acceleration 
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CONCLUSION 
 
The results of dynamic responses of a rigid structure supported by (FPS) bearings, which are illustrated in 
Fig. 2, Fig. 3, Fig. 5, Fig. 6, and tabulated in Table 1. are obtained by the solution of the proposed linear 
second-order differential equations (8). Those results are very consistent with the results of the recent 
experimental study2. Experimental study was performed based on real earthquake excitation, which 
dominant excitation frequency of ground ≈ π3  rad/s.  Therefore, the results of parameter study obtained 
by the solution of the proposed linear second-order ODE of equation (8) are pretty close to represent the 
results of dynamic responses of the supported structures by (FPS) bearings when such structures are 
excited by non-harmonic and non-periodic earthquake motion.  
The results of dynamic responses of a flexible structure supported by (FPS) bearings, which are illustrated 
in Fig. 4 depends on the mass ratio of structure, which is assumed in this parameter study 3)/( =bs MM . 

This ratio is fundamentally the function of stiffness matrix of the structure. But the formulated functional 
relationship between stiffness of the structure and the above mass ratio is out of the scope of this study.  
The Coefficient of friction used in parameter study is 10.0=µ , which is assumed constant during the 
vibration of an isolated structure. As a result, the inertia reductions illustrated in Fig. 6 are identical for 
different peak ground accelerations of 0.5*g and 1.0*g.  However, in real application, µ is not constant, 
and the value of µ  is depends upon the magnitude of the relative velocity of the supported structures by 
(FPS) bearings at isolation level. Therefore, the inertia reduction in experimental study2 varies with the 
magnitude of peak ground acceleration. 
In short, this study verifies the reliability of those proposed linear second-order ODE of equation (8) and 
equation (9) for the dynamic analysis of an isolated rigid and flexible structure supported by (FPS) 
bearings to obtain design properties for preliminary design procedure. 
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