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SUMMARY 
 
In a modern performance-based earthquake engineering (PBEE) design framework, component fragility 
functions are used to relate parameters of structural response to damage. Since common structural 
response parameters are coupled to structural member properties, the usage of fragility functions in 
damage analysis after performing the structural analysis is inconsistent. The errors arising from such 
inconsistency do not seem to have been addressed previously. In the present study, we investigate this 
issue by comparing the results of damage estimation performed by three different methods. The first 
method, considered to be the most accurate, represents a coupled structural and damage analysis and 
utilizes randomized structural properties in the simulations for both the dynamic structural analysis and 
the damage analysis. The second, uncoupled, method samples the randomized structural properties twice 
during dynamic simulations, once for structural analysis and once for damage estimation. The third 
method is analogous to the second method but it uses a deterministic structural model for the dynamic 
simulation and uncertain structural properties for the damage analysis. Comparison of the results for a 
reinforced-concrete frame shows that relative to the first method, the second method provides reasonable 
estimates of the expected values and variances of the damage, while the third method underestimates the 
damage uncertainty. The variance estimated by a common approach based on a deterministic load and 
deterministic structure complemented by a probabilistic damage analysis is much less than the variance 
estimated by the first method.  
 

INTRODUCTION 
 
Today, the earthquake engineering community faces new challenges brought about by the needs of the real 
estate development and management industries. The safety of buildings and structures is no longer the 
only concern of their owners. Assuming that safety requirements are met by satisfying the building code, 
many owners are now asking: “how much is it likely to cost to repair after an earthquake?” and “how long 
is it likely to be shut down in case of an earthquake?” These questions are directed at the evaluation of the 
economic performance of the structure rather than just its engineering performance. Therefore, a formal 
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analytical framework is desirable to evaluate both the safety and economic performance parameters that 
are of major concern for real estate owners and managers. An essential element of this framework is the 
probabilistic assessment of the damage states of the structural and non-structural components. 
 
Some of the proposed analytical frameworks are assembly based vulnerability (ABV) in Porter [1], Beck 
[2,3] and the Performance Based Earthquake Engineering (PBEE) framing equation of the Pacific 
Earthquake Engineering Research (PEER) Center (Krawinkler [4], Miranda [5]). These techniques 
perform structural analysis to obtain structural response and then use fragility functions to relate this 
response to inflicted damage. However, if the objects of damage evaluation are structural components, 
such as beams, columns, etc., using fragility functions after structural analysis leads to inconsistencies 
since, in reality, damage to structural components affects the structural response. (By fragility function, we 
mean the probability of a component reaching or exceeding a particular level of damage as a function of 
the structural response to which the component is subjected.) To eliminate these inconsistencies, we 
propose a coupled analysis that performs the damage analysis concurrently with the structural analysis. 
We compare the two approaches by performing damage estimation for a reinforced-concrete moment 
frame.  
 

PROBABILITY OF PERFORMANCE CRITERIA BEING MET 
 
In dealing with the seismic performance of a structure, one should consider a broad range of uncertain 
factors. The number of factors involved in the analysis varies depending on the chosen performance 
criteria. In general, we have to consider such variables as ground motion, building properties, the cost of 
material and labor, etc. Because of the uncertainty of these independent variables, the performance criteria 
can not be determined precisely. Consequently, it is important to address this uncertainty by estimating the 
probability of a performance parameter being in a certain range. Following PEER practice, we refer to 
performance parameters as decision variables, emphasizing that the parameters are for use in a decision-
making process for seismic design or mitigation. The probability of a decision variable being greater than 
some critical value is given by the following expression: 
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where the decision variable (DV) represents a chosen performance parameter such as repair cost or 
downtime; the vector Q encompasses the group of variables that define the ground motion time history; X 
contains structural and nonstructural properties; M is composed of variables that we collectively call 
market conditions (labor and material prices, availability, contractors etc.); and fQ,X,M(q,x,m) is a joint 
probability density function (PDF) of all the uncertain variables.  
 
The integral (1) can be written in a more convenient form that has been proposed to be a basis for PBEE 
(Irfanoglu [6], Krawinkler [4], Miranda [5]): 
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where damage measure (DM) is a vector containing discrete damage states of all damageable components; 
EDP is a vector of engineering demand parameters containing structural response characteristics such as 
inter-story drift ratio (IDR), peak diaphragm acceleration (PDA) etc.; IM is an intensity measure of the 
ground motion such as spectral acceleration (Sa), peak ground acceleration (PGA), etc.; P(DV > DVl | DM 
= dmi) is the probability of the decision variable being greater than DVl conditioned on knowledge of the 
component damage states, dmi, i = 1...N, where N is the number of possible damage states of vector DM; 
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)|(| edpdmP iEDPDM is the probability that the structure suffered the damage defined by dmi given that it 

has been subjected to the EDP equal to edp;  )|(| imedpf IMEDP is the conditional PDF of the structural 

response (EDP), given that intensity of the ground motion is im; )(imf IM  is the joint PDF of the vector of 

seismic event intensity measures (IM). Equation (2) gives the probability of a decision variable being 
greater than some threshold value given that an earthquake has happened. 
 
Note that (2) is another way of formulating (1) under the assumption that each analysis stage: hazard, 
structural, damage and loss can be done separately. The integration over state space variables Q, X, M is 
implicit in (2) as opposed to the explicit integral form (1). For example, probability 

)|( imIMedpEDPP =>  is found by integration of the joint PDF over the region of values of Q 

corresponding to the intensity im and values of X providing EDP > edp. 
 
One of the essential parts of the PBEE framing equation is the conditional probability of being in a 
particular damage state given the response: )|( edpEDPdmDMP i == . The vector DM is a 

collection of damage states of every damageable component, where damage state is chosen as a discrete 
variable defining the severity of the damage for each damageable building component. In practice, the 
conditional probability for the vector DM can usually be expressed in terms of scalar conditional 
probabilities of its members: )|( zEDPnDMP ij == , where n = 1...k, is the damage state number, k 

being the number of damage states of the j-th component; EDPi is a member of EDP relevant to damage 
of the j-th component; z  is the known value of EDPi. This scalar conditional probability can be found 
from:  

 )|( zEDPnDMP ij ==  = )|( zEDPnDMP ij =≥  – )|1( zEDPnDMP ij =+≥  (3) 

 where P(DMj ≥ n | EDPi = z) is the fragility function of the j-th component with respect to the n-th 
damage state, expressed in terms of EDPi. By definition, the fragility function of an arbitrary component is 
the probability of the component being in n-th or higher damage state, given that the relevant EDP is equal 
to z: 

 Fn(z) = )|( zEDPnDMP =≥  (4) 

In the next section, we consider fragility functions in detail.  
 

FRAGILITY FUNCTIONS OVERVIEW 
 
We shall apply definition (4) to the structural members of a facility, meaning all the components that 
affect structural response, such as beam, columns, slabs, etc. Thus, consider a structural member under 
seismic loading, which has k damage states. In general, the occurrence of damage to the element depends 
on various conditions: the earthquake characteristics, design of the structure, properties of the elements of 
the structure including the properties of the element under consideration. As before, we denote the 
variables that define the earthquake properties (time history) by the vector Q, and variables that define the 
structural properties by the vector X. We write X = [X1, X2,…, Xi,…], where vector Xj contains the 
properties of the j-th element, j = 1,2…m, and m is the number of elements in the structure. Suppose there 
exists a function gn(X, Q) with the following property: 

 DS ≥ n  � gn(X, Q) < 0     (5) 

The function gn(X, Q) is called a limit state function for the n-th damage state. Given that (5) holds we can 
rewrite (4) as follows: 

 Fn(z) = P(gn(X, Q) < 0 | EDP = z) (6) 
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Consider the conditioning part EDP = z. Normally, EDP is chosen in a way to provide maximum 
information about the damage state, that is, about the event gn(X, Q) < 0. Therefore, the conditional 
probability of the event gn(X, Q) < 0 given that EDP = z is different from the probability of the event gn(X, 
Q) < 0 without knowledge of the value of EDP, implying that the limit state function and EDP are 
probabilistically related. It is reasonable to assume that the limit state function and EDP are also 
functionally related, meaning that the limit state function gn(X, Q) can be written as an explicit function of 
EDP: gn(EDP, X, Q). Further, in practice, a simplified form of the limit state function is often assumed: 

 gn(X, Q) = C(Xi) - EDP(X, Q) (7) 

where C(Xi) is a capacity of the i-th member with respect to n-th damage state, formulated in terms of 
EDP. The capacity is assumed to be the only property of the member that defines its ability to resist the 
loading without experiencing the n-th damage state. In general, the capacity depends on all remaining 
properties of the element: Xi. We can use this model to estimate the fragility function. Substituting (7) into 
(6): 

 Fn(z) = P(C(Xi) - EDP(X, Q) < 0 | EDP = z) (8) 

 = P(C(Xi) < z | EDP = z) 

then assuming that EDP = z contains no further information relevant to C(Xi) < z, that is, these events are 
independent, we can find the fragility function as: 

 Fn(z) = P(C(Xi) < z ) (9) 

This shows that if all of the aforementioned conditions are satisfied, then the fragility function of the 
component is the cumulative distribution function (CDF) of its capacity. 
 
For structural members, the assumption of independence of the events C(Xi) < z and EDP = z is not 
satisfied. We show this by exploring the function EDP(X, Q). In general, it depends on both the excitation 
Q and the structural properties X. Examples of such EDPs are: inter-story drift ratio (IDR), ductility, floor 
acceleration, various damage indices, etc.; this list includes practically all structural response parameters 
that are being used by the earthquake engineering community. Thus, the properties of each structural 
member (Xi) affect the values of these “structure-dependent” EDPs. Otherwise, if a component does not 
have any effect on the structural response (EDP does not depend on Xi), it is not a structural member. 
Therefore, we can write: 

 EDP(X, Q) = EDP(X1, X2,…, Xi ,…, Q) (10) 

 Substitute (10) into (8): 

 Fn(z) = P(C(Xi) < z | EDP(X1, X2,…, Xi ,…, Q) = z) (11) 

When seismic performance evaluation is based on structural analysis, the value of EDP is obtained as a 
result of a structural simulation. To perform this simulation, it is necessary to have: first, a structural 
model of the facility, and second, specific numerical values of all the parameters of the model. Therefore, 
some subset of the structural member properties (Xj, j = 1…m) has to be specified before the EDP value is 
obtained. We denote the subset of the member properties that defines the structural behavior by Xi

S (Xi
S ⊂ 

Xj). In general, the properties of a member that are used for the calculation of the EDP do not fully 
coincide with the properties controlling the occurrence of damage, although, in case of structural 
members, there is usually an overlap. We define the subset of Xi that controls the capacity of the element 
by Xi

C.  We assume that subsets Xi
S and Xi

C overlap: Xi
C ∩ Xi

S ≠ ∅. The size of overlapping depends on the 
definition of damage states, on the choice of EDP and on the structural model. Incorporating all the 
available information into the conditioning part of (11), we can obtain the probability of an element being 
in the n-th or higher damage state as follows: 

 ),,,),,,,(|)(()( 111 KKKK
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where we denote a fragility function with the known structural model properties included in the 

conditioning part by )(zF n
SM and xj is the specified values of member properties Xj for j = 1…m. 

Assuming that the intersection of the sets Xi
S and Xi

C is not a null set, we denote by Xi
CO the subset of 

properties that affects only the capacity, by Xi
CS the parameters that enter both the structural model and the 

capacity function (Xi
CS = Xi

C ∩ Xi
S ) and by Xi

SO the properties that are required only for the structural 
model. Then vector Xi can be rewritten in terms of these sub-vectors: Xi = [Xi

CO, Xi
CS, Xi

SO], and (12) takes 
the form: 
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Now, besides EDP = z, the conditioning part contains another piece of information (Xi
CS = xi

CS) that is 
relevant to the event C(Xi

C) < z. Using it, we can find a probability of the n-th or higher damage state as:  
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The fragility function with conditioning on structural properties becomes a CDF of the capacity of the 
element where some part of the elements properties is known and the other part is uncertain (random). 
Therefore, the uncertainty in the damage estimation is reduced by the knowledge of some parameters.  
 
In the limit, it is possible to have a case where we have complete knowledge about the damage. To see 
this, consider an element for which the following condition holds:  

 Xi
C ⊂ Xi

S  (15) 

The condition (15) states that all the properties that define the element’s capacity are also needed for 
development of the structural model, meaning that knowledge of structural properties implies a full 
knowledge of capacity properties. Then, the probability of being in the n-th or higher damage state can be 
found in a way similar to (14) as follows:  
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Depending on the known value of )( C
ixC , such a fragility function takes on the value of 0 or 1, providing 

full knowledge about occurrence of the damage.  
 
In summary, using both EDP and structural properties, we can either reduce or eliminate parameter 
uncertainty in damage prediction. If we do so, it should lead to a better overall seismic performance 
evaluation. We shall compare the traditional fragility functions approach and the proposed approach using 
structural model based fragility functions by considering a damage of a reinforced-concrete moment 
frame. The model is chosen to represent the case where (15) holds. This case requires the use of (16) for 
damage estimation. It also should provide the most benefit from the reduction of uncertainty in the 
damage estimation when using the proposed approach. 
 

METHODS OF DAMAGE ESTIMATION 
 
The probability of damage is estimated by integration over the failure region in the corresponding state 
space. Given the complexity of the earthquake engineering application, the integration is usually 
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conducted by simulation. Figure 1 shows the structure of the state space and relation between different 
groups of variables in the space. Notations in this figure are consistent with those used previously: Q – 
properties of the earthquake, X – properties of the structural members in the model, EDP – engineering 
demand parameters, DM –damage measure.  

 
Figure 1. Relations between the variables in the state space. 

In the case where the structural response defining properties overlap with damage defining properties (Xi
CS 

≠ ∅), one should use care while disaggregating the analysis into two separate modules, one for structural 
analysis and one for damage analysis. A disaggregated analysis assumes that only the vector of EDPs is 
transferred from the structural analysis to the damage analysis. Utilizing relation (9) instead of (14) or (16) 
assumes that there is no knowledge about XCS when doing the damage analysis, contradicting the fact that 
these properties have already been defined during the structural analysis. Therefore, in the case of a 
disaggregated analysis using Monte Carlo simulation, two distinct samples of XCS are used: one for 
structural analysis and another one for damage analysis, as shown in Figure 2a. It is foreseeable that such 
approach could reduce the accuracy of damage estimation. If equations (14) or (16) are used for damage 
analysis, the integration does not have inconsistencies. But this approach requires that damage analysis is 
performed, in part, together with structural analysis as shown in Figure 2b. We shall investigate the 
difference between coupled damage analysis (Figure 2b) and uncoupled damage analysis (Figure 2a) by 
studying three separate simulation methods for damage assessment. For the present study, we consider the 
case where the structural properties include all the damage-related properties, so (15) holds. 

    
Figure 2. Relations between variables for (a) traditional damage analysis and (b) coupled damage analysis. 

Method 1. Vector XCS is randomly sampled according to its probability distribution at the start of each 
simulation. EDP is calculated as a result of a nonlinear dynamic time history structural analysis. Then DM 
is calculated according to (16) by using the obtained values of EDP and XCS. For each damage calculation, 
only one sample of the structural properties is used. To perform the integration over the state space of 
random variables, XCS, they are generated a statistically significant number of times. In essence, the 
method performs a coupled damage analysis with a randomized structural model and a structural model 
based fragility function (14) that in this case becomes deterministic (16). It results in an implementation of 
the scheme presented by Figure 2b. 
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Method 2. Vector XCS is randomly sampled according to its probability distribution. EDP is calculated as 
a result of a nonlinear dynamic time history structural analysis. Then DM is estimated from EDP by using 
(9). This is equivalent to ignoring the previous sample of XCS and estimating these damage properties from 
a new random sample of XCS. The samples are independent and identically distributed. Effectively, the 
method implements the structure shown by Figure 2a, where a part of the structural model is randomized 
twice: one time for the purpose of structural analysis and the other time for the purpose of damage 
analysis. The method is inconsistent because of the double-sampling of the structural properties XCS. 
However, it provides a desirable disaggregation of the problem. 
 
Method 3. The uncertainty in the structural properties is ignored by taken them to be equal to their 
expected values XCS = E[XCS], for the purpose of the structural analysis. Everything else is the same as in 
Method 2.  The method is the easiest of all three methods to implement in practice, since in the case of 
fixed excitation (Q), it uses the computationally intensive dynamic structural simulation only once.  For 
this reason, it is often used and so it is included in the present study along with Methods 1 and 2. 
 
In addition to the structural properties, there exist two ways to apply the earthquake load Q. One way is to 
randomly generate the ground motion time history (or to use a set of appropriate recorded time histories 
and randomly select records from the set) and the other way is to use a single time history for all 
simulations. In the latter case, the particular properties of the chosen ground motion can be a factor in the 
final damage estimation. Therefore, three methods together with the two ways to apply the earthquake 
load constitute six different cases of analysis that will be studied further. Figure 3 illustrates all cases that 
are considered in the present study; i.i.d. in the figure stands for independent identically distributed 
random variables. 
 

 
Figure 3. Methods used for the sample case study damage estimation 
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STRUCTURAL MODEL DESCRIPTION 
 
The reinforced concrete moment frame shown in Figure 4 is chosen as a case study. The frame represents 
the south frame of the 7-story Van Nuys hotel building. For a detailed building description, see Beck [3] 
or Li [7]. The 2D model of the frame is developed for the present study. The flexural behavior of the 
beams and columns is represented by one-component Giberson beam with plastic hinges at the ends 
(Sharpe [8]). Shear deformation for the beams and columns is assumed to be elastic and is incorporated 
into the flexural elements.  The Q-HYST bi-linear hysteresis (Saiidi [9]) is used to model stiffness 
degradation of reinforced concrete members in flexure as shown in Figure 5. Properties of the reinforced-
concrete members are taken from the original structural drawings (Rissman [10]).  The software program 
for reinforced-concrete members cross-section analysis UCFyber (ZEvent [11]) is used to calculate 
parameters of the Q-HYST hysteretic rule for the force-deformation curves for each flexural member. The 
inelastic dynamic analysis program Ruaumoko (Carr [12]) was used for performing the structural 
analyses.  

 
Figure 4.  Reinforced concrete moment-resisting frame chosen for the case study. 
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Figure 5. Flexural members hysteretic rule: Q-HYST. 
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DAMAGE MODEL 

 
For the purpose of this exploratory study, it is assumed that each structural member has only two damage 
states: “undamaged” (DS = 0) and “yield” (DS =1). A member is considered to be in damage state “yield” 
if the yielding point in the moment-curvature relations has been reached ((dy, My) in Figure 5). The 
“yield” damage state of the i-th member can be described by the following damage model: 

 DS = “yield” �  dy(Xi) < ),(max QXd i  (17) 

where dy(Xi) is the yield curvature of the reinforced-concrete member, ),(max QXd i  is the maximum 

curvature attained by the element during the simulation. Yield curvature depends only on the properties of 
the member Xi, implying that the limit state function defined in (17) is exact, therefore (17) is valid. Note 
that (17) is the problem-specific version of (5), where the limit state function has been formulated 
according to the particular features of the component under consideration.  
 
Comparing the limit state model (17) with the one used in (7) – (9), it is noted that dy(Xi ) is by definition 
the capacity of the structural member with respect to “yield” damage state, formulated in terms of 

maximum curvature id max . Therefore, maximum curvature id max  is the EDP chosen for the damage 

analysis. According to (9), the fragility function for this case is a CDF of capacity: 

 F1(z) = (dy(Xi) < z ) (18) 

This is the fragility function to be used for the damage estimation according to Methods 2 and 3.  
 

In order to obtain the maximum curvature ( id max ), it is necessary to perform a dynamic simulation. To do 

so, we need to specify the parameters of the structural model. From the flexural hysteresis rule (Figure 5), 
it can be observed that some of the required parameters are: yield moment My and initial stiffness K0. From 
these two parameters, the yield curvature can always be derived: dy = My ⁄ K0. Therefore, as a result of the 
dynamic simulation, the value of the maximum curvature for each element and the value of the yield 
curvature are obtained. Substituting this information into the conditioning part of (12) for the i-th element: 

  Fn(z) = P( i
yd ( Xi ) < z | id max (X, Q ) = z, i

yd ( Xi ) = i
yd

~
,…) (19) 

 = P( i
yd

~
< z | id max (X, Q ) = z, i

yd ( Xi ) = i
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where i
yd

~
 is the value of the yield curvature of the i-th element that has been used during the dynamic 

simulation. Thus, whenever the maximum curvature attained during the dynamic simulation exceeds the 
yield curvature of the element, the element is considered to be in damage state “yield”. This is the binary 

(deterministic) fragility function that is used for damage estimation by Method 1. Note that i
yd

~
 is one of 

the properties of the element that is known from the input structural data and it is also the “capacity” of 
the element with respect to the “yield” damage state, formulated in terms of the maximum curvature. 
Therefore, the model satisfies (15), as intended for the present study. 
 
Global damage is estimated as the number of components in the “yield” damage state (Nt), where the 
number of components is equal to the number of ends of the flexural members (beams or columns), since 
either end of a member may yield. For the chosen frame, the total number of flexural members is 119, 
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hence there are 238 damageable components in the frame. For each dynamic structural simulation, Nt is 
calculated by the previously described three different methods.  
 

PARAMETERS OF THE DAMAGE MODEL AND GROUND MOTIONS 
 
Here we define the probability distributions of the uncertain parameters that are used in the analysis. In 
the present case, we assume that the only uncertain parameter is yield curvature. We adopt a lognormal 
probability distribution where the parameters are found as follows. The yield moment is assumed to be 
equal to: 

 My
i = i

yM x (20) 

where i
yM  is the best estimate of the yield moment of the i-th element, as calculated by UCFyber (ZEvent 

[10]) and x is a lognormally distributed random variable with expectation E[x] = 1 and the coefficient of 
variation δ[x] = 0.08, making the yield moment a lognormal random variable with expectation E[My

i]= 
i
yM  and coefficient of variation δ[My

i] = 0.08. The study by Ellingwood [13] suggests that coefficient of 

variation 0.08 is a reasonable estimate of the uncertainty in the flexural strength of reinforced-concrete 

members. The stiffness iK0  is assumed to be deterministic and equal to the value calculated by UCFyber 

(ZEvent [10]). Therefore, the yield curvature is a lognormal random variable with the following 
parameters: 

  )),ln((~)( 0 x
ii

yxd
KMLNzF i

y
σµ +  (21) 

where µx = - 0.0032 and σx = 0.08 are mean and standard variation of ln(x) that has normal distribution. 
These values of µx and σx provide the required expectation and coefficient of variation of x. Formula (21) 
is used for generating a randomized structural model and for the fragility function (18).  
 

The stiffness properties iK0  of the structural model are assumed to be deterministic. Therefore, the natural 

frequencies of the original (undamaged) structural model are the same for all randomly generated samples 
of the structural model. The first natural frequency of the present model is T1 = 1.5 sec., which agrees with 
the value exhibited by the Van Nuys 7-story hotel in the longitudinal direction during the 1994 Northridge 
earthquake, as reported by Islam [14]. Software program Bispec (Hachem [15]) is used to determine Sa. 
Ground motions for the analysis are taken from the set of the ground motions developed for the SAC Steel 
Project (WCFS [16]). 
 

RESULTS 
 
For the first analysis, we collect the statistics of Nt that are calculated by the three different methods for 
the same ground motion. For this acceleration time history, we performed 40 dynamic simulations with the 
structural model where yield curvature is randomly generated for every member. These simulations are 
used to calculate Nt by Method 1 and Method 2. One dynamic simulation is also performed with the 
structural model that has yield curvature equal to its expected value. Then the total damage Nt is estimated 
40 times by Method 3.  
 
Table 1 gives the results of damage estimation for 40 simulations using the ground motion time history 
LA15 scaled to the level of intensity Sa = 0.5g at T1 = 1.5 sec and 5% damping. For this particular ground 
motion, Method 2 overestimates the damage on average by 6.0% relative to Method 1, and Method 3 
overestimates the damage on average by 7.7%. Also, Method 2 gives a variance for Nt that is 42% of that 
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of Method 1, while Method 3 produces a damage estimate with a variance that is 6.7% (about 15 times 
less) of the variance of the Method 1 estimates. 

Table 1. Results of damage estimation for LA15 ground motion at 0.5g. 

Simulation 
number 

Nt 
Method 1 

Nt 
Method 2 

Nt 
Method 3 

Simulation 
number 

Nt 
Method 1 

Nt 
Method 2 

Nt 
Method 3 

1 81 97 106 21 102 110 106 
2 94 97 104 22 88 102 104 
3 95 97 103 23 103 106 103 
4 89 103 104 24 101 103 103 
5 97 104 103 25 101 98 101 
6 106 104 97 26 90 102 103 
7 94 102 103 27 81 89 102 
8 91 96 108 28 100 96 105 
9 98 105 105 29 109 112 105 

10 88 103 102 30 105 105 102 
11 103 101 104 31 95 105 106 
12 85 92 108 32 95 97 103 
13 105 104 103 33 89 103 104 
14 82 105 101 34 97 104 103 
15 115 112 106 35 106 104 97 
16 80 91 104 36 94 102 103 
17 96 95 106 37 91 96 108 
18 86 95 104 38 98 105 105 
19 103 103 101 39 88 103 102 
20 85 104 106 40 103 101 104 

E[Nt] Method 1 96.3 Method 2 102.1 Method 3 103.7 

Var[Nt]  76.7  32.2  4.9 

 
The effects that have been observed for one particular ground motion might be occasioned by some 
particular features of this ground motion. To ensure that similar phenomena take place in general, 
independently of the individual characteristics of the input excitation, we conduct an analogous analysis 
for 30 other acceleration time histories. All time histories are scaled to provide Sa = 0.5g at T1 = 1.5 sec 
and 5% damping. The scaling factor does not exceed 2 for all time histories. Statistical properties (mean 
and variance) of Nt are based on 40 dynamic simulations for each ground motion. The results are shown in 
Table 2. 

Table 2. Statistical properties of damage estimation for 30 different ground motion time histories. 

  E[Nt] 
Method 1 

E[Nt] 
Method 2 

E[Nt] 
Method 3 

Var[Nt] 
Method 1 

Var[Nt] 
Method 2 

Var[Nt] 
Method 3 

Average values for 
30 ground motions 96.3 100.5 99.3 84.2 42.2 6.3 

 
For the chosen set of earthquake ground motions, the damage estimated by Method 2 is on average 4.4% 
greater than for Method 1. Method 3 overestimates the mean E[Nt] by 3.1%, compared to Method 1. As far 
as the dispersion of the damage estimates is concerned, Method 2 gives a variance for Nt on average 50% 
less than Method 1. The variance estimated by Method 3 is on average 7.5% of that calculated by Method 
1. These results are roughly consistent with those in Table 1 for the LA15 record. 
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Next, we perform damage estimation at different intensity levels by scaling one ground motion time 
history. We choose the ground motion LA15 since it provides the values of damage that are the closest to 
the average values. We scale it to provide values of Sa at T1 = 1.5 sec from 0.1g to 1.0g at a 0.1g step. The 
results are shown in Figures 6 - 7. Figure 6a depicts the average values of Nt as a function of Sa. As before, 
Nt is calculated by the three different methods. The difference between the estimates of E[Nt] from 
Methods 2 and 3 and those from Method 1 (relative to Method 1) is plotted in Figure 6b. For Method 2, 
the difference decreases from 40.5% to 3.2% over the range from 0.1g to 1.0g. For the range between 0.4g 
and 1.0g, the difference does not exceed 6.8%, averaging at 4.6%. Figure 7a displays the variance of Nt as 
a function of Sa. Method 2 underestimates the variance by approximately 50% for the lower end and 
provides roughly the same results as Method 1 for the high values of spectral acceleration (Sa > 0.5g). 
Method 3 underestimates the variance quite significantly: the variance of the damage estimate is on 
average about 10% of that obtained by Method 1. Figure 7b shows the coefficient of variation of the 
damage estimate. The average value of the coefficient of variation of the damage estimate for Method 1 is 
14.6%. The coefficient of variation of the flexural members’ capacity is 8%. Thus, uncertainty in building 
structural properties is approximately doubled in the damage estimate. Figure 7b also reveals that at lower 
Sa values, the uncertainty in the damage estimate from Method 1 is much higher than the average value: in 
the range Sa < 0.5g, the coefficient of variation is on average 30%, while for higher Sa values it is 6.8%, 
which is lower than the coefficient of variation of the source of uncertainty, the uncertain yield capacity. 
The other two methods give much lower estimates of the coefficient of variation, essentially repeating the 
behavior shown by the variances: Method 2 gives 8.6% and Method 3 gives 4.3% on average over the 
whole range of Sa. 

 
Figure 6. Expectation of damage (a) and relative difference (b), ground motion LA15. 

 

 
Figure 7. Variance of the damage estimate (a) and coefficient of variation (b), ground motion LA15. 
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In order to examine the possible influence of the particular characteristics of the ground motion, we repeat 
the analysis at the same levels of the spectral acceleration using a set of 40 different ground motions taken 
from the SAC Steel Project database. At each value of Sa, we perform 40 dynamic simulations (one for 
each ground motion record) with randomly generated structural models when Method 1 and Method 2 are 
used for damage estimation and 40 dynamic simulations with the best estimate structure when Method 3 
is used. The results are presented in Figures 8 - 9. Note that for this case, Method 3 does not have any 
computational advantage over Method 1 and 2, since we need to perform a dynamic simulation for each 
sample ground motion record. Method 2 overestimates the expected value of damage with the relative 
difference in the range 3% to 21%, where the maximum error occurs at 0.2g. The average error for higher 
end (between 0.4g and 1.0g) is 4.1%. Method 3 provides damage estimates that differ less than 9.8% from 
those of Method 1.The average error at the high end (0.4g – 1.0g) is very low: 0.8%. Figure 9a shows the 
variances of the damage estimates produced by the three methods for the set of ground motion time 
histories. There is no significant difference between the variance estimates provided by the different 
methods, which differ appreciably from the case of a fixed excitation (LA15) where the discrepancy 
between the variance estimates is apparent. Figure 9b shows the coefficient of variation of the damage 
estimates for the three methods. The results are practically identical for all three methods. The value of the 
coefficient of variation is considerably higher than for the case of fixed excitation (Figure 7b), reflecting 
the variability introduced by taking a set of ground motion time histories.  

 
Figure 8. Expectation of damage (a) and relative difference (b), set of ground motions. 

 
Figure 9. Variance of damage estimation (a) and coefficient of variation (b), set of ground motions. 
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CONCLUSIONS 
 
The purpose of this study is to compare two different approaches to structural damage estimation: the 
uncoupled approach based on fragility function that predicts damage from the knowledge of EDP alone, 
and a proposed approach of coupled damage estimation that predicts damage using both knowledge of 
EDP and knowledge of structural properties. In particular, we explore the inconsistency that is present 
whenever there exist properties that are used for both structural damage (capacity) and structural response. 
The uncoupled approach in this case results in using two samples of such properties instead of one. We 
study the effects of this inconsistency by developing a damage model (damage state, EDP, limit state 
function) that maximizes the possible discrepancy between the two approaches by maximizing the set of 
overlapping properties. Then we use three different methods of damage estimation. The coupled damage 
analysis approach is implemented through Method 1. Method 2 and Method 3 use uncoupled structural 
and damage analyses; Method 2 uses two randomly generated sets of structural properties, one for 
structural analysis and one for damage analysis, while Method 3 uses the best-estimate structural 
properties for the structural analysis and randomly generated properties for the damage analysis. 
 
The results have shown that all three methods provide fairly close estimates of the expected damage, 
implying that double sampling of structural properties may have insignificant impact in some cases. 
However, the effects of other possibly important factors, such as the level of uncertainty in the structural 
properties, the form of the probability distribution of the structural properties or redundancy in the 
structural model, have not been studied. These factors should be investigated in future research. 
 
The variance in the damage estimates exhibited a more diverse pattern of behavior. While the estimates 
from Methods 1 and 2 in general agree, the variance estimated by Method 3 is significantly lower for a 
fixed excitation, as expected, since it does not include uncertainty in the structural properties. Therefore, 
the uncertainty estimates from the usual uncoupled approach are adequate only when a randomized 
structure or random excitation is used. When the deterministic, best-estimate structure is employed 
together with a deterministic load, the dispersion in the damage estimate is significantly underestimated. 
Therefore, Method 3 should only be used for the purpose of calculating mean damage estimates and not 
the variance of the damage estimates or the probability of exceeding (or not exceeding) some damage 
threshold value. This is important because Method 3 can be viewed as a particular implementation of a 
general family of methods that can be defined in the following way: deterministic load – deterministic 
structure – probabilistic damage model. For example, the deterministic load can be a monotonic lateral 
force used in push-over analysis. Therefore, it might be possible to extend the present conclusions to a 
common damage estimation technique where a deterministic push-over analysis is complemented with a 
damage analysis using fragility curves, implying that the results obtained by such techniques should be 
treated with caution. 
 

ACKNOWLEDGEMENT 
 
This work was supported in part by the Earthquake Engineering Research Centers Program of the 
National Science Foundation under Award Number EEC-9701568 through the Pacific Earthquake 
Engineering Research Center (PEER). This support is gratefully acknowledged. Any opinions, findings 
and conclusions or recommendations expressed in this material are those of the authors and do not 
necessarily reflect those of the National Science Foundation. 
 

REFERENCES 
 
1. Porter KA, Kiremidjian AS, LeGrue JS. “Assembly-based vulnerability of buildings and its use in 

performance evaluation.” Earthquake Spectra 2001; 17(2): 291-312. 



 

15 

2. Beck JL, Kiremidjian AS, Wilkie S, Mason A, Salmon T, Goltz J, Olson R, Workman J, Irfanoglu 
A, Porter KA. “Social, economic and system aspects of earthquake recovery and reconstruction, 
final report for CUREe-Kajima Phase III Project.” Consortium of Universities for Research in 
Earthquake Engineering. Richmond, CA, December, 1999. 

3. Beck JL, Porter KA., Shaikhutdinov RV, Au SK, Moro T, Tsukada Y, Masuda M. “Impact of 
seismic risk on lifetime property values, final report.” Consortium of Universities for Research in 
Earthquake Engineering. Richmond, CA, 2002. 

4. Krawinkler H. “A general approach to seismic performance objectives.” International Conference 
on Advances and New Challenges in Earthquake Engineering Research, First Annual Meeting of 
ANCEER, Hong-Kong, China, August 19-20, 2002.  

5. Miranda E, Aslani H. “Probabilistic response assessment for building-specific loss estimation.” 
Report No. PEER-2003/03, Berkeley, CA: Pacific Earthquake Engineering Research Center, 
University of California, 2003 

6. Irfanoglu A, “Structural design under seismic risk using multiple performance objectives.” Report 
No. EERL 2002-02, Pasadena, CA: Earthquake Engineering Research Laboratory, California 
Institute of Technology, 2000.   

7. Li YR, Jirsa JO. “Nonlinear Analyses of an instrumented structure damaged in the 1994 Northridge 
earthquake.” Earthquake Spectra 1998; 14(2): 245-264. 

8. Sharpe RD. “The nonlinear response of inelastic structures.” Ph.D. Thesis, Christchurch, New 
Zealand: Department of Civil Engineering, University of Canterbury, 1974. 

9. Saiidi M, Sozen MA. “Simple and complex models for nonlinear seismic response of reinforced 
concrete structures.” Report UILU-ENG-79-2031, Urbana, IL: Department of Civil Engineering, 
University of Illinois, 1979. 

10. Rissman and Rissman Associates. “Holiday inn van nuys structural drawings.” Pacific Palisades, 
CA, 1965. 

11. ZEvent. UCFyber Version 2.4.1. Berkeley, CA, 2000. 
12. Carr AJ. Ruaumoko. Christchurch, New Zealand: University of Canterbury, 2001. 
13. Ellingwood B, Galambos TV, MacGregor JG, Cornell CA. “Development of a probability-based 

load criterion for American national standard A58, special publication 577.” Washington, DC:  
National Bureau of Standards, 1980. 

14. Islam MS. “Holiday Inn.” 1994 Northridge Earthquake Buildings Case Study Project Proposition 
122: Product 3.2. Sacramento CA: Seismic Safety Commission, 1996, 189-233. 

15. Hachem MM. BiSpec 1.2. Berkeley, California: University of California at Berkeley, 2003. 
16. Woodward-Clyde Federal Services. “Suites of earthquake ground motions for analysis of steel 

moment frame structures.” Pasadena, CA, 1997. http://nisee.berkeley.edu/data/strong_motion/ 
sacsteel/ground_motions.html 


	Return to Main Menu
	=================
	Return to Browse
	================
	Next Page
	Previous Page
	=================
	Full Text Search
	Search Results
	Print
	=================
	Help
	Exit DVD



