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SUMMARY 
 
Though CQC method is very effective, the formulas for the mode correlation coefficient playing the 
important role in this method are very complicated, and are different by the kinds of the response quantity, 
i.e. relative displacement, relative velocity and absolute acceleration. From the practical viewpoint, this 
paper proposed a simple approximation formula for the mode correlation coefficient, and verified its 
usefulness. It was concluded that the proposed approximation formula has enough accuracy and simplicity 
for practical use, and is more useful than other approximation formulas.  
 

INTRODUCTION 
 
The CQC method (Complete Quadratic Combination Method) [1] is representative as a response spectrum 
method considered the correlation between modes [2]. Though this method is very effective, the formulas 
for the mode correlation coefficient playing the important role in this method are very complicated. Not 
only the expressions themselves of the equations are very complicated, but also they are different by the 
kinds of the response quantity, i.e. relative displacement, relative velocity and absolute acceleration. 
 
From the practical viewpoint, this paper proposes a simple approximation formula for the mode 
correlation coefficient for classically damped systems subjected to a white-noise input, and verifies its 
usefulness. 
 

FORMULAS ALREADY PROPOSED 
 
Exact formula 
For convenience, the various response quantities (the relative displacement w , the relative velocity w&  and 
the absolute acceleration w&& ) in a classically damped linear system (N degree of freedom) are represented 
by w . Its peak response max

w  is given in the following equation according to the CQC method [1]. 

( ) ( )∑∑
= =

⋅⋅=
N

s

N

r
rrrsrsss SWSWw

1 1

2

max
βρβ                   (1) 

                                                 
1 Research Associate, Chiba University, Japan. Email: ohami@faculty.chiba-u.jp 



( ) ( ) ( )∑∑∑
=

≠
==

⋅⋅+⋅=
N

s

N

sr
r

rrrsrsss

N

s
sss SWSWSW

1
)(

11

2 βρββ              (2) 

in which suffix s  is the mode number, ssWβ is the participation vector corresponding to the response 
components, sS  is the response spectrum value of ground motions and srρ  is the mode correlation 
coefficient between the s-th mode and the r-th mode. The first term in Eq.(2) is a term of same modes 
( sr = ) which is identical with the calculation formula of the SRSS method. The second term gives the 
effect of the mode correlation between different modes ( sr ≠ ). 
 
The mode correlation coefficient srρ  are different by the kinds of the response quantity, i.e. relative 
displacement, relative velocity and absolute acceleration. It is given by following equation, respectively 
[1,3,4]. These equations are induced under the assumption about the ground motion that the duration time 
is sufficiently longer than natural periods and the characteristics is a white-noise. In the following, these 
equations are called "texact formulas" for convenience. 
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in which 
sh  is a damping factor and srχ  is the natural circular frequency ratio. 

s
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When the damping factor is equal to each other ( hhh rs == ), Eqs.(3)-(5) becomes an equation below, 
respectively. 
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Basic property of the correlation coefficient 
Fig.1 is a calculation example of the mode correlation coefficient srρ for the each response quantity of 
relative displacement, relative velocity and absolute acceleration. Fig.1(a) is the cases in which the 
damping factor of both modes is equal to each other ( hhh rs == ), and its value changes from 0.01 to 0.30 
in 5 stages. Figs.1(b) and (c) is the case in which the damping factor of both modes differs to each other 
( rs hh ≠ ). Larger value of damping factors is 0.1, 0.2 respectively, and smaller value is 1/2 and 1/5 of 
them. 
 
From Fig.(1), the difference among coefficients for 3 kinds of response quantities is smaller, as circular 
frequency ratio srχ is nearer to 1, and as damping factors are smaller. The range of srχ  in which the 
difference of 3 coefficients is very small is 0.8-1.2, when the damping factors are about 0.2. However, this 
range becomes almost over the full range, when the damping factors are smaller than about 0.1. 
 



In addition, it is possible to point out next points on the basic property of mode correlation coefficient 

srρ , from Fig.1: The coefficient takes the value of 0-1. The correlation coefficient between the r-th mode 
and the s-mode and correlation coefficient between the s-mode and the r-th mode is equal to each other. 

10 ≤≤ srρ                   (9) 

rssr ρρ =                 (10) 

In the cases in which the damping factor of both modes is equal to each other (Fig.1(a), hhh rs == ), 
correlation coefficient srρ  becomes 1 ( 1=srρ ) at natural circular frequency ratio 1=srχ , regardless of the 
value of damping factors h. As the natural circular frequency ratio srχ of both modes separates from 1, the 
mode correlation coefficient srρ  rapidly decreases. This degree of discretion is larger, as the damping 
factors are small.  
 
On the other hand, in the cases in which the damping factor of both modes is not equal to each other 
(Figs.1(b) and (c), rs hh ≠ ), correlation coefficient srρ  becomes smaller than 1 even at natural circular 
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  Fig.1 Mode correlation coefficient by exact formula. 
 



frequency ratio 1=srχ . The degree of this decrease depends on the ratio of the damping factor of both 

modes and is larger as this ratio separates from 1. 

 
Approximation formulas 
The approximation formulas [3] are proposed for the case in which the damping factor of both modes is 
small and the natural circular frequency is close each other. 
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  Fig.2 Comparison between approximation formulas and exact formula. 
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Theses formulas are different as well as the exact formula by the kinds of the response quantity, i.e. 
relative displacement, relative velocity and absolute acceleration and the expression itself is not drastically 
simplified in comparison with the exact formula. 
 
Fig.2 compares value by this approximation formula (broken line) with value by exact formula (solid 
line). Figs.2(a) shows the relative displacement and relative velocity when the damping factor is equal to 
each other ( 3.0,2.0,1.0,05.0,01.0=h ) and Figs.2(b) and 2(c) show the relative displacement when the 
damping factor is different to each other ( 02.0,1.0 == rs hh  and 04.0,2.0 == rs hh ). The accuracy of this 
approximation formula is very high over the wide range of srχ  when the damping factor of both modes is 
almost under 0.2, whether or not it is equal to each other. 
 
Following approximation formula [5] is considerably simple compared to the approximation formula 
shown above. 
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The following equation is obtained, if the damping factors are small. 
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In addition, the following formula is obtained, if the damping factors of both modes are equal to each 
other ( hhh rs == ). 
 
The dotted line in Fig.2 is calculated value by Eqs. (13) and (14). When the damping factors of both 
modes are equal to each other ( hhh rs == ), it is almost equal to the calculated value by the above-
mentioned approximation formulas, and therefore, the accuracy is very high. However, the accuracy 
becomes very low on this, when the attenuation constant of both modes is contrastively different to each 
other. 
 

DERIVATION OF APPROXIMATION FORMULA 
 
Assumption 
In the induction of the approximation formula, next two assumptions for practical use are adopted; the 
damping ratios were sufficiently small, and that natural frequencies of both modes were close to each 
other. 

1, <<rs hh                 (17) 

11 <<− srχ                 (18) 

 



Results 
By applying the assumptions Eqs.(17) and (18), the exact formulas Eqs.(3)-(5) finally become a next 
identical approximation formula. 
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Since hh srsr == 0,1η  when the damping factor of both modes is equal to each other ( hhh rs == ), the 
approximation formula becomes   
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From Eqs.(19) and (20), the condition for the mode correlation coefficient srρ  becoming over specific 
value srρ′ is 
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DISCUSSION 

 
Accuracy of proposed formula 
 

Fig.3 compares the calculated value by this approximation formula with calculated value by exact formula. 
The broken lines are the approximate values. The solid lines (the relative displacement) and the dotted 
lines (the absolute acceleration) are the exact values. 
 
Its accuracy is very high at 0.8-1.2 range of natural frequency ratio of both modes, if the damping factors 
are smaller than 0.2. If the damping factors are smaller than 0.1, this range becomes almost over the full 
range. 
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Fig.3 Comparison between proposed approximation formula and exact formula. 
 

The dot-dashed lines in Fig.2 are calculated values according to this approximation formula. The accuracy 
of this formula is lower a little than approximation formulas already proposed. However, this 
approximation formula has the sufficient accuracy in the practical use, as mentioned above. Moreover, the 

accuracy of this approximation formula is high for the absolute acceleration that approximation formulas 
were not yet proposed. 
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 Fig.4 Coefficients constituting proposed approximation formula ( srsrsr ηρρ ⋅= 0 ) 
 Fig.5 Calculation of index srΛ . 

Simplicity in form of proposed formula  
This formula Eqs.(19)-(27) is identical for all kinds of response quantities and is drastically simplified in 
comparison with the exact formulas Eqs.(3)-(5). Moreover, this formula is considerably simplified in 
comparison with Eqs.(11) and (12) which are one of approximation formulas already proposed.  
 
However, the expression of this formula resembles Eqs.(13) and (16) which is the other approximation 
formula already proposed. The difference is that the proposed approximation formula is expressed by  2

srχ , 
while this approximation formula is expressed by srχ . On this point, this approximation formula is rather 
convenient to induce the mode correlation coefficient by the amount of the system in the explicit form 
expression [6]. 



 
From the above discussion, it was confirmed that the proposed approximation formula has both accuracy 
and simplicity, and is excellent on this point in comparison with other approximation formulas. 
 
Substantially explicitness of proposed formula 
In addition, the expression of the formula reflects directly and explicitly fundamental properties of the 
mode correlation which was mentioned previously. 
 
From Eq.(19), proposed approximation formula is expressed by the product of two coefficients 

sr0ρ  and 

srη . Coefficient
sr0ρ is the mode correlation coefficient in assuming that the damping factor of both modes 

was equal to each other and that therefore it is together the average 
srh0

of them, as is clear from the 
Eq.(28). The other coefficient 

srη shows effect of decreasing by actual difference of both damping factors 
for the mode correlation coefficient mentioned above. 
 
From Eq.(20), mode correlation coefficient sr0ρ  is a function only of coefficient srΛ . This is shown in 
Fig.4(a). It is possible to show all curves in Fig.1(a) only by this curve. From Fig.4(a), the correlation 
coefficient sr0ρ  monotonously decreases with the increase of coefficient srΛ . Therefore, it is possible that 
coefficient srΛ  is considered to be the index which shows the weakness of the mode correlation, namely 
the independence between modes. From Eq.(21), this coefficient srΛ  is defined as a ratio of coefficient srλ  
to the sum of the damping factors of both modes (

srh02 ). From Eqs.(22) and (23), coefficient srλ  shows 
the degree of separate between natural circular frequencies, and is a function only of natural circular 
frequency ratio srχ . 
 
From the above, when natural circular frequency ratio srχ  is 1, the reason why correlation 
coefficient sr0ρ becomes 1, regardless of the value of damping factors h, is because the coefficient srλ  
showing the degree of separate between natural circular frequencies becomes 0, and therefore, 
coefficient srΛ  becomes 0. As the natural circular frequency ratio srχ  of both modes separates from 1, the 
reason why the mode correlation coefficient srρ  rapidly decreases is because the independence between 
modes coefficient srλ  increases, and therefore, the coefficient srΛ  increases. Moreover, as the damping 
factors are small, the reason why the degree in which the mode correlation coefficient srρ  decreases is 
larger is because the coefficient srΛ  increases. 
 
On the other hand, from Eq.(26), the coefficient

srη  is a function only of damping factor ratio 
srγ  of both 

modes. This is shown in Fig.4(b). All curves in Figs.1(b) and (c) are possible to be drawn by multiplying 
the curve of Fig.4(a) by this coefficient. Therefore, as the damping factor ratio

srγ  of both modes separates 
from 1, the reason why the degree in which the mode correlation coefficient

srρ  decreases is larger is 
because the coefficient 

srη decreases. 
 
Fig.5 is prepared for convenient for calculating coefficient srΛ , which is the index showing the 

independent degree of the modes, from natural circular frequency ratio srχ  and the average 
srh0

of damping 

factors. 
 

CONCLUSIONS 
 
From the practical viewpoint, this paper proposed a simple approximation formula for the mode 
correlation coefficient playing the important role in CQC method and verifies its usefulness. 



 
The proposed approximation formula (Eqs.(19)-(27)) has both enough accuracy and simplicity for 
practical use, and is more useful than other approximation formulas. Its accuracy is very high if both of the 
damping constants of two modes are less than 0.1. Compared with the exact solutions, this formula is 
greatly simplified. For example, this is common to all kinds of response values and has a simple 
expression directly reflecting the fundamental properties of the modal correlation. 
 
The proposed approximation formula is applicable for the wide problem even if it is a classically damped 
linear system with small damping and it can simply confirm the degree of the effect of the mode 
correlation. The convenient figures (Figs.4 and 5) were also prepared for the purpose. 
 

REFERENCES 
 
1. Wilson E.L, Kiureghian A.D. and Bayo E.P. “A replacement for the SRSS method in seismic 

analysis.” Earthquake Engineering and Structural Dynamics, Vol.9, No.2, pp.187-192, 1981. 
2. Architectural Institute of Japan. “Seismic loading – state of the art and future developments.” 1997 

(in Japanese). 
3. Kiureghian A.D. “Structural response to stationary excitation.” Journal of the Engineering 

Mechanics Division, ASCE, 106, pp.1195-1213, 1980. 
4. WATANABE M. and TAKIZAWA H. “Degree of cross correlation observed between time histories 

of modal oscillators. “Summaries of Technical Papers of Annal Meeting of Architectural Institute of 
Japan, Structures II, pp.743-744, 1994 (in Japanese). 

5. Rosenblueth E. and Elorduy J. “Responses of linear systems to certain transient disturbances, 
Proceedings of 4th World Conference on Earthquake Engineering, Vol.1, pp.185-196, 1969. 

6. Ohami K. and Murakami M. “Indices of effects of torsional coupling on earthquake response of 
structures.” Proceedings of the 12th World Conference on Earthquake Engineering, Auckland, New 
Zeeland. Paper no. 1916, 2000. 

 
 
 


	Return to Main Menu
	=================
	Return to Browse
	================
	Next Page
	Previous Page
	=================
	Full Text Search
	Search Results
	Print
	=================
	Help
	Exit DVD



