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SUMMARY

Though CQC method is very effective, the formulas for the mode correlation coefficient playing the
important rolein this method are very complicated, and are different by the kinds of the response quantity,
i.e. relative displacement, relative velocity and absolute acceleration. From the practical viewpoint, this
paper proposed a simple approximation formula for the mode correlation coefficient, and verified its
usefulness. It was concluded that the proposed approximation formula has enough accuracy and simplicity
for practical use, and is more useful than other approximation formulas.

INTRODUCTION

The CQC method (Complete Quadratic Combination Method) [1] is representative as a response spectrum
method considered the correlation between modes [2]. Though this method is very effective, the formulas
for the mode correlation coefficient playing the important role in this method are very complicated. Not
only the expressions themselves of the equations are very complicated, but also they are different by the
kinds of the response quantity, i.e. relative displacement, relative velocity and absolute accel eration.

From the practica viewpoint, this paper proposes a simple approximation formula for the mode
correlation coefficient for classically damped systems subjected to a white-noise input, and verifies its
usefulness.

FORMULASALREADY PROPOSED

Exact formula
For convenience, the various response quantities (the relative displacementw, the relative velocity w and
the absolute accelerationw) in a classically damped linear system (N degree of freedom) are represented
by w. Its peak response |V\:1max is given in the following equation according to the CQC method [1].

N

W, = S S (BW,-S,) . (BW, -S,) (1)
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in which suffix S is the mode number, W is the participation vector corresponding to the response
components, S, is the response spectrum value of ground motions and p  is the mode correlation
coefficient between the s-th mode and the r-th mode. The first term in Eq.(2) is a term of same modes
(r = 8) which is identical with the calculation formula of the SRSS method. The second term gives the
effect of the mode correlation between different modes (I # S).

The mode correlation coefficient p, are different by the kinds of the response quantity, i.e. relative
displacement, relative velocity and absolute acceleration. It is given by following equation, respectively
[1,3,4]. These equations are induced under the assumption about the ground motion that the duration time
is sufficiently longer than natural periods and the characteristics is a white-noise. In the following, these
equations are called "texact formulas' for convenience.
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inwhich h, isadamping factor and y_ isthe natural circular frequency ratio.
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[relative velocity] (4)
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When the damping factor is equal to each other (h, = h, = h), Egs.(3)-(5) becomes an equation below,
respectively.
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Basic property of the correlation coefficient

Fig.1is acalculation example of the mode correlation coefficient p,, for the each response quantity of
relative displacement, relative vel ocity and absolute acceleration. Fig.1(a) is the casesin which the
damping factor of both modesis equal to each other (h, = h, = h), and its value changes from 0.01 to 0.30
in 5 stages. Figs.1(b) and (c) is the case in which the damping factor of both modes differs to each other
(h, #h, ). Larger value of damping factorsis 0.1, 0.2 respectively, and smaller valueis 1/2 and 1/5 of
them.

From Fig.(1), the difference among coefficients for 3 kinds of response quantitiesis smaller, as circular
frequency ratio y_ is nearer to 1, and as damping factors are smaller. The range of y_ in which the
difference of 3 coefficientsisvery small is 0.8-1.2, when the damping factors are about 0.2. However, this
range becomes almost over the full range, when the damping factors are smaller than about 0.1.
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Fig.1 Mode correlation coefficient by exact formula.

In addition, it is possible to point out next points on the basic property of mode correlation coefficient

Py from Fig.1: The coefficient takes the value of 0-1. The correlation coefficient between the r-th mode

and the ss-mode and correlation coefficient between the ss-mode and the r-th mode is equal to each other.
0<p, <1 ©)
Ps = Pis (10)

In the cases in which the damping factor of both modes is equal to each other (Fig.1(a), h, =h, =h),

correlation coefficient p, becomes 1 (p, =1) at natural circular frequency ratio y_ =1, regardless of the

value of damping factors h. As the natural circular frequency ratio y_ of both modes separates from 1, the

mode correlation coefficient p rapidly decreases. This degree of discretion is larger, as the damping
factors are small.

On the other hand, in the cases in which the damping factor of both modes is not equal to each other
(Figs.1(b) and (c), h, =h,), correlation coefficient p, becomes smaller than 1 even at natural circular



frequency ratio y, =1. The degree of this decrease depends on the ratio of the damping factor of both
modes and is larger as thisratio separates from 1.
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Fig.2 Comparison between approximation formulas and exact formula.

Approximation formulas
The approximation formulas [3] are proposed for the case in which the damping factor of both modes is
small and the natural circular frequency is close each other.
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Theses formulas are different as well as the exact formula by the kinds of the response quantity, i.e.

relative displacement, relative velocity and absolute accel eration and the expression itself is not drastically

simplified in comparison with the exact formula

sr

Fig.2 compares value by this approximation formula (broken line) with value by exact formula (solid
line). Figs.2(a) shows the relative displacement and relative velocity when the damping factor is equal to
each other (h=0.01, 0.05,0.1,0.2,0.3) and Figs.2(b) and 2(c) show the relative displacement when the
damping factor is different to each other (h, =0.1, h =0.02 and h, =0.2, h, =0.04). The accuracy of this
approximation formulais very high over the wide range of y, when the damping factor of both modesis
almost under 0.2, whether or not it is equal to each other.

Following approximation formula [5] is considerably simple compared to the approximation formula
shown above.

= (13)
P17 ez
in which
2 2
e = 1-h — ¥ y1-h [relative displacement] (14)
} h.+h 74
The following equation is obtained, if the damping factors are small.
g, = Ha (15)
h,+h zs
)
1+y
- s 16
. . (16)

In addition, the following formula is obtained, if the damping factors of both modes are equal to each
other (h, =h, =h).

The dotted line in Fig.2 is calculated value by Egs. (13) and (14). When the damping factors of both
modes are equal to each other (h,=h =h), it is aimost equal to the calculated value by the above-
mentioned approximation formulas, and therefore, the accuracy is very high. However, the accuracy
becomes very low on this, when the attenuation constant of both modes is contrastively different to each
other.

DERIVATION OF APPROXIMATION FORMULA

Assumption
In the induction of the approximation formula, next two assumptions for practical use are adopted; the
damping ratios were sufficiently small, and that natural frequencies of both modes were close to each
other.

h.,h << 1 17

s

|1- x| << 1 (18)



Results
By applying the assumptions Eqs.(17) and (18), the exact formulas Egs.(3)-(5) finaly become a next
identical approximation formula.

Pa = Pox Ta (19)
in which
__ 1 (20)
Pos 1+ 4,2
_ A (21)
A on,s
2 2 2
L Jed-ed [-a] (22)(23)
Towtreb 1+’
Ry, = (24)
and
g - R 27 (25),(26)
T ohe 14y,
_h (27)
ysr - h

Since 57, =1, h,, =h when the damping factor of both modes is equal to each other (nh =h =n), the
approximation formula becomes
1
e p = (29)
,0 pO 1+ Asrz
in which
h, (29)

From Egs.(19) and (20), the condition for the mode correlation coefficient p, becoming over specific
vauep is

A< (”f J—l (30)
Ps

DISCUSSION
Accuracy of proposed formula

Fig.3 compares the calculated value by this approximation formula with calculated value by exact formula.
The broken lines are the approximate values. The solid lines (the relative displacement) and the dotted
lines (the absolute acceleration) are the exact values.

Its accuracy is very high at 0.8-1.2 range of natural frequency ratio of both modes, if the damping factors
are smaller than 0.2. If the damping factors are smaller than 0.1, this range becomes almost over the full
range.



The dot-dashed lines in Fig.2 are calculated values according to this approximation formula. The accuracy
of this formula is lower a little than approximation formulas aready proposed. However, this
approximation formula has the sufficient accuracy in the practical use, as mentioned above. Moreover, the
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Fig.3 Comparison between proposed approximation formula and exact formula.

accuracy of this approximation formulais high for the absolute acceleration that approximation formulas

were not yet proposed.




Simplicity in form of proposed formula

This formula Egs.(19)-(27) isidentical for al kinds of response quantities and is drastically simplified in
comparison with the exact formulas Egs.(3)-(5). Moreover, this formula is considerably simplified in

comparison with Egs.(11) and (12) which are one of approximation formulas already proposed.

However, the expression of this formula resembles Egs.(13) and (16) which is the other approximation
formula already proposed. The differenceis that the proposed approximation formulais expressed by 2,
while this approximation formulais expressed by y_ . On this point, this approximation formulais rather
convenient to induce the mode correlation coefficient by the amount of the system in the explicit form

expression [6].
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Fig.4 Coefficients constituting proposed approximation formula ( pg = pog Ny )

Fig.5 Calculation of index A._ .
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From the above discussion, it was confirmed that the proposed approximation formula has both accuracy
and simplicity, and is excellent on this point in comparison with other approximation formulas.

Substantially explicitness of proposed formula
In addition, the expression of the formula reflects directly and explicitly fundamental properties of the
mode correlation which was mentioned previously.

From Eq.(19), proposed approximation formula is expressed by the product of two coefficients o,  and
1, - Coefficient p_ is the mode correlation coefficient in assuming that the damping factor of both modes
was equal to each other and that therefore it is together the average p_ of them, as is clear from the
Eq.(28). The other coefficient 7;_shows effect of decreasing by actual difference of both damping factors
for the mode correlation coefficient mentioned above.

From Eq.(20), mode correlation coefficient p,, is a function only of coefficient A, . This is shown in
Fig.4(a). It is possible to show all curves in Fig.1(a) only by this curve. From Fig.4(a), the correlation
coefficient p,, monotonously decreases with the increase of coefficient A, . Therefore, it is possible that
coefficient A, is considered to be the index which shows the weakness of the mode correlation, namely
the independence between modes. From Eq.(21), this coefficient A, isdefined asaratio of coefficient A,
to the sum of the damping factors of both modes (2h,, ). From Egs.(22) and (23), coefficient 4, shows
the degree of separate between natural circular frequencies, and is a function only of natural circular
frequency ratio y .

From the above, when natural circular frequency ratio y, is 1, the reason why correlation
coefficient p, becomes 1, regardliess of the value of damping factors h, is because the coefficient A,
showing the degree of separate between natural circular frequencies becomes 0, and therefore,
coefficient A, becomes 0. As the natural circular frequency ratio y, of both modes separates from 1, the
reason why the mode correlation coefficient p, rapidly decreases is because the independence between
modes coefficient 4, increases, and therefore, the coefficient A, increases. Moreover, as the damping
factors are small, the reason why the degree in which the mode correlation coefficient p, decreases is
larger is because the coefficient A, increases.

On the other hand, from Eq.(26), the coefficient;_ is afunction only of damping factor ratio y_ of both
modes. Thisis shown in Fig.4(b). All curvesin Figs.1(b) and (c) are possible to be drawn by multiplying
the curve of Fig.4(a) by this coefficient. Therefore, as the damping factor ratioy_ of both modes separates
from 1, the reason why the degree in which the mode correlation coefficient p_ decreases is larger is
because the coefficient 7, decreases.

Fig.5 is prepared for convenient for calculating coefficient A, , which is the index showing the
independent degree of the modes, from natural circular frequency ratio y, and the average h,, of damping
factors.

CONCLUSIONS

From the practical viewpoint, this paper proposed a simple approximation formula for the mode
correlation coefficient playing the important role in CQC method and verifies its usefulness.



The proposed approximation formula (Egs.(19)-(27)) has both enough accuracy and simplicity for
practical use, and is more useful than other approximation formulas. Its accuracy is very high if both of the
damping constants of two modes are less than 0.1. Compared with the exact solutions, this formula is
greatly simplified. For example, this is common to all kinds of response values and has a ssimple
expression directly reflecting the fundamental properties of the modal correlation.

The proposed approximation formulais applicable for the wide problem even if it is a classically damped
linear system with small damping and it can simply confirm the degree of the effect of the mode
correlation. The convenient figures (Figs.4 and 5) were a so prepared for the purpose.
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