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SUMMARY 

In engineering approach, it is necessary to simulate or select the design earthquake as spectrum 
compatible accelerograms for detailed dynamic analysis of structures. This work presents an Artificial 
Neural Network [ANN] based model to simulate spectrum compatible accelerograms as design 
earthquake. In a two-stage approach to simulate accelerograms form target spectra, modular compression 
was used to compress the Fourier spectra. The optimal architecture of the neural network to compress the 
Fourier spectra is determined by training them as replicator network to achieve a high speed of 
compression with reasonable compression ratio. Accelerogram generator neural networks are trained to 
inversely map the compressed vector of Fourier spectra to their corresponding response spectra. The 
methodology is extended to develop multiple accelerograms compatible with target spectra. More than 
hundred accelerograms recorded in the Himalayan region during ten Indian earthquakes, pre-classified 
based on their observed predominant frequencies, are used to train and test multiple neural networks. The 
networks are able to generate spectrum compatible accelerograms from target response spectra in all the 
categories of different predominant frequency content. The networks are also tested with smoothed design 
spectra as inputs and are able to synthesize ensemble of realistic accelerograms with desired frequency 
content. 

INTRODUCTION 

The basic objective of engineering approach is to simulate accelerograms as design earthquake, which can 
be used for analysis, evaluation, design and strengthening of structures for future hypothesized 
earthquakes. The practice of using response spectra has been popular with engineers, where seismic threat 
is postulated in terms of smoothed spectral shape. This practice has led to the development of various 
empirical spectrum compatible models, where ground motions are indirectly modeled to match amplitude, 
frequency content, duration with existing data. The indirectly modeled accelerogram from response 
spectra can be used for non-linear dynamic analysis employing time history analysis. The generation of 
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accelerograms from response spectra is an inverse problem which does not  have  a  unique  solution. The 
inherent capability of ANN to learn inverse mapping  from examples was first exploited by Ghaboussi and 
Lin (1998) to develop a new method for generating spectrum compatible accelerograms, which was later 
extended to generate multiple accelerograms from a given response spectrum by pre-classifying the 
accelerograms based on duration and using probabilistic neural network with stochastic neurons [Lin and 
Ghaboussi (2000), Lin (1999)]. 
 
The approach adopted in the present work is a variation of the methodology proposed by Ghaboussi and 
Lin (1998). More than hundred accelerograms recorded in the Himalayan region during ten Indian 
earthquakes have been utilized to train and test the proposed ANN based spectrum compatible model. The 
accelerograms used for training are pre-classified into categories based on their observed predominant 
frequencies. Multiple neural networks have been trained to map the accelerograms of each category to 
their corresponding response spectra to generate multiple accelerograms of different frequency content 
from given response spectra.  

TYPE OF NETWORKS USED IN THE ANN BASED MODEL 

There are essentially two different types of networks used in the ANN based spectrum compatible model 
for simulation of accelerograms. The first network is a data compression network, which compresses the 
FFTs of accelerograms from high dimensional vector to much lower dimensional vector. The data 
compression network is implemented as Replicator Neural Network (RNN) to avoid loss of information 
during compression. The second network is Accelerogram Generator Neural Network (AGNN), which 
trains the lower dimensional vectors representing the compressed form of the FFTs with their 
corresponding response spectra for generation of spectrum compatible accelerograms [Ghaboussi and Lin 
(1998)]. The implementation of RNN is necessary to reduce computational time while training AGNN.   

 
Replicator Neural Networks ( RNN ) for Signal or Data Compression  
Signal or data compression is used to achieve a low bit rate in the digital representation of signals with 
minimum loss of signal quality. The function of  compression is usually referred to as low bit rate coding 
or simply coding. Signal compression has found wide application in many aspects of signal encryption, 
storage and communication [Tzou et al. (1994), Zhang et al. (1995), Jayant (1992)]. However, despite the 
efforts of many investigators working in this field, a good compromise involving quality, complexity and 
compression ratio has not yet been reached [Fa-Long and Rolf (1997)]. Recently there has been 
tremendous interest in applying ANN to signal compression and some promising results have been 
reported [Stark et al. (1991), Niemann et al. (1993), Dony et al. (1995)]. The characteristics of ANN 
involved in signal compression include massively parallel architecture; a high degree of interconnection; 
the propensity for storing experiential knowledge; and the capabilities of high speed computation, non-
linear mapping, and self-organization [Dony et al. (1995)]. The high-speed computational capability of 
ANN can be employed to implement real time signal compression. The first serious studies of RNN for 
signal/data compression were carried out by Kohonen et al. (1977). Ackeley, Hinton and Sejnownski 
(1985) later studied the replicator neural networks in the context of the 'encoder problem'. Cortell et al. 
(1987) developed a replicator network version of the multi-layer feed-forward networks. Hecht-Nielson 
(1995, 1996) presented some theoretical studies clarifying certain fundamental aspects of the working of 
RNN. The present work has implemented RNN for data compression and decompression in two stages. 
There are two modules of RNN, which are RNN_1 and RNN_2. The first module RNN_1 is a two hidden 
layer network where the input and output layer each has 2049 nodes for compressing the real part of FFTs 
and there are m number of nodes in each of the hidden layer (m << 2049) giving a network architecture 
2049-m-m-2049. The network architecture of RNN_1 for imaginary part is 2047-m-m-2047. The second 
module RNN_2 is a single hidden layer network where input and the output layer each has m number of 



nodes and    there are k number of nodes in the middle hidden layer (k < m) giving a network architecture 
m-k-m. A schematic representation of module RNN_1 and RNN_2 are given in Fig. 1. 
Two separate RNN_1 (2049-m-m-2049 and 2047-m-m-2047) were trained to replicate the real and 
imaginary part of the FFTs respectively and once they were successfully trained for all the presented 
patterns of real and imaginary part of FFTs, the set of activation vectors of the first and second hidden 
layers were stored. The pair of activation vectors [rA1m]p ; [rA2m]p and [iA1m]p ;  [iA2m]p  represent the 
compressed signatures of real and imaginary part of FFTs, respectively.  
 
In the second stage of compression two separate but identical RNN_2 (m-k-m) were trained for both real 
and imaginary part. The input to the input layer of RNN_2 trained for real part was the vector [rA1m]p and 
the target output in the output layer was the vector [rA2m]p. Similarly, the input to the RNN_2 trained for 
imaginary  part was the vector [iAlm]p and the target output was the vector [iAlm]p. The lower part of  Fig. 1 
shows the schematic representation of RNN_2 trained for real and imaginary part of FFTs respectively. 
The module RNN_2 is not exactly a replicator neural network, but this module learns to map the pair of 
activation vectors given as input and target output respectively. Once this module learns to successfully 
map all components of the pair of activation vectors, it produces a further reduced low dimensional vector 
in its middle hidden layer having k number of nodes. These low dimensional vectors are [rACk]

p and 
[iACk]

p for the real and imaginary part of FFTs respectively and encode the compressed signatures of 
FFTs. The final replicator neural networks (RNN) having architectures 2049-m-k-m-2049 and 2047-m-k-
m-2047 for compressing real and imaginary part of FFTs respectively are constructed by embedding the 
module RNN_2 into the module RNN_1 as shown in Fig. 2. The procedure of embedding RNN_2 to 
RNN_1 involves replacement of weight matrix [rWhh] and [iWhh] of networks in module RNN_1 by pair of 
weight matrix [rw1]; [rw2] and [iw1]; [iw2] of networks in module RNN_2 respectively.  
This phase wise compression was adopted to speed up the parametric study for finding optimum value of 
m and k so that an optimal configuration of RNN can be achieved having high speed of compression with 
reasonable compression ratio.  
 
Parametric Study for Optimum Architecture of RNN  
The parametric study for finding the optimum architecture of the RNN aims at finding the optimal number 
of nodes m and k in the outer hidden layers and middle hidden layer respectively for 38 randomly sampled 
recorded accelerograms from the data base. Out of these 38 recorded accelerograms, 8 accelerograms were 
kept aside for testing the networks.  
 
The first module RNN_1 was trained to replicate the real and imaginary part of the FFTs by varying the 
number of nodes in the hidden layers (m). The Sum Square Error (SSE) after training various architectures 
of RNN_1 for 10000 epochs were compared. It was observed that the RNN_1 having number of hidden 
nodes less than 80 were not able to internally represent the both real and imaginary part of the FFTs used 
for training and were not converging well on the data set presented to the networks for replication. 
Therefore a value of m < 80 was ruled out for further parametric study to be carried out. 
A series of network architectures for RNN_1 were then considered for training the data set by increasing 
the number of hidden nodes (m) from 80 to subsequent higher values. It was observed that the RNN_1 
having 82 and 105 nodes in their hidden layers were consistently showing better convergence than other 
networks considered in the study while the networks were trained for successively lowered error level. 
Both the networks learned to replicate the real and imaginary part of the FFTs of all the 30 accelerograms 
at an error level of SSE=0.1. 

 



 
Fig. 1 Schematic representation of module RNN_1 and RNN_2 
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Fig. 2 Construction of RNN by embedding RNN_2 to RNN_1 
 

Even though the number of epochs taken by the RNN_1 with 105 hidden nodes were lesser than the 
number of epochs taken by RNN_1 with 82 hidden nodes to replicate both real and imaginary part of 
FFTs, the CPU time taken by 2049-105-105-2049; 2047-105-105-2047 networks were higher than the 
2049-82-82-2049; 2047-82-82-2047 networks, which was due to larger number of connections involved 
in the 2049-105-105-2049; 2047-105-105-2047 networks. However both the network architectures were 
retained for further evaluation of their performances. 
 
The parametric study in the second stage of compression was carried out to find out the number of nodes k 
in the middle hidden layer of RNN_2. Two separate architectures of RNN_2 were considered at this stage, 
which were 82-k-82 and 105-k-105. The RNN_2 were trained to map the set of activation vectors [rA1m]p ; 
[rA2m]p and [iA1m]p ; [iA2m]p derived from the corresponding RNN_1 trained in the first stage of 
compression. The number of nodes m in each of the hidden layers of RNN_1 in the first stage of 
compression has a bearing on the optimal speed of compression. The number of nodes k evaluated in the 
second stage of compression decides the compression ratio that can be achieved for the final replicator 
neural network. Initially the value of k was fixed at 20 and a target error level was 0.005 (SSE). It was 
necessary to lower the target error level in the second stage of compression, so that the average error level 
at the output nodes of RNN_2 remain in the same order as that of RNN_1. It was observed that both the 
network architectures 82-20-82 and 105-20-105 were not able to converge to the desired error level while 
trained to map the corresponding hidden layer activation vectors for real and imaginary part of the FFTs. 
The value of k was subsequently increased and training was repeated. The networks finally converged for 
k = 25. Once, the networks 82-25-82 and 105-25-105 in module RNN_2 were successfully trained to map 
the set of activation vectors [rA1m]p ; [rA2m]p and [iA1m]p ; [iA2m]p , they were embedded to the 
corresponding 2049-82-82-2049 and 2049-105-105-2049 networks  in the module RNN_1 to construct 
the five layer RNN having architectures 2049-82-25-82-2049; 2047-82-25-82-2047 and 2049-105-25-
105-2049; 2047-105-25-105-2047 respectively. It was observed that the two architectures of RNN were 
performing well on the training data set considered for the study, but their performances were evaluated 
on FFTs of 8 recorded accelerograms kept aside for  testing.  
 
The pseudo-velocity response spectra of the replicated time histories from the RNN having the two 
different architectures were compared with the pseudo-velocity response spectrum of the corresponding 
recorded accelerograms. The pseudo-velocity response   spectra  were calculated within the range of 0.01 
and 50 Hz using Newmark Beta method with β  = 0.25 and 5% damping. It was observed that the RNN 
having architecture 2049-82-25-82-2049; 2047-82-25-82-2047 were performing better than the RNN 
2049-105-25-105-2049; 2047-105-25-105-2047, while tested on FFTs of novel accelerograms. The 
network architecture 2049-82-25-82-2049; 2047-82-25-82-2047 were finally selected as the optimum 
architecture of RNN for compressing the real and imaginary part of FFTs respectively for subsequent 
studies in the present work. 

 
Performance of  Replicator Neural Network 
The trained replicator neural networks were tested by comparing replicated accelerograms with input 
accelerograms from training set. These comparisons were made for all the accelerograms included on the 
training set. It was observed that the RNN was exactly replicating the accelerogram at its output nodes and 
the response spectra of replicated accelerogram was exactly matching with the response spectra of 
recorded accelerogram. The RNN was also tested on novel accelerograms, which were not included in the 
training data set. It was observed that the RNN was able to replicate the novel accelerograms with 
reasonable accuracy and the response spectra of the replicated accelerograms were closely matching with 
the response spectra of recorded accelerograms. It was observed that the RNN was able to learn the 



internal representation, while compressing the presented accelerograms and replicating them by 
decompression.  

ACCELEROGRAM GENERATOR NEURAL NETWORKS (AGNN) 

There are two identical AGNN, which are trained to relate the real and imaginary part of compressed FFTs 
of accelerograms with the pseudo-velocity response spectra at discrete frequencies separately. The first 
half of the AGGN is a double hidden layer network relating the pseudo-velocity response spectra to their 
corresponding compressed FFT signatures and the second half of AGNN is the decompression part of 
already trained RNN (2049-82-25-82-2049; 2047-82-25-82-2047).  

The input layer of the first half of AGNN has 100 nodes, where they receive the values of the pseudo-
velocity response spectra at 100 discrete frequencies. The pseudo-velocity response spectra were 
calculated within the range of 0.01 and 100 Hz using Newmark Beta method with β = 0.25 and 5% 
damping. The first half of the AGNN is trained to map the compressed signatures of FFTs with the 
pseudo-velocity response spectra. The training of AGNN involves the training of the connections of the 
first half of the AGNN and the weights of the connections in the second half of the AGNN are already 
trained and frozen weights of the decompression part of RNN. The architectures of the AGNN for 
generating real part of FFT from response spectra is shown in Fig. 6. The number of hidden nodes in the 
two hidden layers of the first half of AGNN were determined based on convergence criteria and a double 
hidden layer network with 100-32-32-25 architecture was found to be converging well up to a target error 
level of SSE=0.005.  

                                  
                                    

 
 
 

Fig . 3 Architecture of AGNN simulating real part of FFT 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 4  Test of trained AGNN with response spectrum from the training set, Baroh, Dharamsala 
Earthquake 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5 Test of trained AGNN with response spectrum from the testing set, Berlongfer, NE May 87 
Earthquake 
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Performance of Accelerogram Generated Neural Network 
The trained AGNN was tested by presenting response spectra of accelerograms from training set and as 
well as novel response spectra from testing set. It was observed that, AGNN was able to generate the 
accelerograms accurately from the corresponding response spectra used for training. One example 
accelrogram generated by AGNN from response spectra used in training is shown in Fig. 4 for the 
Dharamsala earthquake.  
 
The AGNN was also tested with novel response spectra, which were not included in the training data set. 
Figure 5 shows the generated accelerogram from input response spectrum at Berlongfer for the NE May 
87 earthquake which was not included in training. It was observed that the AGNN generated an 
accelerogram from the novel input response spectrum and response spectrum of generated accelerogram 
matched closely with the input response spectrum. The above case study with the sample accelerograms 
established the feasibility of developing an ANN based model for generation of spectrum compatible 
accelerograms from given target spectra, using data recorded in the Himalayan region.   

GENERATION OF MULTIPLE ACCELEROGRAMS FROM RESPONSE SPECTRA 

Following the case study, efforts were made to generate multiple accelerograms from given response 
spectra. The frequency content of ground motion is one of the most important parameter as far as damage 
potential is concerned. A structure should be evaluated or analyzed for possible damage by subjecting it to 
either recorded or artificially generated ground motions having different predominant frequency contents 
so that the structure remains safe against possible earthquakes having energy in a wide range of frequency 
band. Moreover, it is always not possible to have a single recorded accelerogram which matches with the 
given target spectra or design spectra in all the ranges of frequency as design spectra are generally mean or 
average of several response spectra derived from more than one recorded accelerogram. The current 
practice adopted by structural engineers is to use multiple recoreded accelerograms or artificially 
generated accelerograms which match with the given target spectra or design spectra in different 
frequency ranges. This work has attempted to generate multiple accelerograms from given target spectra 
or design spectra by pre-classifying over hundred recorded accelerograms based on their observed 
predominant frequency contents and training multiple AGNN to generate accelerograms having varying 
predominant frequency content. The Fourier amplitude spectrum of each recorded accelerogram was 
studied to derive the predominant frequency content of the accelerogram. The recorded accelerograms 
were classified into five categories namely very low frequency (< 1.5 Hz), low frequency (1.5 - 3.0 Hz), 
medium frequency (3 - 4.5 Hz), high frequency (4.5 - 6.0 Hz) and very high frequency (> 6.5 Hz) range. 
There were five different AGNN, which were trained and tested separately on these five categories of 
accelerograms, the results of which are presented and discussed in the following sections. 

Generation of  Accelerograms  in various Frequency Ranges 
The FFTs of the accelerograms considered for training were first compressed by RNN and the compressed 
signature of FFT were inversely mapped to the corresponding pseudo-velocity response spectra (β=0.25, 
5% damping). Two identical AGNN_1for very low frequency range were trained for both real and 
imaginary parts of the FFT. The weights of the connections of the decompression part of the RNN were 
kept frozen while training AGNN_1. An architecture of 100-21-21-25 for first half of AGNN_1 was found 
appropriate for training the accelerograms as this was the minimum possible network which learned to 
inversely map the compressed real and imaginary part of FFTs to their corresponding response spectra. 
The trained AGNN_1 was tested with response spectra from the training set and it generated the 
accelerograms, the response spectra of which were exactly matching with the input response spectra. The 
trained AGNN_1 was then tested with novel response spectra from the testing data set. It was observed 
that AGNN_1 was able generate accelerograms, the response spectra of which were closely matching with 
the input response spectra.  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6 Test of trained AGNN_3 with response spectrum from the training set, Gunjung, NE May 87 
Earthquake 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7 Test of trained AGNN_3 with response spectrum from the testing set, Hajadisa, NE Jan 90 
Earthquake 
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Similarly, an architecture of 100-27-27-25 for first half of AGNN_2 was found appropriate for training the 
accelerograms in low frequency range as this was the minimum possible network which learned to 
inversely map the compressed real and imaginary part of FFTs to their corresponding response spectra. In 
medium frequency range an architecture of 100-26-26-25 for first half of AGNN_3 was found appropriate 
for training the accelerograms The trained AGNN_3 was tested with response spectra from the training set 
and it generated the accelerograms, the response spectra of which were exactly matching with the input 
response spectra as shown in Fig. 6. The trained AGNN_3 was then tested with novel response spectra 
from the testing data set. It was observed that AGNN_3 was able generate accelerograms, the response 
spectra of which were closely matching with the input response spectra as shown in Fig. 7. Following the 
same approach an architecture of 100-24-24-25 for first half of AGNN_4 was found appropriate for 
training the accelrograms in  high frequency range and an architecture of 100-26-26-25 for first half of 
AGNN_5 was found appropriate for training the accelerograms in very high frequency range.  

GENERATION  OF  ACCELEROGRAMS  FROM  DESIGN  SPECTRA 

It is interesting to determine whether the trained neural networks are capable of generating realistic 
accelerograms from design spectra, even though they have been trained with actual recorded earthquake 
accelerograms. Therefore, a case study was conducted by presenting design spectra as target spectra to the 
trained networks. This part of the study was performed with the full understanding that design spectra are 
usually the envelope of the response spectra of several accelerograms or their mean plus some multiple of 
standard deviation and not the response spectrum of a single accelerogram.  

The design spectra used in the study are the pseudo-velocity response spectra derived from average 
acceleration response spectra proposed in Indian code  IS : 1893-2002 Criteria for Earthquake Resistant 
Design of Structures [IS:1893(2002)]. The pseudo-velocity response spectra derived for two soil 
conditions namely rock or hard soil and soft soil are considered for the case study. The two pseudo-
velocity response spectra were given as input to the different accelerogram generator neural networks 
(AGNN_1, AGNN_2, AGNN_3, AGNN_4 and AGNN_5) which are trained to generate accelerograms of 
different predominant frequency contents. It was observed that all the AGNN trained for various 
frequency ranges simulate spectrum compatible accelerograms in their desired frequency ranges. Figure 8 
shows the accelerogram generated by AGNN_4 from pseudo-velocity response spectrum for rock or hard 
soil (5% damping). The upper part of the figure shows the comparison of response spectrum of generated 
accelerogram with input design spectrum. It was observed that AGNN_4 generated a realistic 
accelerogram the response spectrum of which closely matched with the input design spectrum. It was also 
observed that the accelerogram generated by AGNN_4 had predominantly high frequency as classified 
and trained by the network which is  shown by the Fourier amplitude spectrum of the generated 
accelerogram in the upper part of the figure. The AGNN_4 is therefore generating realistic accelerograms 
in the desired predominant frequency. It should be mentioned here that even though the networks were 
never trained with design spectra as input, they were able to generate accelerograms with desired 
predominant frequency content.  

It should be mentioned here that even though the networks were never trained with design spectra as 
input, they were able to generate accelerograms with desired predominant frequency content. This is a 
useful property of the neural network based methodology, which enable the networks to generate 
accelerograms compatible with specified design spectra or target spectra. This study shows the ability of 
the ANN based model to generate multiple accelerograms from given target spectrum as input. Each of the 
generated accelerograms are having varying predominant frequency content. 
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Fig. 8 Example of simulated Accelerogram by AGNN_4 From Design Spectrum 
Specified By Indian Code Is:1893-2002 For Rocky Or Hard Soil Sites 



In this paper, results and discussions regarding an ANN based model for generation of accelerograms 
using data from strong-motion arrays in India is presented.  

The replicator neural networks were used for compressing high dimensional FFTs to much lower 
dimensional vector. A modular two-stage compression was carried out for finding the optimal architecture 
of replicator neural network in terms of compression speed with a reasonable compression ratio. The 
performance of the replicator neural networks were tested for accelerograms used in training and as well 
as for novel accelerograms not used in training. Accelerogram generator neural networks were trained and 
tested on 38 randomly sampled accelerograms and it was observed that the recorded accelerograms in the 
Indian region can be utilized to develop a feasible inverse model for generating accelerograms from 
response spectra. 

In the second phase of the study, neural networks were trained and tested to generate multiple 
accelerograms from target spectra. The recorded accelerograms used in this work were categorized based 
on their observed predominant frequencies and multiple networks were trained and tested for different 
categories. It was observed that the multiple networks trained on accelerograms categorized to five 
different categories learned the inverse mapping of accelerograms to their corresponding response spectra. 
The performance of the networks were tested by presenting novel response spectra as input and it was 
observed that the networks learned to generate accelerograms from response spectra in all the categories 
of different frequency ranges.  

The ANN based model was finally tested by presenting pseudo-velocity response spectra derived from 
average acceleration response spectra specified in Indian Standard code IS : 1893 as input and it was 
observed that the model was able to generate multiple realistic accelerograms in different frequency 
ranges. 
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