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SUMMARY

Techniques for modelling the seismic response of concrete structures are limited by the accuracy of the
material models. Current models for reinforced concrete subjected to shear typically do not account for the
effects of cracking and yielding. Diagonal cracking has a very pronounced effect on the shear stiffness of
concrete structures, however, recommendations for cracked section shear stiffness are not readily available.
The plastic strain of reinforcement is another important parameter that must be considered in the nonlinear
seismic shear analysis of reinforced concrete. There is a strong relationship between plastic strain of
reinforcement and plastic shear strain, e.g. yielding of the reinforcement results in yielding in shear of the
element. Pinching of hysteresis loops is directly linked to the plastic strain in reinforcement, as is the
deviation of principal compression stress and principal compression strain angles in concrete.

The authors have recently developed a general model to predict the complete load-deformation response of
reinforced concrete elements subjected to reverse-cyclic shear. A unique feature of the model is that
deformations at the cracks are separated from deformations of concrete between cracks, and crack
deformations are assumed to be a consequence of strain compatibility between concrete and reinforcement.

This paper presents simplified methods for modelling the non-linear seismic shear response of reinforced
concrete based on the underlying principles of the general model. The methods include an effective cracked
section shear stiffness determined from the shear strength and the shear strain at yield. The shear strain at
yield is primarily a function of the yield strain of the horizontal reinforcement and strain of the vertical
reinforcement. The cracked section shear stiffness can be used for linear analysis. For non-linear static
analysis, a complete envelope is provided where the shear response is assumed to be elastic-plastic. The
ultimate shear strain is determined from the shear strain at yield and the shear strain ductility. The latter is
a function of the ratio of shear stress to concrete compression strength. Simple hysteretic rules are also
provided to define the complete reverse-cyclic shear response for non-linear dynamic analysis.

INTRODUCTION

Techniques for modelling the seismic response of structures have become very sophisticated thanks to
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Figure 1 FEMA 356 generalized load-deformation function for shear walls
compared to results from a membrane element test (Stevens et al. [3])

advancements in solution methods and computing power. The accuracy of these techniques is however
limited by the accuracy of the models for the response of individual elements in the structure. Models to
capture the flexural response of individual elements are advanced and rational. For example, non-linear fibre
models, which capture the complete moment-curvature response including the effects of cracking and
yielding of the reinforcement, are now widely used. By contrast, models currently used for the seismic shear
response of individual elements are crude.

The simplest type of seismic analysis is linear analysis (static or dynamic). The issue with this analysis is
what effective stiffness to use to account for the non-linear behaviour. Design codes such as UBC-97 [1] state
that “stiffness properties of reinforced concrete elements shall consider the effects of cracked sections.” For
flexure, reduced cracked section stiffnesses expressed as a fraction of the gross, or uncracked, section
stiffness are widely available in the literature. For example, FEMA 356 Prestandard and Commentary for
the Seismic Rehabilitation of Buildings [2] recommends 0.8EcIg and 0.5EcIg for uncracked and cracked walls
respectively.

For shear, simple recommendations for the cracked section stiffness are not readily available, instead, the
gross section shear stiffness is often used. For example, FEMA 356 suggests using the gross section shear
stiffness for both uncracked and cracked walls. Diagonal cracking has a pronounced effect on the shear
stiffness that should be taken into account, e.g. for the heavily reinforced element shown in Fig. 1, the
cracked section shear stiffness is about one-tenth that of the gross section. A simple equation for estimating
the cracked section shear stiffness based on the quantity of reinforcement and the applied axial stress is
proposed here.

Non-linear static analysis includes yielding of elements to provide a more complete representation of the
load-deformation response. FEMA 356 defines a generalized force-displacement curve (see Fig. 1) which
includes the uncracked stiffness up to the yield point and an ultimate shear strain of 0.0075 (drift ratio of



0.75%). While this value is reasonable for the example shown in Fig.1, it is not appropriate for all cases. A
simple method that accounts for the quantity of reinforcement and the applied axial stress is presented in this
paper.

Non-linear dynamic analysis of structures includes  the complete hysteretic response  for each element. Until
recently, no general rational model was available for the complete load-deformation response of elements
subjected to seismic, or reverse-cyclic, shear. As a result, FEMA 356 recommends that “unloading and
reloading stiffnesses and strengths, and any pinching of the load-versus-rotation hysteresis loops, shall reflect
the behavior experimentally observed for wall elements similar to the one under investigation.” However,
this is not practical when considering the wide range of conditions found in existing and new structures. This
paper presents a simple hysteretic model derived from the more general rational model developed by Gérin
and Adebar [4].

GENERAL MODEL FOR SEISMIC SHEAR

The methods presented in this paper are derived from a general rational model for predicting the complete
load-deformation response of reinforced concrete membrane elements subjected to reverse-cyclic shear
(Gérin and Adebar [4]). The general model is based on strain compatibility and force equilibrium, combined
with simple material models, to determine the actions of the reinforcement and the concrete. 

Collins [5] developed the concept of using membrane elements – elements with uniformly distributed
reinforcement in two directions and subjected to uniform biaxial stress and strain – to study the fundamental
behaviour of reinforced concrete subjected to shear.  Membrane elements have direct application in structures
such as shear walls, and can be considered fundamental “building blocks” for understanding shear in any
concrete structure. 

To better understand reverse-cyclic shear, the results from membrane element tests conducted by Stevens
et al. [3], Meyboom [6], and Villani and Vecchio [7] were studied in detail (Gérin [9]).  Data from an earlier
series of monotonic shear tests by Vecchio and Collins [8] were also examined. The study of experimental
data focussed on the relationships between various stress and strain components. Understanding and
modelling of these relationships lead to an understanding of the fundamental mechanisms of the reverse-
cyclic shear response. Some of these relationships and mechanisms are outlined below; full details are
provided elsewhere (Gérin [9]).

There is a nearly linear relationship between shear strain and strain of the weaker reinforcement (first
reinforcement to yield).  When the weaker reinforcement yields, the shear deformations increase
proportionally.

The pinching of hysteresis loops is a function of plastic strain in the reinforcement.  At the end of an
unloading segment, cracks remain open in proportion to the plastic strain accumulated in the
reinforcement from previous yield cycles. As loading is applied in the reverse direction, the previous-
direction cracks close and the new-direction cracks open. This occurs with very little stiffness due to the
“gap” created by the plastic strain in the reinforcement. The pinching becomes more pronounced as
additional plastic strain accumulates in the reinforcement.

Principal stress and principal strain angles deviate during the load reversal stage of each cycle. Before
yielding, the principal strain angle follows the principal stress angle closely throughout the cycle (the
response is essentially linear elastic). After yielding, when there is plastic strain in the reinforcement,
the cracks remain open at the end of unloading. As loading is applied in the new direction, the orientation
of the principal stress changes to the new direction,  however, the orientation of the principal strain does
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Figure 2  Crack and concrete components of total strains
for a point after yielding of the weak reinforcement
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not fully change direction until the previous-direction cracks close and the new-direction cracks open.
As a result, the principal strain angle lags the principal stress angle. This lag is a function of plastic strain
in the reinforcement.

To capture the observed behaviour, a general model was formulated where deformations at the cracks are
separated from deformations of concrete between cracks.   While the concrete and reinforcement strains are
directly related to the applied loads, the crack deformations are a consequence of maintaining strain
compatibility between the concrete and reinforcement.  This approach is a significant departure from existing
models where cracked concrete is treated as a single homogeneous material. 

The importance of separating the crack deformations from the deformations of concrete between cracks is
illustrated in Fig. 2. The strain components were separated using the procedures of the general model: the
crack strain normal to the cracks is equal to the total strain normal to the cracks, the crack strain parallel to
the cracks is zero, and the principal angle of concrete stress is equal to the principal angle of strain in the
concrete between cracks.  Deformations at the cracks are defined entirely in terms of average strains,
avoiding the need for an empirical crack-slip function to define local strains.

Separating deformations at the cracks from deformations in the concrete between the cracks enables the shear
strain to be explicitly linked to strains in the reinforcement. The pinching of the hysteresis loops is
automatically captured by having the reinforcement plastic strains determine the crack closing/opening
during the reversal. The principal stress and strain angles are allowed to deviate as required to maintain
equilibrium and compatibility. The complex concrete stress-strain behaviour seen when considering cracked
concrete as a single material is automatically captured by a simple concrete model coupled with deformations
at the cracks. This eliminates the need for the complex empirical formulations seen in previous models to



describe the concrete response (Gérin and Adebar [4]).

The model components are summarized in Table 1. Complete details are in Gérin [9]. Figure 3 shows the
predicted load-deformation response for a membrane element subjected to pure shear (Stevens et al. [3]). The
model captures well the principal characteristics of the experimental response.

Table 1  Key Components of the General Model
Component Assumption

Strain compatibility concrete strains + crack strains  = reinforcement strains = total strains

Equilibrium concrete normal force + reinforcement force = applied normal force
concrete shear force = applied shear force

Crack angle fixed direction: may be estimated from principal stress direction at cracking

Principal concrete
stress angle

Before yielding: fixed direction estimated from a modified version of
Baumann’s equation (fn of element properties and loading characteristics)
After yielding: angle rotates as stress increases in x direction (concrete
stress in direction of weak reinforcement is constant)

Principal strain angle Before yielding: independent of principal concrete stress angle
After yielding: stress and strain angles rotate simultaneously (constant
difference)

Concrete compression
model

parabola for envelope, linear unloading/re–loading; softening due to
transverse tensile strains

Concrete tension
model

after cracking, concrete tension stress reduces as a function of crack width

Crack closing function empirical relationship between crack opening and normal compression
stress

Reinforcement model bi–linear stress–strain relationship; bare bar yield strength used; plastic
strains are cumulative from one shear direction to the other

Failure modes concrete compression failure: concrete strength exceeded
concrete shear failure: shear strain reaches limit 
reinforcement failure: both direction reinforcement yield

SIMPLIFIED MODEL

The general model summarized briefly above predicts the complete hysteretic response of reinforced concrete
in shear.  The simplified model, developed from the general model, provides an estimate of the envelope of
the shear response including the cracked-section shear stiffness and the maximum shear strain.  The model
can treat fully-cracked or initially uncracked sections.  Simple rules are presented to allow an approximate
prediction of the hysteretic response from the basic envelope.
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Figure 3  Comparison of General Model prediction (Gérin [9]) and the results
from a membrane element test (Stevens et al. [3])

The envelope is defined primarily by the shear stress at yield (assumed to be equal to the shear strength of
the element) and the shear strain at yield. These are then used to estimate the cracked section shear stiffness
and the ultimate shear strain.  Design codes already include equations for the shear strength of walls and
these are sufficiently accurate - and well proven - for typical elements.  Simplified equations are presented
below for the shear strain at yield, the corresponding cracked-section shear stiffness and the ultimate shear
strain.

Shear Strain at Yield
As concrete and reinforcement remain compatible on average, the shear strain of reinforced concrete can be
determined from the following simple strain transformation:

(1)γ ε ε εhv h v= + −2 45

where εh and εv are the normal strains in the horizontal and vertical reinforcement directions, respectively;
and ε45 is the strain at 45E to the reinforcement and in the direction closest to the principal compression strain
direction.  These normal strain values were chosen since they result in a simple transformation and because
the strain values can be easily estimated from the applied stresses as given below.

The shear strain at yielding of the element is defined as when the horizontal  reinforcement reaches yield,
therefore, the normal strain in the horizontal direction is equal to the yield strain.  For simplicity, this strain
is assumed to be equal to the bare bar yield strain:
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where fy is the reinforcement yield stress and Es is the reinforcement modulus of elasticity.  For grade 400
MPa reinforcement, εh = 0.002.

The sum of the vertical component of the concrete stresses and the stress in the vertical reinforcement must
equilibrate the applied vertical axial stress.  Assuming for simplicity that the concrete stresses consist of
uniaxial compression at 45E to the reinforcement, and assuming a linear stress-strain relationship for the
vertical reinforcement, the strain in the vertical reinforcement is given by:
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where vy is the applied shear stress (at yield), n is the vertical axial compression (compression positive) and
ρv is the vertical reinforcement ratio.

The derivation of Eq. (3) assumes that the shear force is large enough compared to the vertical compression
to cause tension strain in the vertical reinforcement.  Thus vertical reinforcement strain given by Eq. (3) is
limited to a positive value.  Shear critical members such as squat walls would typically not have such high
values of axial compression.  FEMA 356 limits the axial compression in a ductile member to 0.15Ag  fcN.
Members with greater axial compression are considered to have a brittle response and are dealt with
differently.

The strain at 45E to the reinforcement and in the direction closest to the principal compression direction is
related to the concrete compression stresses.  For simplicity, the concrete stresses are again assumed to be
uniaxial compression acting at 45E to the reinforcement. Thus, the principal concrete compression stress is
equal to twice the shear stress.  For typical elements the principal compression stress in concrete is low
compared to the compression strength of concrete and therefore it is reasonable to estimate the compression
strain using a linear stress-strain relationship.   Concrete softening due to transverse strains is neglected,
resulting in a lower bound estimate of the concrete strain.  At yield, the strain at 45E is:

(4)ε45
2 vy
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=
−

where Ec is the tangent stiffness of concrete as defined in building codes.

Substituting Eqs. 2, 3 and 4 into Eq. 1, the shear strain at yield is given by:

(5)γ
ρy

y

s

y

v s

y

c

f
E

v n
E

v
E

= +
−

+
4

with the condition that: 0 ≤
−

≤
v n

E
f
E

y

v s

y

sρ



1 2 3 4 5
Shear stress at yield (MPa)

0

0.001

0.002

0.003

0.004

0.005

S
he

ar
 s

tra
in

 a
t y

ie
ld

horizontal reinforcement

concrete

vertical reinforcement

(vy-n)/DvEs = 0

(vy-n)/DvEs = 0.002

varies with 
axial compression
and vert. reinf. quantity

Figure 4  Contributions to shear strain at yield for typical shear walls

The first term of Eq. 5 represents the contribution from tension strain of the horizontal reinforcement, the
second term the contribution from tension strain of the vertical reinforcement and the third term the
contribution from compression strain of concrete.

By substituting typical values into Eq. 5, a range of values for the shear strain at yield for typical shear
dominated elements (e.g., squat walls) can be determined.  As noted above the contribution from grade 400
MPa horizontal reinforcement is 0.002. The contribution from the vertical reinforcement ranges from 0.0,
when the vertical compression stress equals the shear stress, to 0.002 when the vertical reinforcement reaches
yield.  Assuming a concrete compression strength of 40 MPa, the tangent stiffness Ec is approximately 30,000
MPa. For a typical range of shear stress values, the contribution to the shear strain from the concrete
compression strain at 45E ranges from 0.0001 to 0.0007.  Adding the three contributions together, the shear
strain at yield ranges from 0.0021 to 0.0047. Fig. 4 illustrates the relative contribution of each component
to the total shear strain for a range of typical shear stress values.

Cracked-Section Shear Stiffness
Consistent with FEMA 356, the cracked section shear stiffness is defined as the secant stiffness to the yield
point:

(6)G
v

cr
y

y
=

γ

where the shear stress at yield vy can be taken as the shear strength as given by design codes, and the shear
strain at yield γy can be estimated from Eq. 5 above. The stiffness given by Eq. (6) represents the fully-
cracked condition and thus a lower bound to the stiffness.



To illustrate the results obtained using Eq. (6) for a typical shear dominated element, consider the example
of a squat wall with no significant axial force, horizontal and vertical reinforcement ratios of 0.0025 (the
minimum for new designs), and 40 MPa concrete. The shear stress at yield is assumed to be the shear
strength obtained using ACI 318 Clause 21.7.4 [10] expressed as a shear stress:

    [MPa units] (7) v f fy c h y= +0 25. ' ρ

For the values assumed above, the shear stress vy is 2.58 MPa. From Eq. 5, the shear strain at yield γy is 0.002
+ 0.002 + 0.0003  =  0.0043.  The resulting cracked section shear stiffness is 600 MPa.  If the reinforcement
ratio is doubled to 0.005 in each direction, the shear strength increases to 3.58 MPa, and the shear strain at
yield increases to 0.0045.  For this case, the cracked section shear stiffness is 795 MPa. These values of Gcr
represent 5% and 6.6% respectively of the uncracked section shear stiffness (Gg = 12,000 MPa).

The uncracked section shear stiffness is entirely a function of the concrete properties (Gg = 0.4Ec), however,
the cracked section shear stiffness is governed primarily by the quantity of reinforcement: the shear strength
is controlled by the quantity of reinforcement and the shear strain at yield is dominated by the strains of the
reinforcement. 

Ultimate Shear Strain
Shear dominated elements with typical amounts of reinforcement can deform significantly in shear after
yielding of the weaker reinforcement, that is, they have considerable shear strain ductility.   The shear strain
is limited by concrete failure in one of two modes: concrete compression failure or concrete shear failure.
Concrete compression failure is a brittle failure mode that occurs when the diagonal compression stress in
concrete exceeds the effective concrete compression strength accounting for the reduction due to transverse
tensile strains.  Concrete compression failures typically occur in elements that are heavily reinforced and are
subjected to large shear stresses.  The second failure mode, concrete shear failure, is relatively ductile and
results from excessive local damage along the cracks such as concrete splitting and crushing around the
reinforcement.  Concrete shear failure is associated with large shear displacements along the cracks. 

Figure 5 summarizes data from 21 large-scale membrane element tests.  The measured shear strain ductility
µγ is plotted against the shear stress ratio vy/fcN.  The shear strain ductility is equal to the ultimate shear strain
γu divided by measured shear strain at yielding γy.   The ultimate shear strain is defined as the maximum shear
strain before any shear strength loss.  The figure indicates that there is a very significant interaction between
shear ductility and applied shear stress. The concrete compression failures and concrete shear failures are
indicated by different symbols in the figure, and tests where both horizontal and vertical reinforcement
yielded are indicated by a third symbol.

The general method of shear design developed by Collins et al. [11] limits the shear stress ratio to 0.25 to
avoid concrete compression failures for non-seismic cases.  From the data in Fig. 5, this limit is appropriate
for cases where the shear strain ductility is less than or equal to one 1.0.  Based on the data shown in Fig. 5,
the following simple conservative limit on the shear strain ductility is proposed:
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This proposed limit is shown in Fig. 5.  
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Figure 5  Proposed shear strain ductility

As the ultimate shear strain is determined from the shear ductility and the shear strain at yield, all the
parameters which influence the shear strain at yield (i.e., reinforcement ratios, concrete strength, axial load)
influence the ultimate shear strain.  

Continuing the squat wall example presented above, Eq. 8 gives shear strain ductility µγ values of 3.2 and
2.9 for shear strengths vy of 2.58 MPa and 3.58 MPa.  Multiplying by the shear strain at yield determined
above (0.0043 and 0.0045) gives ultimate shear strains of 0.014 and 0.013, respectively.  For these examples,
the FEMA 356 drift limit of 0.75% (a shear strain of 0.0075) is conservative.

The minimum ultimate shear strain would occur at the maximum shear stress level.  ACI 318 limits the shear
stress in walls to 0.83(fcN)½ in MPa units.  This corresponds to a shear stress ratio of 0.15 for a concrete
strength of 30 MPa.  According to Eq. (8), the corresponding shear strain ductility is 2.2.   For this case, the
shear strain at yield given by Eq. (5) varies from 0.0027 to 0.0047 depending on the level of axial
compression.  The corresponding ultimate shear strain varies from 0.0059 to 0.0103.  The FEMA 356 limit
of 0.0075 is a reasonable average; but the wide range of values suggests that the more rigorous approach is
preferable.

APPLICATION TO SEISMIC ANALYSIS

Linear Analysis
Equations 5 and 6 presented above give designers a simple method for estimating the cracked section shear
stiffness for the linear analysis of concrete structures.  Similar to the design of flexural members, designers
can now consider both uncracked and cracked section properties and obtain a much better estimate of the
response.
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The use of cracked versus uncracked section properties can be based on whether the objective of the analysis
is to obtain forces or displacements, on whether elements are flexure-dominated or shear-dominated and on
the estimated stress level in each element. Comparing an initial estimate of the shear stress using uncracked
sections can  with  the shear stress at cracking for each element can  indicate which member will be cracked.

One way to estimate the shear stress at cracking is to use the empirical equations given in building codes for
the concrete contribution Vc (e.g., ACI 318 Eq. 11-29). Alternatively, the shear stress at cracking can be
estimated from first principles:

(9)v f n
fcr cr

cr
= +1

where fcr is the principal tensile stress at cracking, which can be estimated as 0.33(fcN)½  [12].

The uncracked section shear stiffness represents an upper bound stiffness while the proposed equations
represent a lower bound estimate of the shear stiffness. Given that the lower bound stiffness may be one-
twentieth the upper-bound stiffness, in some cases it may be appropriate to select intermediate values based
on the shear stress level relative to the cracking stress level.

Non-linear Static Analysis
A simple non-linear curve which captures the change in shear stiffness due to both cracking and yielding is
shown in Fig. 6. The gross section stiffness (0.4Ec) is applied up to the cracking stress (Eq. 9).  Then a
straight line is drawn to the yield point, defined by the shear stress at yield (ACI Clause 21.7.4 or similar)
and the shear strain at yield (Eq. 5). The response is assumed perfectly plastic after yielding, until the
ultimate shear strain is reached (Eq. 8). 

Figure 6 compares this approach with test data for a membrane element with relatively high reinforcement
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(shown for membrane element test SE8, Stevens et al.[3])

ratios of 1% and 3% in the vertical and horizontal directions, respectively (Stevens et. al. [3]). The proposed
model improves on the FEMA 356 generalized model by including the reduction in shear stiffness due to
cracking and by defining the ultimate shear strain as a function of element properties.

Non-linear Dynamic Analysis
Non-linear dynamic analysis requires the complete hysteretic shear response of each element.  A simple
reverse-cyclic model that extends the envelope presented above was derived from the general model. The
main components of the general model have been converted such that the response can be defined directly
in terms of shear stress and shear strain.

The simple hysteretic model, shown in Fig. 7, assumes that yielding occurs at vy for each cycle, unloading
occurs at a constant slope equal to Gcr , and the plastic shear strain γp remaining at the end of each unloading
segment is cumulative from one direction of loading to the other.  The reloading curve accounts for the
closing of diagonal cracks in one direction and the simultaneous opening of diagonal cracks in the other
direction in a simple way. In Fig. 7, the envelope to the response accounts for the principal stress orientation
(Gérin and Adebar [13]) instead of assuming 45E.

The shear strain at any applied shear stress level is given by:

(10)γ γ γ= +e pk

where γe is the elastic shear strain  v /Gcr and kγp is the plastic portion of the shear strain, which varies from
+γp to !γp with the closing/opening of the diagonal cracks. In the general model, the plastic strain depends
on the crack angle, the orientation of the principal concrete compression stress and an empirical crack closing
function (Gérin [9]).  The following simplified expression for the function k in Eq. (10) was developed from
the general model by assuming the principal compression stress is at 45E and normal to the closing diagonal



cracks, and that the plastic shear strain is proportional to the crack strains:

(11)k e
v
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







2 1
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where v is the applied shear stress.

The response predicted by the simple model is compared to the experimental result from a large-scale
membrane element test (Stevens et al. [3]) in Fig. 7.  The principal characteristics of the response are well
captured. Stiffness decay and pinching of the loops due to the accumulation of plastic strains in the
reinforcement are both well represented. 

FEMA 356 requires that in the nonlinear dynamic analysis of concrete walls, the hysteretic shear model shall
reflect the behaviour of experimentally observed elements similar to the one under investigation. As the
model presented here has been verified by comparison with membrane element tests, considered to be a
fundamental test of reinforced concrete subjected to pure shear, the model is suitable for a wide range of
shear dominated elements.
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