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SUMMARY 
 
In this research using shake table and dynamic actuators at the same time a new hybrid testing method is 
presented. The original idea of the method was proposed by Kausel in 1998 and developed by the author 
thereafter. Here the input motion is divided between the shake table and actuators and is applied at the 
same time on the experimental model. It is shown that using this method it is possible to simulate the 
rotational input motion at the foundation level, to apply effects of all three components of earthquake 
simultaneously even on 1-D shake tables, and to minimize the total power required for the experiment 
compared with when each of the testing apparatuses are used separately.  Different techniques for dividing 
the ground motion between the two facilities are presented which include dividing the amplitude by a 
constant factor, dividing the frequency content, and dividing the amplitude on a timely basis based on a 
minimization scheme, which is called the dynamic optimization method in this research. It is shown that 
the last method, i. e., the dynamic optimization, is the preferred technique that results in minimum testing 
power. 
 

INTRODUCTION 
 
Various methods for earthquake engineering tests have been developed in the recent decades, including 
pseudo-static experiments using hydraulic actuators, pseudo-dynamic testing with force actuators, and 
dynamic experiments with shake table. 
 
In the pseudo-static testing the specimen is subjected to forces and deformations produced by hydraulic 
actuators and changing so slowly that can be regarded as constant in a given period of time. Therefore the 
effects of dynamic inertial forces on the specimen cannot be visualized in this technique. The main idea 
behind this method is to evaluate the hysteresis behavior of different structural members rather than 
systems. In pseudo-dynamic testing similar to pseudo-static method rate of loading on the model is slow, 
but the inertial forces are simulated by the aid of a computer controlling the progress of the test. This 
method is usually applied on structural systems that can be as large as a full-scale building. In this method 
in a certain time step lateral displacements of the stories are theoretically calculated and applied by the 
force actuators at the roof levels. The forces in the actuators required to produce the above displacements 
are directly recorded by the load cells during the experiment resulting in the values of the shear forces in 
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the columns. The latter values are needed in the nonlinear dynamic equations of the system using which 
the lateral displacements for the next time step are calculated by the controlling computer of the testing 
setup. Because of the lack of need to exert forces at high speeds in this method, the experimental 
apparatus is simpler and cheaper and it is practical to test larger and even full-scale specimens. However, 
modeling inertial forces raised by rapid motions of building under earthquake is only theoretically feasible 
and their effects are not visible in the test. In the dynamic method of testing using shake tables, usually it 
is not possible to pick up large experimental samples or to test the models at their full scales. On the other 
hand, using this method makes it possible to simulate the real shaking of ground. 
 
Other than the above classic methods of testing, two different methods can be explored, at least 
theoretically. In one recent method, named the effective force method, while keeping the base of the 
structure unmoved dynamic forces equal to the acceleration of ground motion multiplied by mass of the 
story are applied by actuators at each story level. This way, the effect of ground motion is simulated 
exactly by external dynamic forces. Because of the need to apply force without limiting the displacements 
of the structural model and without interference of the actuators with the structure at its natural 
frequencies of vibration, practical implementation of the effective force method has yet to be fulfilled. 
Recently, some remedies have been suggested to make this method feasible by Dimig et al. [1]. The next 
method that is the focus of this paper is called the hybrid testing method. Here, by simultaneous use of 
force actuators and a shake table each simulating a part of the ground motion, the advantages of both 
testing apparatuses are benefited in combination avoiding their weak points. This idea was first given by 
Kausel [2]. After that, the idea was improved by the author of this paper and several ways for dividing the 
ground motion between the two testing facilities were examined resulting in an enhanced method named 
the dynamic optimization technique. This paper is a summary of the research done on this new method 
giving the basic corresponding equations and some numerical examples. 
 

DYNAMIC EQUATIONS FOR THE EXPERIMENTAL MODEL 
 
The governing equations for different testing methods in earthquake engineering are described here for a 
single degree of freedom model. 
 
The dynamic equation of equilibrium for an SDOF oscillator with possible nonlinear behavior can be 
shown as follows: 
 

( ) 0, =+ yyfum &&&                                                                                                                                       (1) 
 
In Eq. (1), m  shows the mass and u  is the absolute lateral displacement of the oscillator, and the dots 
represent derivation respect to time. Also guyu +=  in which y  is the relative displacement respect to 

the base and gu  is the ground (base) displacement. As is seen in Eq. (1), the base shear is shown by 

( )yyf &,  as a function of relative displacement and velocity of the oscillator. This function can be linear or 

nonlinear based on the level of shaking. For a linear system, the well-known relation ( ) yckyyyf && +=,  
exists in which k  and c  represent the lateral stiffness and the damping of the system.  
 
In pseudo-static testing, the force in the hydraulic actuator is ( )yyf &,  in which by lengthening the time of 
the experiment and lowering the rate of change of actuator force, dependence of f  on y&  is minimized. 
On the other hand, in pseudo-dynamic testing at each time step Eq. (1) is used to calculate the relative 
displacement y  to be applied by the actuator on the model and then the force in the actuator ( )yyf &,  to 



make this displacement is recorded and used in Eq. (1) again to calculate the relative displacement for the 
next time step.  
 
If Eq. (1) is used for analyzing a system vibrating on a shake table, the term um &&  or ( )yyf &,  shows the 
force exerted by the shake table on the oscillator and vice versa. Equation (1) can be rewritten this time in 
effective force format by resorting to relative displacements, as shown in Eq. (2): 
 

( ) gumyyfym &&&&& −=+ ,                                                                                                                                   (2) 

 
In Eq. (2), the right side exhibits the effective force needed to be applied on the model if the base of the 
model is kept unmoved. This is the basic idea behind the effective force method of testing. The hybrid 
testing method concerned in this paper is a combination of testing with shake table and the effective force 
method. Here, the ground motion is divided in two parts as follows: 
 

21 ggg uuu +=                                                                                                                                               (3) 

 
Substituting Eq. (3) in Eq. (1) results in: 
 

( ) 0,)( 21 =+++ yyfuuym gg &                                                                                                                     (4) 

 
Equation (4) can further be written as Eq. (5): 
 

( ) 21 , gumyyfum &&&&& −=+                                                                                                                                 (5) 

 
in which: 
 

21 guyu +=                                                                                                                                                  (6) 

 
Equation (5) governs the response of the oscillator in the hybrid testing method. In Eq. (5), the term 1gum &&  

represents the effective force to be applied by the force actuators on the system and the term 
umumum g &&&&&& =+ 11  again shows the force on the oscillator by the shake table as discussed above for testing 

with shake table only. 
 

THE TESTING POWER 
 
In the hybrid method the main question is what is the best criterion for dividing the ground motion 
between the two apparatuses in order to have the minimum testing power. The electric power needed for 
implementing a dynamic experiment is defined as the product of the external force applied on the system 
by the testing facility and the velocity at which this force is applied. The equations of testing power in 
different experimental methods described above are presented here as a basis for numerical calculations 
illustrated afterwards. 
 
Power for Testing with Shake Table 
Referring to Eq. (1), the force exerted by, or on the shake table is um &&  which is applied at the velocity of 
the original ground motion, gu& . Multiplying these two terms together results in the testing power, W , as 

follows: 



 

guumW &&&=                                                                                                                                                    (7) 

 
Power for Testing with Actuators (the Effective Force Method) 
As is shown by Eq. (2), the force in the actuators is gum &&−  applying at a velocity of y& . Then the power 

needed is: 
 

yumW g &&&−=                                                                                                                                                 (8) 

 
Power for Hybrid Testing Method 
The governing relation for this method is Eq. (5). As is shown in this equation, the force produced by the 
actuators in the system is 11 gumP &&−=  applying with a velocity of 1u& . On the other hand, the external force 

of the shake table is ( ) umuumP g &&&&&& =+= 112  that is applied at a velocity equal to 2gu& . The testing power in 

this case is computed by the addition of powers needed for each facility in the test, as follows: 
 

211 gg uumuumW &&&&&& +−=                                                                                                                                  (9) 

 
Substituting the relation 21 guyu +=  in Eq. (9) results in: 

 
( ) ( ) ( ) 221211 ggggggg uuymuyumuuumyumW &&&&&&&&&&&&&&&&& +++−=−+−=                                                                   (10) 

 
Now a parameter α  is defined to identify the two parts of the ground motion as follows: 
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Substitution of Eq. (11) in Eq. (10) results in: 
 

( ) ( ) gggg uyyuuuW &&&&&&&&& ααα −−+−= 11 2                                                                                                        (12) 

 
Obviously, it is desired to make the testing power needed a minimum value. This is the key point behind 
calculating the value of the dividing factor α . Calculation of α  can be done in different ways that is the 
subject of discussion in the next section. 
 

METHODS FOR DIVIDING THE GROUND MOTION 
 

In this section three different methods are presented for dividing the ground motion between the force 
actuators and the shake table in the hybrid testing method. These methods are compared numerically in 
the next section. The methods are dividing in time domain, dividing in frequency domain, and the 
dynamic optimization, which are described one by one. 
 
Dividing in Time Domain 
In this method, the dividing factor α  is varied between zero and unity calculating each time the testing 
power required. Here simply the amplitude of the acceleration time history of the ground motion is 
decreased by the factor α  and ( )α−1  separately that results in two different time histories, which are 



input to the actuators and the shake table, respectively. The instance of α for which the power reaches a 
minimum value, gives the desired dividing factor for the ground motion between the force actuators and 
the shake table according to Eq. (11). 
 
Dividing in Frequency Domain 
As will be seen in the examples, generally the shake table needs less power for being vibrated with low 
frequency records while on the contrary the force actuators consume the minimum power when the 
frequency content is highest. Therefore it will be to the benefit of the experiment if the record is broken up 
into two parts, namely the low frequency part and the high frequency part, and the low part is input to the 
shake table and the remaining to the actuators. This is done conveniently through a direct and an inverse 
fast Fourier transform in turn. However, the cutoff frequency is to be selected that is the main challenge in 
this method. The simplest way is calculating the maximum required power each time choosing a cutoff 
frequency and repeating the computations for different values of that. The desired value of the cutoff 
frequency for the experimental model under a certain earthquake record is the amount for which the 
largest required power in the experiment becomes minimum.  
 
The Dynamic Optimization 
The most important restriction in the method of dividing in time domain is the assumption that the 
dividing factor α  is constant with respect to time. This means that α  takes on a constant value all over a 
ground motion record in power calculations. It can be stipulated that if the value of the dividing factor of 
the ground motion is “tuned” with the dynamic characteristics of the record and the structure at each time 
step, i.e. if it changes value by time, the maximum testing power required can become even lower. This is 
the basic fact constituting the so called dynamic optimization method in this research work. 
 
The implementation of the idea begins with Eq. (12) for computing the testing power in the hybrid 
experiment. The ideal value for the required power in Eq. (12) is zero that results in: 
 

( ) ( ) 011 2 =−−+− gggg uyyuuu &&&&&&&&& ααα                                                                                                         (13) 

 
Expanding and rearranging the above equation with respect to α  results in the following: 
 
( ) ( ) 022 =++++− ggggggggg uuuyuyuuuyuu &&&&&&&&&&&&&&&&&& αα                                                                                   (14) 

 
Equation (14) can be further simplified to a second order equation for calculating α  as follows: 
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Equation (15) has two real roots if only its ∆  factor is not negative; this means: 
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If Eq. (16) turns out to be true, then there exists two (or a repeated) values for α  between them the 
smaller one can be picked up from the following equation: 
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The required power in this case is zero. On the other hand, if Eq. (16) is not valid, the power is nonzero 
regardless of the value of α . Because the equation of power with respect to α  is a second order 
polynomial (refer to Eq. (12)) it has to have an extremum in this case, i.e., a value of α  for which the 
absolute amount of W  is minimum, which is the desired value. To find α  and the corresponding 
(minimum) W  in this case, the derivation of W  with respect to α  in Eq. (12) is equalized to zero which 
after some algebra (details omitted for brevity) results in: 
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Substituting this value of α  in Eq. (12) results in the minimum value of the testing power W  as follows: 
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NUMERICAL CALCULATIONS 

 
 
Using the equations developed in the previous sections, the required experimental power is calculated for 
single degree of freedom structural models differing in natural frequency. The input motion is selected 
from between real earthquakes recorded in Khoraasaan province, which is one of four earthquake 
provinces of Iran and a highly active seismic area. The selected records were chosen to be strong motions, 
i.e., so as to have relatively large PGA’s, medium and long durations, magnitudes larger than 4.5, and 
spectral intensities larger than 15 cm. Table 1 shows the characteristics of the 10 earthquake records 
selected. 
 

Table 1. Characteristics of the earthquake ground motions. 
Record 

no. 
Soil 

profile 
Freq. 

cont. (Hz) 
PGA 

(cm/sec2) 
PGV 

(cm/sec) 
PGD  
(cm) 

Duration 
(sec) 

Spectral 
int. (cm) 

1 Hard 0.1-25 941.3 51.66 8.94 35.2 205.87 
2 Hard 0.1-25 880.9 73.27 10.7 31.14 321.21 
3 Hard 0.2-25 382.4 26.18 4.68 37.58 196.18 
4 Soft 1-20 354.2 6.77 0.25 3.02 77.66 
5 Hard 0.2-25 319.6 18.1 3.32 37.0 196.1 
6 Soft 0.4-25 303.0 13.78 2.6 18.1 72.2 
7 Hard 2-25 261.5 7.25 0.26 7.2 42.7 
8 Hard 0.4-20 217.1 8.75 1.38 9.42 30.25 
9 Soft 0.6-20 158.2 7.18 0.73 7.78 115.44 

10 Hard 2-25 157.5 5.24 0.22 5.08 40.92 
 

For doing the numerical calculations with the above 10 records, 10 SDOF structural models are 
considered having natural frequencies in the range of 1-10 Hz with 1 Hz increments. 



 
In the first set of calculations, dividing in the time domain is examined. Five different values for α  (the 
dividing factor) is considered as: 0, 0.25, 0.5, 0.75, and 1. For example, a zero value for α  shows that 
nothing is input to the actuators and the whole amplitude of the record is sent to the shake table. On the 
other hand, when α  equals unity this means that the shake table is still and the actuators simulate the 
whole ground motion. The above assumptions amount to 500 cases of calculation of the time history of 
the testing power. For each time history and structural model, the maximum required power is extracted 
from the results. Therefore, for each model with a certain natural frequency, 10 values of testing power 
(corresponding to 10 records) are resulted for each value of α . Figures 1 to 4 show the graphs of the 
required power against the natural frequency of the model. Then, at each frequency, the value of α  for 
which the power is minimum is extracted out of figures 1 to 4. This process results in the spectrum of α , 
i.e., the variation of α  versus frequency of the model. This is shown in Fig. 5. 
 

 
Fig. 1. Maximum instantaneous required power for different models, average curve and the 

envelope, 0α = . 

 
Fig. 2. Maximum instantaneous required power for different models, average curve, 

0.75.0.5,0.25,α =  



 

 
Fig. 3. Maximum instantaneous required power for different models, the envelope, 

0.75.0.5,0.25,α =  
 

 
Fig. 4. Maximum instantaneous required power for different models, average curve and the 

envelope, 1.α =  
 



 
Fig. 5. Variation of α  versus the natural frequency of the model (spectrum of α ). 

 
Now, the method of dividing in the frequency domain is examined. The ground motion record no. 2 and 
the model having a 5 Hz natural frequency are used for the calculations as an example. Through an FFT 
process, the record is decomposed into its low and high frequency counterparts choosing cutoff 
frequencies between 1 and 10 Hz each time in sequence. The shake table is vibrated with the low 
frequency component while the actuator simulates the high frequency component. Figure 6 shows the 
resulted curve for the required power. 

 

 
Fig. 6. Variation of the maximum required power against the cutoff frequency, record no. 2, natural 

frequency of the model is 5 Hz. 
 

In the third set of calculations, the dynamic optimization method is explored as described above. Again, as 
an example, record no. 2 and the model with a natural frequency of 5 Hz are considered and time histories 
of the required power are calculated. As can be resulted from Fig. 5, for this model a value of α  about 



0.75 gives the minimum needed power when using the method of dividing in the time domain. Thus, for 
the sake of comparison, the time history of power is determined also using the method of dividing in the 
time domain for the mentioned value of α . The resulting curve is shown in Fig. 7. Then the time history 
of power using the dynamic optimization method is calculated and depicted in Fig. 8. 
 

 
Fig. 7. Time history of the required power, record no. 2, 5 Hz model, dividing in the time domain, 

0.75.α =  
 

 
Fig. 8. Time history of the required power, record no. 2, 5 Hz model, dynamic optimization. 

 
INTERPRETATION OF THE RESULTS 

 
In Figs. 1 and 4 only one of the two apparatuses is in use. As is seen in Fig. 1, the shake table generally 
requires the least power for models with small natural frequencies. For higher frequencies up to about 7 
Hz, the required power increases gradually and then decreases to the final point at 10 Hz. For the actuator, 



Fig. 4 shows almost an inverse trend. The required power for testing only with the actuator is a minimum 
for models with high natural frequencies. When the natural frequency decreases, the needed power in this 
case increases. This is true down to 2 Hz, where the power begins to decrease slightly. Figures 2 & 3 
illustrate the results for combinations of the shake table and the actuator. If a curve is to be drawn 
connecting points with the minimum power in these Figures, it would be seen that up to about 2 
Hz 25.0≤α  is the best choice where between 2 and about 4 Hz 5.025.0 ≤≤ α  and from that point up 

5.0fα  are the values resulting in the minimum power. This fact is shown clearly in Fig. 5 where the 
spectrum of α  is depicted. Here it is observed that α  increases gradually from zero to unity when the 
natural frequency of the model varies between 1 and 10 Hz. Therefore, while the shake table and the 
actuator each best fit for low and high frequency models, respectively, a combination of both will be the 
best setup in between. 
 
The most important result drawn from Fig. 6, the curve of power versus the cutoff frequency, is that for 
the case calculated the cutoff frequency giving the least required power is about 5 Hz, but it can well be 
selected in a wider range between 4 and 6 Hz without causing much difference in the result. 
 
Comparing Figs. 7 & 8 that show the power demand when dividing in time domain with the actuator 
having a 75% share of the ground motion ( )75.0=α , it can be resulted that with the dynamic optimization 
not only the instantaneous power demand is decreased considerably but also there is a drastic decrease in 
the total power consumption of the testing facilities. This shows that the dynamic optimization method is 
very powerful in optimizing a testing program. 

 
CONCLUSIONS 

 
A hybrid method for implementing earthquake engineering experiments was described in this paper. In 
this method, a combination of shake table and actuators is used to simulate the effect of ground motion on 
the structural model. Different methodologies for dividing the ground motion record between the two 
testing facilities were presented. The first method was called dividing in the time domain in which the 
amplitude of the record was split between the two apparatuses. After calculating for different cases, an 
spectrum was presented showing the best dividing factor for different natural frequencies of the model 
resulting in the least instantaneous power demand. The second method or dividing in the frequency 
domain was a method of decomposing the record into its low and high frequency components. Here the 
main challenge was finding the cutoff frequency for each record and model for which the required power 
is a minimum. The last and the most efficient model as per this research was the dynamic optimization 
method. In this method through a minimization procedure its derivation was presented, the value of the 
dividing factor resulting in the least power demand at each time step was calculated and input to the 
testing scheme. It was shown that the dynamic optimization procedure decreases both the maximum 
instantaneous power demand and the total power consumption of the test. 
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