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SUMMARY 
 
The accurate and efficient, from a practical point of view, analysis of spherical tanks is the primary 
motivation for this work.  The proposed methodology implements: (a) the Boundary Element Method 
(BEM) for the simulation of the soil-structure interaction, (b) a discrete 2-DOF mechanical system for the 
approximate computation of the impedances of a massive, rigid, ring foundation, a usual feature of a 
spherical tank, and (c) a FEM simulation of the structure and fluid regions.  The above modules are 
coupled via the pre- and post-processing capabilities of the widely used general purpose program ANSYS.  
The entire analysis is performed directly in time domain assuming linear elastic structure and soil region.   
 

INTRODUCTION 
 
Mechanical systems consisting of structures, fluid, and soil regions are representatives of multi-phase 
systems.  The comprehensive and accurate analysis of multi-phase structural systems in dynamic 
environments has substantial impact in the structural design procedures, especially whenever relative 
motion among the phases is expected.  Such cases can be classified into problems with large relative 
motion governed by flow characteristics, problems of short duration, and problems of long duration with 
limited fluid displacement.  The latter includes such typical Fluid-Structure-Soil-Interaction (FSSI) 
phenomena as the dynamic response of offshore structures, nuclear reactor components, liquid filled 
tanks, and dams subjected to waves or earthquakes.  Information pertaining to the developments in the 
fields of dynamic interaction problems can also be found in the review articles, and references therein, of 
Rizos and Karabalis [13], Beskos [2,3], and Mackerle [8], among others. 
 
The analysis of spherical tanks is the primary motivation for this work.  To this end, the main emphasis 
lies on a practical, yet “accurate”, procedure to simulate the soil-foundation interaction while taking into 
consideration, through standard FEM procedures, the fluid-structure interaction.  The proposed 
methodology implements: (a) the Boundary Element Method (BEM) for the simulation of the soil-
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structure interaction, (b) a discrete 2-DOF mechanical system for the computation of the impedances of a 
ring foundation, a usual feature of a spherical tank, and (c) a FEM simulation of the structure and fluid 
regions.  The above modules are coupled via the pre- and post-processing capabilities of the widely used 
general purpose program ANSYS.  The entire analysis is performed directly in time domain assuming 
linear elastic structure and soil region.  However, taking into account nonlinear behavior, both material 
and geometric, of the structure is a straightforward matter within the framework of the proposed 
procedures.    
 
The FEM methods are well-established procedures (e.g. [1,15]).  These methods routinely accommodate 
complex geometries and non-linear phenomena.  The matrices associated to the algebraic system of 
equations are symmetric, banded and positive definite, allowing the implementation of efficient solution 
algorithms.  The nature of the FEM implies that the solution domain must be finite.  However, cases 
involving infinite media, such as the soil region, cannot be represented according to classical FEM 
procedures.  The treatment of the radiation condition, imposed by the infinite extent of the soil medium, 
has lead to the development of numerous special types of radiating, transmitting or absorbing elements for 
use predominantly in the frequency domain FE method, e.g. Rizos and Karabalis [13].   
 
Boundary Element Methods for SSI analysis are based on integral formulations and fundamental solutions 
of the wave propagation problem. Such formulations satisfy implicitly the radiation boundary condition of 
infinite domains, and are appealing alternatives to the FEM.  They require discretization of the boundary 
of the solution domain only.  Consequently, BEM methods reduce the dimensionality of the problem by 
one, yielding smaller systems of algebraic equations.  However, the matrices associated with the BEM 
algebraic system of equations are, in general, not symmetric and fully populated.  BEM can accommodate 
nonlinear phenomena, but in this case additional volume discretizations are required.  Comprehensive 
reviews on BEM are reported by Beskos [2,3].  Time domain BEM solutions for 3-D problems associated 
with the proposed formulation have been presented by Karabalis and Beskos [4, 5, 6, 7], Rizos and 
Karabalis [11,12], Rizos [10] and Rizos and Loya [14], among others. 
  

SOIL-FOUNDATION INTERACTION BY BEM-FEM 
 
A coupled BEM-FEM methodology suitable for 3-D dynamic SSI analysis and wave propagation is 
proposed for the simulation of the soil-foundation system.  The proposed FEM-BEM is derived in time 
domain based on the BEM formulations presented by Rizos [9] and Rizos and Karabalis [11,12] and 
standard FEM analysis procedures for solids and structures.  The foundation is modeled by finite 
elements, while the linear soil region, of semi-infinite extent, is modeled by boundary elements.  The 
BEM method is used to compute the B-spline impulse response of the surface of the BE domain, in 
general, and of the BE-FE interface, in particular.  In contrast to other formulations reported in the 
literature, the coupling of the two methods is performed in a staggered solution approach in direct time 
domain.  According to this, the solution of one method serves as initial conditions to the other at every 
time step, as demonstrated in Figure 1.  Although the BEM-FEM methodology has been developed for the 
analysis of flexible structures resting on an elastic half-space, in this work its usefulness is limited to the 
computation of the response of a rigid ring foundation, which is the usual case in conjunction with 
spherical tanks.  
 
B-spline BEM Formulation 
This section presents a brief overview of the direct time domain Boundary Element Method (BEM) 
formulation in conjunction with the B-spline fundamental solutions that are derived from the Stokes 
fundamental solutions for the infinite elastodynamic space assuming linear and homogeneous material.  
The B-spline fundamental solutions accommodate virtually any order of parametric representation of the 



time dependent variables without excessive computational effort and implicitly satisfy the continuity 
conditions of the Stokes fundamental solutions.  A detailed formulation and integration of the B-spline 
fundamental solutions and of the associated BEM can be found in the work of Rizos [9], Rizos and 
Karabalis [11,12], and Rizos and Loya [14].  In the present outline symbols in boldface indicate vectors or 
tensors, dots indicate differentiation with respect to time and indicial summation notation is adopted 
where appropriate.  
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1. Schematic representation of the proposed BEM-FEM coupling scheme. 

 
 

Following well-established procedures, the Love integral identity form of the Navier-Cauchy governing 
equations of motion for a linear isotropic and homogeneous elastodynamic medium can be expressed in a 
discrete form, in space and time, at time instant tN, as 
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The discrete form of Eq. (1) implies that:  
(i) B-spline fundamental solutions of the kth order for the infinite elastodynamic space are adopted.  

The support of the associated B-spline polynomials is ∆t.  The summation indicated in Eq. (1) refers 
to discrete time steps, and M depends on the order of the B-spline fundamental solutions.  For 
example for the cubic B-spline fundamental solutions M=N+2.  

(ii) The temporal discretization of the field variables is based on B-spline function approximation 
schemes of the same order as the B-spline fundamental solutions. Eq (1) is evaluated at time knot tN 
and the associated time knot sequence is 
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where ∆t is the support of the adopted B-spline polynomials. 

(iii) The surface S of the elastodynamic domain is discretized in a total of NE surface elements for a 
total of NN boundary nodes.  The present work implements higher order 3-D surface elements in an 
isoparametric formulation. 

The tensor cij  in Eq. (1) is known as the “jump” term and depends on the location of a discrete node with 
respect to the solution domain and its boundary, and the geometric characteristics of the domain in the 
neighborhood of the node.  The coefficient matrices U(t) and  T(t) are of size 3NN x 3NN and represent 
the influence of a source boundary node on a receiver boundary node.  These matrices are evaluated based 
on integrals of the B-spline fundamental solutions over the surface of each element for all boundary nodes.  
Vectors t(n) and u are of size 3NN x 1 and represent the components of the traction and displacement 
fields, respectively, at every boundary node due to a single B-spline impulse excitation applied at time τ.  
As reported in Refs [10] and [14], nodal forces, p, can be related to tractions, t(n), through a transformation 
matrix L that is developed based on a virtual displacement approach, allowing Eq. (1) to be expressed in 
terms of nodal forces, p, as 
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summation indicates superposition over the number of elements, A, that contain a soil node, and Ns are 
the shape functions of the spatial discretization. 
 
The impulse response of the elastodynamic system can be obtain from Eqs (1) or (3).  To this end, a 
B-spline impulse force, or traction, excitation of duration ∆t is applied in the direction of each degree of 
freedom, j.  Eqs (1) or (3) are solved in a time marching scheme for the displacements, u, which represent 

the B-spline impulse response vector, N
jb .  These impulse responses can be collected in matrix form as 
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The dimension of matrix B(tN)  is 3NN x 3NN , in general, and each column, N
jb , represents the impulse 

response of all degrees of freedom at time step tN due to a unit traction, or force, applied at degree of 
freedom j.  This matrix is a characteristic of the system and needs to be computed only once for the 
specific geometry of the free surface of the elastodynamic domain.  In the general case, the B-spline 
impulse response is computed for all degrees of freedom of the problem and the impulse response matrix, 
BN, is square.  In most practical cases, however, the impulse response of the system needs to be computed 
only for those degrees of freedom that are expected to carry forces (contact loads or incident fields) of the 
arbitrary excitation, yielding a rectangular matrix or a square matrix of significantly reduced size, as 
shown in Ref. [14]. 
 
Response to an arbitrary transient excitation 



Once this characteristic response of the system is known, the system can be analyzed for any arbitrary 
transient excitation, f(t).  Let f(t) represent the vector of arbitrary transient external excitations applied at 

the boundary nodes of the elastodynamic system and ( )n
n tt == ff  the value of the  excitations at time 

step tn. Furthermore, let RN represent the response of the elastodynamic system to the excitation f(t) at time 
step tN.  If the B-spline impulse response, BN, matrix of the system is known, the calculation of RN reduces 
to a mere superposition of the B-spline impulse responses as 
 

∑
+

=

+−=
1

1

2
N

n

nNnN fBR          (5) 

 
This approach is very efficient especially when multiple load cases are considered.   
 
Eq. (5) can be specialized for the proposed coupling scheme.  To this end, the vector of arbitrary 

excitations { }T
c 0Pf ,=  consists of nodal forces cP , applied at the contact interface between the BE and 

FE domain only, while the free field is not loaded.  The response R of the BEM region pertains to nodal 

displacements { }T
fc uuu ,= due to the contact forces at time step N.  In view of the separation into 

contact and free field degrees of freedom, Eq. (5) can be expressed as 
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It is evident that only that part of the B-spline impulse response matrix that corresponds to the contact 
degrees of freedom is required.  In addition, the response of the free field can be computed independent of 
that of the contact area.  For this reason only Eq. (6a) shall be considered in the proposed coupling 
scheme.  The interface forces, Pc, however, depend on the response of the FE region and are not known in 
advance.  Consequently, Eqs (6) are in an implicit form.  The corresponding explicit scheme is obtained 
by interpolating the interface forces at time tN using B-spline polynomials.  For the cubic B-spline 
polynomials (k=4) implemented in this work, the interface forces are interpolated as 
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Introducing Eq. (7) into (6a) and separating known from unknown quantities with respect to time step N, 
the latter can be expressed as 
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where 212 cccc BBF +=  represents the flexibility matrix of the contact interface of the BEM region and 
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current step.  Eq. (8) is used in the proposed coupling scheme and represents the BEM solver.  It is 
evident that if the contact forces are provided by the FE solver, at every step N, the BE solver evaluates 
the corresponding displacements of the interface without solving a system of algebraic equations.  
Furthermore, if the response of the free field is of interest, it can be computed by a simple evaluation of 
Eq. (6b). 
 
Time Domain FEM Formulation 
 
This section presents an outline of the FE procedures as implemented in the present work in a 
manner suitable for coupling with the BEM.  The FEM is used to model the structural 
component in a soil-structure system subjected to transient excitations.  The governing equations 
are integrated directly in time using two different time stepping algorithms, i.e. the backward 
difference scheme and the Newmark-β method. 
 
Governing Equation  
The governing equations of motion of a multi-degree of freedom system, as derived in a semi-discrete FE 
approach, is expressed in matrix form as, 
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These are second order differential equations with M, C, and K being the mass, damping and stiffness 
matrices of the structure, respectively.  Vector u(t) represents the displacement field at the nodal points of 
the system, f(t) represents the external excitation vector and dots indicate derivatives with respect to time.  
In a general soil-structure system the structure is supported by the elastic soil medium at the foundation 
level.  Excitations of the supports of a structure pertain to time histories of foundation displacements 
prescribed at the foundation level.  The external loads consist of time histories of nodal forces and 
moments, applied at the structural degrees of freedom. 
 
Time stepping algorithms 
The direct numerical integration in time of Eqs (9), may be accomplished by standard finite difference 
schemes.  This work implements the Newmark-β and a backward difference scheme since both are 
expressed in explicit forms.  The former is a preferred approach because of its controlled stability 
characteristics and its ability to accommodate iterative schemes for the solution of nonlinear dynamic 
systems.  The backward difference scheme, however, shows simpler implementation.  Application of any 
of these these schemes to Eqs (9) yields explicit, fully discrete forms of the FE equations expressed 
symbolically as 
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where the dynamic matrix, D, and the equivalent force vector, Nf , depend on the direct time integration 
scheme and mathematical expressions are widely available in the literature, e.g. Bathe [1].  It is noted that 
the dynamic matrix, D, is independent of time and for linear applications needs to be evaluated only once.  
In terms of the degrees of freedom in contact with the BE domain, Eq (10) can be expressed as 
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subscript c indicates the degrees of freedom at the contact interface, and f pertains to the remaining, 

“unsupported” degrees of freedom.  Furthermore, the force vector N
cf  consists of the known external 

excitations, N
cext )(f , applied directly on the interface degrees of freedom, as well as the unknown contact 

forces, N
cP , exerted by the supporting medium, i.e., N

c
N

cext
N

c Pff += )( .  Provided that the displacements 
N
cu  are furnished by the BEM solver as initial conditions at step N, Eqs (11) can be solved for the contact 

forces N
cP . 

 
Coupled BEM-FEM Formulation 
 
The BE and FE domains are coupled at the interface level as depicted in Figure 1.  Consequently, the time 
marching Eqs (9) and (11) cannot be solved independent of each other.  The proposed solution scheme 
follows a staggered approach that computes the response of the BE-FE system by enforcing the 
equilibrium and compatibility equations explicitly at the interface degrees of freedom and at every time 

step of the solution.  Let )(BEM
cu  and )(FEM

cu represent the displacement vectors at the common nodes in 

the BEM FEM regions, and )(BEM
cP and )(FEM

cP the associated force vectors.  Assuming the two regions 

remain always in contact, the continuity of nodal displacements and equilibrium of forces are expressed as 
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In view of the BEM Eqs (8), and the FEM Eqs (11), which are repeated here for completeness, 
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the staggered solution approach can be formally defined.  At every time step, N, of the solution the FE 

region is loaded by the external forces NFEM
cext

NFEM
f

)(
)(

)(  and , ff while the displacements of the interface 

nodes, NFEM
c

)(u , are prescribed as initial conditions at time t=0 or as provided by the BE solutions along 

with the compatibility Eq. (12).  Subsequently, the contact degrees of freedom are fixed at the new 
location and the FE solver, Eqs (15), computes the response of the structure as well as the forces at the 
interface nodes, Eqs (16).  Subsequently, Eq. (13) computes the corresponding forces at the interface 
nodes in the BE region.  Based on these forces, the BE solver, Eqs (14), evaluates the displacements at the 



interface nodes, which, in view of Eq. (12), become the new initial conditions for the FE solver and the 
solution moves to the next time step.  Cases involving direct coupling of finite elements that have both 
translational and rotational degrees of freedom with boundary elements that have only translational 
degrees of freedom could be handled routinely by the proposed methodology through condensation of the 
rotational degrees of freedom.  Further details on the numerical handling of such cases can be found in 
Rizos [10]. 
 
Rigid structures – A special case 
The analysis of rigid structures resting on elastic half-space is distinguished by the absence of elastic and 
damping forces.  The dynamic equilibrium of the structure is expressed as 
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where fi are the inertia forces based on the total displacements u, Pc are the contact interaction forces 
applied at the interface between the soil and the structure, and fext pertains to the externally applied loads.  
In Eq. (17) it has been assumed for simplicity that all structural degrees of freedom are in contact with the 
BE surface. The general approach introduced earlier implies that the BE solver computes the displacement 
vector u while the FE solver solves for Pc.  However, the FE solver of the proposed method becomes 
unstable for this class of problems.  In particular, it has been observed that either time integration scheme 
of the FE solver yields divergent solutions for the velocity and acceleration of the FE sub-domain.  
Stabilization of the proposed scheme requires that the contact forces need to be implicitly accounted for in 
the dynamic equilibrium equation.  To this end, it is recognized that the vector of total displacements 
consists of two distinct components, i.e. 
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The first component, ä, pertains to the contribution of the kinematic interaction effects at the current time 
only, and the second component, d, is the contribution to the total displacement from the history of the 
response.  In view of Eqs (12), (13) and (14) the displacement component, ä, due to the kinematic 
interaction can be computed as 
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where Kint is considered as the equivalent stiffness matrix of the BE-FE interface.  Substitution of Eqs 
(18) and (19) into the dynamic equilibrium Eq. (17) yields 
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and, thus, the FE equations are augmented by the equivalent stiffness matrix of the soil.  Application of 
the direct integration schemes on Eqs (20) yields the stabilized form of the FE solver and the general 
approach discussed earlier.  Once the displacement ä is computed, the contact forces are computed as 

δKP int
BEM

c −=)( .  This scheme is applied to the problem of rigid massive foundations. 

 
NUMERICAL RESULTS FOR ANNULAR FOUNDATIONS 

 



The above formulation has been applied to the determination of the impedances of an annular, rigid, 
massive foundation.  The results for all six degrees of freedom, in frequency and time domains, are shown 
in Figure 2.  These results correspond to soil elastic constants: E=178000 kPa,  ρ=1834.8 kg/m3, and 
ν=1/3.  The foundation has a outside radius of Ro=11.06m, thickness ∆R=2.5m, height h=2m, and mass 
density ρ=2550kg/m3. 

 
Figure 2.  Impulse responses versus time and impedances versus frequency of a  

Massive, rigid, ring foundation. 



  

DISCRETE MODEL FOR SOIL-FOUNDATION IMPEDANCES 
 
In order to minimize the computational effort, a set of discrete foundation springs and dashpots are 
introduced at the base of the foundation.  They represent the discrete impedances of the soil-foundation 
system for all possible degrees of freedom of a rigid ring foundation of the type under consideration.  
However, the proposed procedure is general and can be applied for any type of foundation.  According to 
this, the numerical results obtained in the previous section by the BEM-FEM methodology for the time 
and frequency domain responses of an ring foundation provide the basis for the determination of a 2-mass 
discrete model as the one shown in Figure 3.   The computation of the proper combinations of mass, 
stiffness and damping constants is obtained via an automatic trial-and-error process programmed directly 
in the APDL programming language within ANSYS.  
 

 
 
 
 
 
 
 
 
 

Figure 3.  Discrete model for the computation of soil-foundation impedances. 
 
The results of this procedure are shown in Figure 2 for all possible modes of vibration of the rigid ring 
foundation under consideration.  The corresponding discrete parameters (masses, springs and dampers) 
are listed in Table 1.   
 

Table 1.  Discrete parameters for approximate impedances in all six degrees of freedom  
(units in kN, m, and sec) 

 K1 C1 K2 C2 K3 C3 M1 M2 
Vertical 4326769 81753 3894092 0 0 61934 2039 2353 

Horizonta
l 

3461415 37160 4326769 0 0 79275 1725 1098 

Torsional 511623789 1919254 317559593 0 0 2626347 141193 50986 
Rocking 370486192 1414187 317559593 0 0 2929387 117660 58830 

 
ANALYSIS OF SPHERICAL TANK 

 
Some of the numerical results obtained from the analysis of a typical spherical tank using the proposed 
hybrid methodology are shown in this section.  The outside radius of the tank is 20m, its average thickness 
is 4cm, and its equator stands at an elevation of 12.5m.  It is supported by 11 columns of tube section with 
an outside diameter of 914.4mm and thickness 12.7mm.  Lateral stiffness is provided by 11 pairs of 
bracings each one of which has a length of 8m and a cross section of 30x350mm.  The tank is assumed to 
contain propylene with bulk modulus 2GPa, and mass density 522kg/m3.  The FE model for the structure, 
shown in Figure 5, consists of 5124 elements, including fluid elements, and 5328 nodal points.   
 
 
 
 

 



 
Figure 5.   FEM model of spherical tank. 

 
The results from the modal analyses of the spherical tank assuming fixed base conditions or SSI are 
presented in Tables 1 and 2 for different levels of liquid fullness.   
 

Table 2.    Eigenvalues for fixed base conditions 
 

Percentage of  
fluid fullness 

Φ1 
period, sec 

(% modal mass participation) 

Φ2 
period, sec 

(% modal mass participation) 

Φ3 
period, sec 

(% modal mass participation) 
50% 5 

(41.7%) 
0.25 

(50%) 
0.18 

(8.3%) 
75% 4.5 

(26.6%) 
0.32 

(69%) 
0.18 

(4.4%) 
98% 0.44 

(98%) 
0.18 
(2%) 

0.11 
(0.00%) 

 
 

Table 3.    Eigenvalues including SSI 
 

Percentage of  
fluid fullness 

Φ1 
period, sec 

(% modal mass participation) 

Φ2 
period, sec 

(% modal mass participation) 

Φ3 
period, sec 

(% modal mass participation) 
50% 5 

(14.7%) 
0.3 

(45%) 
0.18 

(39%) 
75% 4.5 

(11%) 
0.32 

(45%) 
0.18 

(42%) 
98% 0.52 

(59%) 
0.18 

(40%) 
0.12 

(0.00%) 
 
Subsequently, the transient response of the given structure to an artificial seismic excitation, shown in 
Figure 6, is computed.  The seismic excitation is compliant to the spectral requirements of the Greek 
Seismic Code, for soil category C. 

The response of the spherical tank under consideration to the above seismic excitation is depicted in 
Figures 7 and 8 in terms of base shear and displacements at the top of the tank vs time.  The base shear 
variation of Figure 7 confirms the well accepted notion that for the same structure SSI yields smaller 
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values than those produced by fixed base boundary conditions.  The opposite should be true for the 
displacement vs time plot.  Figure 8 verifies this assumption, too. 
 

 

 

 

 

 

 

 

 

 

 

Figure 6.  Artificial accelerogram used for the analysis of spherical tank 

 

 CONCLUSIONS 
 
An efficient hybrid BEM-FEM methodology in direct time domain is developed for the computation of the 
dynamic characteristics of massive foundations of arbitrary shape.  The rigorous results obtained by the 
above methodology have been used for the determination of the discrete impedances of a rigid, ring 
foundation, on the basis of a 2 DOF model.  Finally the complete seismic analysis of a typical spherical 
tank is attempted taking into consideration fluid-structure-soil interaction phenomena in direct time 
domain.  For the structure–fluid portion of the entire model, standard FEM modeling is used coupled to 
the ANSYS pre- and post-processing modules.  The proposed methodology can be easily extended to 
nonlinear dynamic analyses.   
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Figure 7.  Base shear (kN) versus time for various levels of fluid fullness. 
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Figure 8.     Displacement (m) at the top of the spherical tank versus time for various levels of fluid 
fullness 
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