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SUMMARY 
 
Earthquake records constitute a helpful source of knowledge on the dynamic behavior of geotechnical 
systems. This data represents valuable information on site and earth dam response over a wide range of 
loading conditions that are difficult to be covered by full-scale testing or laboratory procedures. Using the 
capabilities of neural networks for solving spatio-temporal problems and in particular their ability to 
acquire, represent, and perform a mapping from one multivariate space of information to another, a neural 
model that identifies the patterns of materials behavior (accelerations time series) and permits to assess 
the variations of shear modulus (G) and damping ratio (λ) with strain amplitudes, is put together. The 
study reported here shows that a multiple input-output instrument array coupled with powerful analysis 
techniques constitutes an important base to develop systems that capture the dynamic response 
mechanisms of complex soil systems such as earth dams. 
 

INTRODUCTION 
 
Motion earthquake records provide a valuable source of information on the dynamic behavior of full-scale 
soil-systems at large-amplitude deformations, and even at potentially damage-level response. A detailed 
monitoring of the entire response of such systems may not be technically possible, and would generally be 
prohibitively expensive, by the opposite; a sparse monitoring of soil systems generally does not provide 
enough information to uniquely and accurately identify local response mechanisms due to the broad range 
of complex response patterns when seismic excitations are imposed to them. 
 
To extract meaningful conclusions about a complicated system using time series data from a single sensor 
(acceleration records), one of the most powerful analysis and design tools –and often one of the most 
difficult to create- is a good model. System Identification (SID) is the process of identifying a dynamic 
model of an unknown system. Any representation designed for reasoning about models of such systems 
has to be both flexible enough to handle various degrees of uncertainty and complexity, and yet powerful. 
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System identification entails two steps: structural identification, wherein one ascertains the general form 
of the model (e.g., the ODE –ordinary differential equation- for a simple pendulum), and then parameter 



estimation, in which specific parameters values for the unknown coefficients that fit that model to the 
observed data are found. 
 
Although the vast majority of natural and man-made geotechnical systems is non linear, almost all time 
series analysis are limited to linear systems. Soft Computing (SC) provides us with complementary 
reasoning and searching methods to develop the single-sensor reconstruction of ill-defined phenomena, 
using experts’ hypothesis about physics involved, observations (interpreted and described symbolically or 
graphically) in varying formats and degrees of precision and physical measurements made directly on the 
system.  
 
Within this context, a system identification procedure is presented to analyze the nonlinear dynamic 
response of embankment systems using earthquake records. Neural Networks (NNs), as computational 
structures that can be trained to learn patterns from examples, are used to find the relation between inputs 
and outputs (recorded ground motions) by a supervised learning algorithm that performs fine-granule local 
optimization. The result of the neural training stage is a nonlinear function of several variables that can 
predict behaviors and classify objects.  
 
The proposed framework consists of: (1) pattern recognition and nonparametric identification analyses (2) 
model development based on the information gathered from a multiple input-output array of 
accelerometers installed in El Infiernillo dam (Mexico) and (3) validation and assessment of the quality of 
the identified models and parameters. 

 
SYSTEM IDENTIFICACTION USING NNS 

 
Structural identification and parameter estimation depend upon input-output analysis wherein the 
relationship between drive and response is used to infer information about internal system dynamics 
(Casdagli, [1]). For nonlinear systems, parameter estimation is difficult and structural identification is 
even harder. SC techniques can be used to automate the former (Bradley [2]), but the latter has, until now, 
remained the purview of human experts. 
 
Formalizing the connection between data and knowledge can be addressed by two (antagonistic) ways: 
modeling -build a function that can mimic the data accurately and gives good results on new data sets-  
and  abstracting -build a system that produces articulated knowledge from the data-. In the first approach, 
emphasis is put on the ability to reproduce what has been observed. NNs are well-adapted to this problem. 
In the second approach, emphasis is put on the ability to understand and explain the data in a human-
friendly way. It is by linking the estimated model constraints to the important phenomena parameters that 
a designer can represent the human-originated knowledge using a numerical approximation, in what is 
commonly known as SID.  
 
Neural Networks. NNs and Perceptrons started in the early 60s as algorithms to train adaptive elements. 
Their origins can be traced to the works of Rosenblatt [2] on spontaneous learning, Stark [4] on 
competitive learning, and Widrow [5] on the development of ADALINE and MADALINE algorithms. 
Typically NNs are divided into Feed-Forward (FF) and Recurrent/Feedback networks (RN). The FF 
networks include single-layer perceptrons, multilayer perceptrons, and Radial Basis Function (RBF) nets 
[see Moody [6]], while RN cover Competitive networks, Kohonen [7], Self Organizing Maps, Hopfield, 
[8], and ART models [see Carpenter [9],[10], [11]]. 
 
In the context of this paper only FFNNs will be considered. A FF multilayer NN is composed of a network 
of processing units or neurons. Each neuron performs the weighted sum of its input, using the resulting 
sum as the argument of a non-linear activation function. Originally the activation functions were sharp 



thresholds functions, which evolved to piecewise linear saturation functions, to differentiable saturation 
functions (or sigmoids), and to gaussian functions (for RBFs).  
 
For a given interconnection topology, NNs train their weight vector to minimize a quadratic error function. 
Prior to Backpropagation BP, proposed by Werbos [12], there was no sound theoretical way to train 
multilayers FFNNs with nonlinear neurons. With the advent of BP, most researchers on NNs have focused 
their efforts on improving BP’s converge speed: by using estimates of the second derivatives, under 
simplifying assumptions of a quadratic error surface, as in Quickprop QP [see Fahlman [13]]; by changing 
the size of the step size in a self-adapting fashion, or by using second order information. QP is used to 
train all the nets proposed in this investigation. 
 
The structural and parametric neural learning, which are the counterpart of system identification and 
parameter estimation in classical system theory (Bonissone [14]), means the synthesis of the network 
topology (i.e., the number of hidden layers and nodes), while parametric learning implies determining the 
weight vectors that are associated to each link in a given topology.  
 
Neural learning can be facilitated by the availability of complete or partial feedback. In the case of total 
feedback a training set describes the correct output for a given input vector in that is called supervised 
learning. When only partial feedback (evaluation as success/fails) is available reinforcement learning is 
being developed. If no feedback is available all the adjustments are made by unsupervised learning. Most 
of the engineering applications are supervised and they deal principally with parameter identification once 
the structure has been fixed.   
 
In this work, an optimization process is included in the NN generation. Genetic Algorithms (GAs), that 
provide continuous and discrete function optimization, system synthesis, tuning and testing modeling 
(Holland [15]) are used here to synthesize and tune the NN: to evolve the network topology (number of 
hidden layers, hidden nodes, and number of links) and to find the optimal set of weights for a given 
topology replacing the back-learning algorithm and to evolve the reward function, making it adaptive.  
 
 

INVERSE ANALYSIS OF DYNAMIC PROPERTIES 
 
Proper identification of dynamic soil parameters for specific soil conditions is a central aspect when 
amplification of ground motions is being analyzed. Several inverse analyses for parameter estimation have 
been introduced by many researchers, and can be classified as: time domain procedures, frequency domain 
procedures and modal analyses (i.e., Beck, [16], Hoshiya [17], Sawada [18], Zeghal [19], Honda [20], 
Glaser, [21], Zeghal [22], Ghanem [23], Glaser, [24], Zhai [25], Satoh [26], Glaser [27], Zeghal  [28], 
Zeghal [29], among others). 
 
Traditional approximations, because of their optimization procedures (i.e., gradient-based search 
methods), have difficulties associated with selecting a discontinuous solution space and with considering 
non-linearities. Unlike the traditional optimization methods, soft computing tools and particularly GAs 
efficiently find an optimal solution from the complex and possibly discontinuous solution space. GAs 
have been applied as an effective optimization search technique in various fields, including the soil-
parameters identification problem (Taboada  [30]). However, these methodologies have focused on the 
GA searching capabilities to find the dynamic parameters related with the 1D wave propagation theory, no 
improvements are made to the functional in order to model the non-linearity and multidimensional soil 
behavior. Even worse it is the fact that many of these genetic models need a previous knowledge about the 
dynamic parameters range (in a close sense) for constructing the error function to optimize. 



 
 
Nonparametric identification of a continuum. The goal of the neural SID proposed here, is to invert 
recorded data to generate a NN model of a particular geotechnical system. The data are input-output pairs 
of recorded earthquake ground motions (vertical arrays) and the system is the intervening soil layers. The 
mechanical information about soil formation is commonly obtained by solving the inverse problem for the 
system transfer function via a simple ratio of weighted polynomials. In a NN model, weights are the 
parameters that allow relating input-output data and they contain all the information about the physics 
involved in the system behavior. Once the training stage is complete, the obtained neural functional is a 
kind of nonlinear-multidimensional transfer function that approximate all the laws of mechanics that the 
actual phenomena obeys. See (Fahlman, [13]) for a complete description of the FFNN-QP 
numerical/parametrical functional structure. 
 
Using the information about motions into the bottom of the soil layer of interest and out of the top layer, as 
illustrated by the sketch in Figure 1, a NN is trained with accelerations (time series arrangement) from an 
input propagating control point –used just to express numerically the excitation characteristics-, and from 
the output motion to describe the soil column behavior. To demonstrate the analysis procedure, soil strata 
properties were modeled via Voigt type elements, allowing computing the resulting acceleration, velocity 
and displacement ought to the seismic waves traveling through a soil deposit characterized via stiffness 
module and damping ratio (Botero [31]).  
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Figure 1. Configuration of the nonparametric system identification 
 
In Figure 2 it is depicted the 4-50/50-1 [inputs- hidden nodes- output] FFNN/QP/Sigmoid topology 
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(binary classification node to specify linear/nonlinear behavior). Dynamic parameters are not included as 
inputs. G y λ will be implicit in the final weights matrix that can be related to their behavior curves (G vs. 
γ and λ vs. γ; where γ: shear strain).   
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Figure 2. NN topology for a vertical array 
 
The neural capabilities to find parametric patterns are demonstrated in Figure 3, where the evaluated 
acceleration histories reproduced satisfactorily unseen time series.  The additional information concerning 
the nature of the underlying system aided to the model (velocity, displacement and intensity) is 
fundamental for developing the NN generalization capacity; however, this forces the obtaining of a 
specific net only suitable for homogeneous deposits, whose dynamic properties run in a close range.  
 
This pattern recognition analysis using nonparametric identification analyses provide direct information 
on the dynamic response of a soil column,  the constructed computer model, without any knowledge of the 
particular physical system, take seismic input data and provides as output the response (acceleration time 
histories) of the geotechnical formation.  
    
Mapping of neural model parameters to soil properties: El Infiernillo Dam. A detailed study of 
the El Infiernillo dam (Michoacan, Mexico) was performed using a suite of six events to monitor the 
boundary conditions (left and right abutment) and to portray the dam response (see Figure 4). The dam has 
a central clay core and large conglomerate and diorite rockfill shells which were dumped in place without 
watering (Marsal [32]), its multiple-input-output environment consisting of 9 accelerometer stations, thus, 
the array comprised a total of 27 accelerations records linked to a common triggering mechanism 
(horizontal and vertical directions) for each earthquake. A description of the data base used for neuronal 
training/testing stages is presented in Table 1. 
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Figure 3. Comparison of the calculated and NN estimated acceleration time series 
 
 
Multidimensional conditions. The non-controlled nature of seismic excitations, along with the limited 
number of sensors used to monitor system responses, make the modeling of dynamic behavior of full-scale 
soil-systems (such as earth dams) a quite difficult task. In this paper, a new system identification 
technique was developed using the closely spaced accelerometers arranged in a 3D configuration. The NN 
proposed is capable of using “indeterminate” records and the sensors spatial configuration to describe the 
dimensionality of the system response.  
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Figure 4. El Infiernillo Dam: seismic instrumentation 



 
 

Table 1. Data base used for developing the neural models 
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The identified system is the specific dam element (geometry and materials), described by given intervals 
of soil lying between pairs of accelerometers. The recording stations used in the model as control points, 
are characterized by their position - {x,y,z}coordinates - and a class condition: i) boundary situation or ii) 
dam response information (Figure 5). First class is included as excitation node and the second one 
illustrates the material behavior and location. The two mechanical soil properties estimated by this SID 
process are the shear modulus (G) and the damping ratio (λ). These computed “equivalent” properties are 
based on the “effective” layer values between the sensors included in the neural training stage. The 
acceleration records and material properties predictions are calculated at discrete points that can be 
located between two sensors or in any zone of the earth element (described appropriately as class ii).  
 
Following the SID process described in the preceding section, a NN nonparametric framework was 
obtained to map the input (left abutment recordings) to the output time series (accelerations data inside the 
dam). In Figure 6, the model and actual values for unseen events (EQ5, EW component) are shown. 
Remarkable neural capacity to characterize the time histories of earthquake motions and successful 
transmission of the movements through the dam core (Z direction) is proved with these results. A simple 
identification procedure developed by Zeghal and co-workers (Zeghal [22]) can be used to estimate local 
shear stress and strain histories from array accelerations. These estimations can be used to locally calibrate 
models of the constitutive behavior of soil-systems.  
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Figure 5. FeedForward Quick Propagation – NN topology 
 
 
Properties evaluated from the NN evaluated accelerations histories show a good agreement with those 
obtained by empirical correlations and laboratory studies. This approach is obviously not feasible in 
analyses of a multidimensional response. A more general local identification algorithm is presented below. 
 
For mapping coordinates to soil properties, a more sophisticated neural model (genetic tuning of the 
weights and function variables) was developed for describing materials dynamic behavior via G 
and λ curves. In this model the variables that affect the phenomena are included with a double sense, i.e., 
as input/output parameters (Fig. 7). In a first step the input variables are the coordinates of the recording 
station and the outputs are the values of the dynamic properties. Once this process is completed, 
G/ λ nodes can be interchanged as premises and the coordinates take the role of conclusions to corroborate 
the adequate description of the soil masses. The forward-back training route, permits to find the 
parametric changes for optimal estimation of the shear stiffness and equivalent damping ratio, describing 
the physical soil system (continuous mass system) without trying to adjust the observed behavior to a 
simple equivalent system (lumped mass models, for example).  
 
As can be seen in Figure 8, this neural model can offer tremendous insight into the complicated 
soil/rockfill system behavior. Based on the user/designer necessities (i.e., Finite Element Method, 
calibration methodology) the neuronal structure can offer a general evaluation for each material, for a 
transition zone or for a discrete point. 
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 Figure 6. NN model results: testing stage 
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Figure 7. NN-GA model results: testing stage 
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Figure 8. Dynamic properties: NN and NN-GA estimations 

 
 

CONCLUSIONS 
 
For a complicated system such as wave propagation through natural materials and the large amount of 
uncertainty inherent to acceleration records and dynamic properties, identifying the “true” underlying 
earth dam system is an intricate objective, commonly covered using simple equivalent systems that are not 
ideal models of a continuous mass.  It has been demonstrated that SC tools for pattern recognition 
analyses using nonparametric identification provide essential direct information on the dynamic response 
of the distributed parameter system. Such information reduces the indeterminacy problem and permits an 
appropriate model selection.  
 
The advantageous characteristic of the neural model proposed here for analyzing material behavior at 
discrete points inside the dam structure can help to reveal the most influential aspects in determining 
seismic responses: material properties (shear modulus and damping coefficient), canyon configuration, 
materials zonation (geometry), grain size, mineralogy, etc.  
 
 



There is considerable flexibility in the presented formulation for an easy expansion to a model that include 
the linguistic/empirical knowledge (fuzzy systems) or to an internal sub-routine in a current design 
method. Based on the results of the studies discussed in this paper, it is evident that SC techniques 
perform better than, or as well as, the conventional methods used for identifying these complex and not 
well understood geotechnical systems. 
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