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SUMMARY 
 
Although seismic isolation rubber bearings in bridges and buildings have proven to be a very effective 
passive method for reducing earthquake-induced forces, a detailed mechanical modeling of rubber that is 
used in bearings under large strains has not been established. Hence, a 3D model of rubber failure and 
design criteria for safety evaluation of seismic isolation rubber bearings have not yet been developed. This 
paper presents: (1) modeling of rubber failure under large deformations; and (2) design criteria for safety 
evaluation of seismic isolation laminated rubber bearings (LRB). Failure tests of biaxial, uniaxial and 
simple shear were conducted for rubber materials under different rates of loading. The measured local 
strains at failure by image analysis were used to develop a failure model for rubber. Validity of the 
proposed failure model of rubber was verified; the model was introduced into a 3D finite element model 
of LRB, and it was compared with experimental results of bearings failure. Finally, design criteria, which 
can estimate ultimate failure characteristics of LRB are proposed for the safety evaluation, and were 
verified.  
 

INTRODUCTION 
 
Since the Northridge Earthquake of 1994 and the Hyogo-ken Nanbu Earthquake of 1995, the effectiveness 
of seismic isolation has been recognized widely, and many of the seismically isolated structures now in 
existence used seismic isolation laminated rubber bearings (LRB) as primary isolation devices. The 
behavior of these structures under earthquake loading is characterized by the mechanical behavior of LRB 
under large deformations. It is important, therefore, to design seismically isolated structures with a full 
understanding of the mechanical behavior of LRB at failure. However, a 3D model of rubber failure, and 
design criteria for safety evaluation have not yet been developed.  
 
Failure of the rubber is an important aspect to be considered in the design of LRB.  However, a detailed 
mechanical modeling of rubber failure under large strains has not been fully established. Because of the 
difficulties in measuring large strain near the failure of rubber materials, “failure of rubber” is not clearly 
understood [1] and consequently no failure models have been developed. Kawabata [2] has studied 
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fracture of rubber like polymer materials under biaxial stress field. Our previous studies [3, 4] has 
presented with large strains measurement technique of rubber by image analysis.  
 
As solutions to the above problems, this paper presents: (1) modeling of rubber failure under large 
deformations; and (2) design criteria, which can estimate ultimate failure characteristics of LRB for safety 
evaluation. Seismic isolation LRB and two different rubber materials are selected for the study.    
 

EXPERIMENTAL 
 
Series of failure tests were conducted for rubber material from two different companies (Types A and B). 
Both companies have provided natural rubber materials made with shear modulus equal to 0.98 MPa. 
Basically, for rubber materials, uniaxial, biaxial and simple shear failure tests were performed. The details 
of the tests are discussed as follows.  
 
Material tests of ‘Type-A’ rubber 
Simple shear and uniaxial tension tests were conducted. Figure 1 shows the JIS K 6301 standard tension 
specimen [5] and special shear specimen [6] that were used for the study.  
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(a)                                                                     (b) 
Figure 1. Test specimens: (a) tension; (b) shear 

 
 
Both tests were conducted under monotonic loading until failure under different loading rates. Detailed 
descriptions of the tests are given in Table 1. Test setups are shown in Figure 2. The image analysis 
algorithms used to estimate failure strain are discussed in ref. [3].  
 
 

Table 1.  Material test descriptions (Type-A rubber) 
 Uniaxial tension Simple shear 

Type of rubber (Shear modulus in Mpa) Natural (0.98) Natural (0.98) 

Loading velocity [mm/sec] 1.33, 2.67, 5.33 0.024, 0.048, 0.24, 0.48, 0.96 

Strain rate [%/sec] - 0.50, 1.0, 5.0, 10, 20 

Specimen tested per case 4 2 

Temperature [°C] 20~25 12~14 
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(a)                                                                              (b) 
Figure 2. Schematic of test setups: (a) tension; (b) shear 

 
 
Material tests of ‘Type-B’ rubber 
Biaxial and uniaxial failure tests were conducted. Specimens used for biaxial tests and uniaxial tests are 
shown in the Figures 3 and 4 respectively.  
 
 
 

 
 
 
 
 
 
 
 
 
 

 
Figure 3. Detailed drawings (Biaxial specimen) – All dimensions in mm.  

 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 4. Detailed drawings (Uniaxial tension specimen)- All dimensions in mm. 
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The central parts of the biaxial test specimen and uniaxial test specimen are thinner compared to outer part 
(fixing part) to make sure that the failure will occur within the specimens. All the tests were conducted 
under monotonic loading until failure with different loading rates. Under biaxial tests series, equi-biaxial 
(average extension ratios kept constant in both direction) and strip biaxial (average extension ratio is 
constant in one direction) tests were performed. Extension ratio is defined as ratio between deformed 
length and original length in given direction. A line diagram for biaxial test is shown in Figure 5. Detailed 
descriptions of the tests are given in Table 2. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5. A line diagram for biaxial deformation 
 

Table 2.  Material test descriptions (Type-B rubber) 
 Uniaxial tension Biaxial (Strip/equi-biaxial) 

Type of rubber (Shear modulus in Mpa) Natural (0.98) Natural (0.98) 

Loading velocity [mm/sec] 0.2, 2, 20 0.2, 2.0, 20 

Specimen tested per case 3~5 3~5 

Temperature [°C] 20~25 20~25 
 
Test setups are shown in Figure 6. Images of deformation of the specimens were taken using a CCD 
camera. Figure 7 shows a biaxial specimen at un-deformed stage and after deformation under equi-biaxial 
test. As shown in Figure 6a, deformation of the initially drawn gird on the specimen was traced using 
image analysis algorithms (Template matching). Here, a grid itself is used as a template. Template 
matching algorithms are fully discussed in [3,4].  
 
Bearing tests 
Two ‘Type-A’ rubber laminated bridge bearings were tested under combined compressive and shear 
loadings. First, 1471 KN [5.88 MPa] compressive load was applied, then, shear displacement was given 
with a velocity 1mm/sec until failure. However, one bearing failed due to rubber-steel bond failure while 
the other failed by rubber failure. The details of the tested bearing that failed by rubber failure are given in 
Table 3 and its failure displacement was 312 mm. All the details of the experimental results have been 
discussed in ref. [3]. 
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Figure 6. Test setup for biaxial/uniaxial tests 

 
 
 
 
 
 
 
 
 
 
 
 

         (a)                                                                        (b) 
Figure 7. Biaxial test specimen: (a) un-deformed; (b) deformed 

 
Table 3.  Details of tested LRB 

Description Values 
Shear modulus of rubber [MPa] 0.98 

Plan dimensions [mm] 500×500 
A rubber layer thickness [mm] 30 

Number of rubber layers 3 
Steel type, thickness of a layer [mm]  SS 400, 10 
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TESTS RESULTS  
 

Material tests of ‘Type- A’ rubber  
For the simple shear tests, the image analysis algorithms were applied to measure strain field [3]. Finally, 
local shear strain components at the failure points were calculated; these are shown in Figure 8. Failure 
shear strain variation is about ±10% to the average (443%) for different rates of loading. From 
experimental results, the shear strain and lateral strain component variation in rubber materials clearly 
indicated that strain localization occurred at the large deformation range before failure.  
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Figure 8.  Shear strains at failure (Type-A rubber) 

 
In the uniaxial tensile tests, deformations of the center part of the specimens were considered, because 
failure mostly occurred at the center part. Figure 9 shows extension ratios at failure. The maximum 
variation of failure extension ratio is about ±8% to the average (4.99) for different velocities of loading. 
The extension ratio is defined by the ratio between the deformed length and the un-deformed length of the 
center part (straight part) of the specimen. 
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Figure 9.  Extension ratio’s at failure (Type-A rubber) 

 
Material tests of ‘Type-B’ rubber 
The image analysis algorithms were applied to measure the strain field at failure. Using the grids 
deformations at failure, average extension ratios at failure were measured. Figure 10 shows extension 
ratios at failure for both biaxial and uniaxial tests. The failure results show that the extension ratios at 
failure have considerable variation (±8%) to its mean even for same stain rate. 



 
In all the shear, biaxial and uniaxial tests, the strain values at the failure have considerable variation, even 
for the same strain rate. This may be possibly due to small damages made during the manufacturing 
process of the specimens or due to use of different batches of rubber during the production of specimens. 
However, it is understood that there is no clear relation between loading rate and failure strain for the 
given range of loading (Figure 8, 9 and 10). It is thus reasonable to assume that failure is independent of 
strain rate of loading. 
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Figure 10. Results of failure tests of biaxial and uniaxial (Type-B rubber)  

 
MODELING  

 
Failure model for rubber 
The use of this model allows a prediction of the critical strain under which rubber fails by crack initiation 
during virgin loading. Experimentally measured local maximum critical strain values at failure (at crack 
opening displacements) and extension ratios at failure (Figures 8, 9 and 10) are used in order to obtain 
such a model in which failure of rubber materials can be expressed in terms of its deformational 
characteristics. From the above-mentioned results of material tests, the failure of rubber material has been 
proven to be independent of the stain rate of loading. It has been observed experimentally that rubber 
material and rubber in bearings fail mostly at the edges of rubber layers due to development of large shear 
strains except in tensile deformation of rubber bearings, a fact which indicates that hydrostatic pressure 
does not affect to that failure mode. Therefore, it is assumed that failure behavior is isotropic and 
incompressible. Under these conditions, mathematical formulation for rubber failure under finite stains is 
developed. Two approaches has been considered; one is using failure extension ratio based approach 
which is similar approach done by Kawabata [2], and the other, more phenomenological based approach 
(invariants-based) which can be used easily in numerical modeling.  
 
Extension ratio-based approach 
In this approach, the extension ratios at failure can be used to develop a failure model. All the 
experimental results of biaxial, uniaxial and simple shear in both types of rubber are used to develop such 
a model. In “Type-A” rubber, simple shear test results are expressed in terms of equivalent strip biaxial 
results. The proposed failure model is given in Equation (1). 
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where a, b are material constants and 1λ and 2λ  are the principle extension ratios at failure respectively. 
The materials constants, which are estimated on the basis of the mean values of experimental results are 
shown in Table 4.  Figure 11 shows graphical presentation of the model. It is clear that the model can 
reasonably express the failure behavior of both rubbers materials. When it compares with existing 
Kawabata’s biaxial tests based model [2], Kawabata’s model is highly over estimated the failure extension 
ratios. 
 
 
 
 
 
 
 
 
 
 

Table 4. Material constants 
Rubber a b 

Type-A 4.60 0.11
8 

Type-B 5.65 0.21
8 

 
 
         
 
       Figure 11. Failure model for rubber (Extension ratios based) 
 
Invariants-based approach 
This is a similar approach that is made by authors in their earlier work [3]. phenomenologicaly, it can be 
defined that the strain energy density is constant at failure for a given rubber material, and can thus be 
called the break distortion energy density of that material. In a hyperelastic material, the strain energy 
density is a function of invariants of the right Cauchy green deformation tensor and the following form of 
strain energy density function is selected to fit the experimental results.  

_ _ _
2( 3)( 3) ( 3)c c f c fI II IIα β− − − − ≥     (2) 

where IC, IIC  are first and second invariants of the right Cauchy green deformation tensor, respectively, 
and fα and fβ are the material constants which can be estimated from mean values of experimental 
results. Estimated material constants are shown in Table 5. A graphical presentation of the model is shown 
in Figure12. It is clear that the proposed criterion can averagely express the experimental failure behavior 
of rubber.  
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Constitutive model for rubber  
The Authors has proposed a constitutive model for rubber to express its monotonic finite deformation 
behavior. Detailed discussion for the model is given in ref. [3]. The proposed strain energy density 
function for rubber is given in Equation (3).   

13
4 5 1 2[1 exp{ ( 3)}] ( 3) ( 3) ( 3) ( 3)
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where  ci ( i =1,2,3,4,5), m,n and k are material constants. Material constants estimated for ‘Type-A’ 
rubber is given in Table 6.  
 
 
 

 
 
 
 

Table 5. Material constants 
Rubber fα  fβ  

Type-A 0.128
3 

274.1 

Type-B 0.104
5 

596.5 

 
 
 
 

Figure 12. Failure model for rubber (Invariants-based) 
 

Table 6. Material constants 

1c  [N/mm2] 2.90×10-1 

2c  [N/mm2] 6.00×10-4 

3c  [N/mm2] 1.75×10-1 

4c  [N/mm2] 1.00 

5c  8.00×10-2 

n  1.45 

m  8.50×10-1 

K  3.03 

 
Failure behavior of LRB  
The validity of the proposed failure model is evaluated by applying it to the LRB. The invariant-based 
failure model is applied into finite element model [7] and the experimental failure test of a bearing was 
simulated. In the analysis, for the rubber material, the constitutive law proposed by the authors and the 
steel (SS400) constitutive law proposed by Chaboche [8] were used. The model was simulated by giving 
all the boundary conditions that were measured in the real experiment. Finally, FEM results are compared 
with the results of the failure experiment of LRB.  
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Figure 13 shows the contour plot of “ 2
fA ” by FEM when the deformation reached to the failure that was 

observed in the experiment of bearing failure. For this particular case, the relation between Af and material 
constants of failure models can be obtained as follows 
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−
      (4) 

From the Figure 13, it is understood that the position of failure is the same as the failure position of the 
experiment. In addition, the value of “Af” by FEM is 17.3 and it is within the range (17.1~23.5), which is 
obtained from the material experiments. Hence, the proposed failure criterion is proven to be valid for 3D 
modeling of failure behavior of seismic isolation LRB.  

        (a)                                                                           (b) 
Figure 13.  3D finite element modeling of failure behavior of LRB: (a) 3-D visualization of 
material conastant “ 2

fA ”; (b) Failure position of the bearing observed in the experiment. 

 
DESIGN CRITERIA FOR SAFETY EVALUATION OF LRB 

 
 Analytical solution to calculate shear strains 
Compressive and rotational deformation  
Many tests have been conducted to investigate the behavior of elastomeric bearings in compression and 
rotations.  Mori et al. [9] has reported some of the existing theories and empirical design formulas, and 
comparisons with the experimental results; he stated that there is a large difference between measured 
properties and the calculated ones. However, most of the theories developed so far are based on the work 
done by Rejcha [10] and similar solutions have been obtained to predict behavior of rubber bearings. It 
was also assumed that rubber is incompressible; however, Yoshida et al. [7] developed an analytical 
solution for compressive and rotational deformation of a rubber layer (Figure 14) by modifying the 
Rejcha’s theory, assuming that rubber is slightly compressible.  

 
 
 
 
 
 
 
 
 

Figure 14.  A rubber layer and its compressive/rotational deformation 
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Based on Yoshida’s work, pressure field can be calculated for compressive and rotational deformation as 
given in Equations (5) and (6) respectively.    
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where (a, b), t0, G, k, ∆Z,  are respectively, cross sectional dimensions, thickness of the rubber layer, shear 
modulus, bulk modulus , total vertical displacement of the rubber layer.       
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where θR is an angle of rotation of the upper plane of the rubber layer around the y–axis. Assuming that 
the shear deformation obeys Hook’s law, the equilibrium equations for the rubber layer give the following 
formulas:  

2
1

8 x

p G
h

x t

∂ = −
∂

      (7) 

2
1

8 y

p G
h

y t

∂ = −
∂

      (8) 

where hx,hy are projections of the parabolic deformation of the rubber layer on x-axis and y-axis 
respectively; and t1 is rubber layer thickness after deformation (Figure 14).  
 
Shear strain due to compression 
Based on deformed geometry of the rubber layer (Figure 14), shear strain due to compression in x 
direction can be calculated as  
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Theoretically, maximum shear strain due to compression can be calculated at the positions (x,y): (0, b/2) 
and (a, b/2). They are equal in quantity and the positions where the shear stress value is maximum.  
 
Shear strain due to rotation 
Similar to shear strain due to compression, shear strain due to rotation can also be calculated as  
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Shear strain due to shear 
Maximum shear strain due to shear (γs) can be calculated in the usual way as  

s
s

rn

δγ =       (11)  

where δs is lateral shear displacement and nr is total rubber layer thickness.  
 
Design criteria  
The simplified criterion proposed using material tests and verified for bearing failure, can be applied to 
proposed design criteria for bearings for their safety evaluations. The failure criterion proposed for rubber 
can be combined with the analytical solutions, which can be used to calculate shear strain field of a rubber 
layer that is subjected to compressive deformations (Equation 9) or rotational deformations (Equation 10). 
The following load combinations are the most possible in rubber bearings; large shear strains are 
generated at the edges of the rubber layers at failure and it is known to be fail due to large shear strains.   
  
Combined shear and compression 
To obtain a simple relation to the failure, shear strain due to compression can be super-imposed with the 
shear strain due to shear because the total deformation gradient can be expressed simply by adding both 
deformation gradients together. Finally, the criterion can be used for the design as follows: 
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where ( )B

ZF  is applied compressive force. The material constant fA  can be estimated using the 

material constants of rubber failure models as follows.  
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Results comparison  
The accuracy of the proposed design criterion (Equation 12) is evaluated by comparison with the results of 

the afore-mentioned failure experiment of bearing ( sδ  = 312 mm, 
( )

= 1471 KN
B

F
Z

, k = 600 Mpa). When 

n = 1, Af calculated using Equation (12) is 22.5 and it is in the upper limit of the range (17.1 ~ 23.5) that is 
obtained by material tests of rubber failure. The result implies validity of the proposed design criterion to 
predict failure of LRB under combined compressive and shear deformation. Figure 15 shows all the 



results comparison with invariant-based rubber failure model, and it shows reasonable agreement with 
results obtained from the material failure. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 15. Results comparison (FEM, material failure and analytical solution) 
 
Combined shear and rotation  
Here, rotation is considered along the axis parallel to the y-axis through the center of the rubber bearing. 
Similarly to the above case, the maximum shear strain due to rotation can be superimposed with the shear 
strain due to shear. Finally, the design criterion can be used as follows: 
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where ( )B
RM  is the moment applied to the bearing.  

 
Results comparison  
Equation (13) cannot be verified due to unavailability of experimental results. However, the 
mode of failure is identical to combined shear and compression.  
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CONCLUSIONS 
 
This paper has presented detailed modeling of failure of rubber materials under large deformations and its 
application to model the 3D failure behavior of seismic isolation LRB. Finally, design criteria have 
proposed for safety evaluation of LRB, and were verified. In addition, the following remarks also can be 
drawn from this paper.    
 

• The proposed failure models for rubber can be applied to estimate the failure behavior of 
different types of rubber materials.   

• Proposed 3D model to estimate the failure of LRB shows reasonable agreement with 
experimental results. 

• Deign criterion proposed for safety evaluation of LRB under combined compression and shear 
deformation can be applied to estimate its failure behavior well.  

• Further experiments are being conducted to investigate failure behavior of LRB under tensile 
and fatigue loadings.  

• Design criteria proposed for safety evaluation of LRB could be implemented in design codes 
after verifying it by performing several full-scale tests.   
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