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SUMMARY 
 
Recently, more and more experimental studies indicate that a mature active control design 
toward practical implementation requires the consideration of robustness requirements in the 
design process, which includes the performance robustness on reducing the tracking error and in 
resistance to the external disturbance and measurement noise, and the stability robustness with 
respect to system uncertainty.  The H∞ control method, among all advanced control strategies, 
provides a fine approach to take these robustness requirements into account for the robust 
controller design.  In this paper, an efficient solution procedure of H∞ dynamic output feedback 
controller for the control of civil structures based on solving a set of linear matrix inequalities 
(LMI), the so-called LMI-based robust H∞ control, is introduced.  For verifying its applicability, 
extensive numerical simulations under the excitations of the 1940 NS El Centro and 1995 Kobe 
earthquakes were conducted on a full-scale three-story seismic-excited building model equipped 
with an active bracing system.  In the simulation, the system uncertainty is assumed in the 
controller design and the employment of acceleration feedback is emphasized for practical 
consideration.  Through the LMI-based solution procedure, the efficiency of H∞ controller 
design is approved.  From the simulation results, it is demonstrated that the performance of the 
H∞ controllers presented is remarkable and robust, and therefore it is suitable for application to 
civil engineering buildings for aseismic protection. 
 

INTRODUCTION 
 

Over the past two decades, the use of active control on civil engineering structures for the 
suppression of seismic-induced and wind-induced vibrations has attracted a great deal of attention 
because of its remarkable effectiveness [e.g., Soong (1990), Kobori et al (1998), Casciati (2002)].  
Considerable research efforts on the experimental verification using shake table tests and wind tunnel 
tests have been made and presented in the literatures [e.g., Chung et al. (1989), Dyke et al. (1994a,b), Wu 
(2000), etc., Wu et al. (2002), Wu et al. (2003)].  The valuable experience gained through these tests 
indicate that a mature active control design toward practical implementation requires the consideration of 
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robustness requirements in the design process, that is, the performance robustness in reducing the tracking 
error and in resistance to the external disturbance and measurement noise, and the stability robustness 
with respect to the existence of system uncertainty [Zhou and Doyle (1998)].  In particular, the stability 
robustness to uncertainty is relatively important because the properties of most civil structures are not 
easy to predict perfectly.  Among the advanced control strategies proposed in many literatures [e.g. 
Kobori (1998), Casciati (2002)], H∞ control strategy is particularly useful in designing the robust 
controller because these robustness requirements in a way can be interpreted as the H∞ norm of transfer 
function to be smaller than a given value. 

The solution computation of the H∞ controller has been broadly discussed in the control community 
in the past decades [Basar and Bernhard (1991)].  Among all, two typical literatures, i.e., [Glover et al. 
(1988)] and [Doyle et al. (1989)], presented a numerically efficient solution methodology by using two 
algebraic Riccati equations.  However, its application is restricted to the so-called regular control system 
(i.e., D12 and D21 in Eqs. (4) and (5) have full column ranks).  Later, a new solution methodology based 
on the solution of linear matrix inequalities (LMI), directly derived from the Bounded Real Lemma, is 
proposed by [Gahinet, P. and Apkarian, P (1994)], referred to as the LMI-based H∞ control.  The theorem 
of the LMI-based solution method is more straightforward and no restriction is required.  Besides, its 
solution procedure is efficient in computation.  According to these advantages, in this paper, the H∞ 
controllers that take the robustness requirements into account based on the LMI approach are designed to 
control a full-scale seismic-excited building for verifying its applicability toward implementation on civil 
engineering structures.  The full-scale building considered herein is made of a three-story spatial steel 
rigid frame and equipped with an active bracing system on the first floor (see Fig. 8 in simulation 
section).  It was once constructed on the shake table of the National Center for Research on Earthquake 
Engineering (NCREE) in Taiwan for the verification of active control.  The numerical model of the 
building was constructed and presented in [Wu (2000)] and its validity has been well verified through 
shake table tests.  Therefore, it can be esteemed to be suitably used for numerical simulation if other 
control methods are to be employed.  Extensive numerical simulations based on this numerical model 
were conducted in this investigation to verify the control applicability and the comparisons with those 
using LQG (Linear Quadratic Gaussian) control are also made for the demonstration of control 
performance. 
 

FORMULATION 
 

In this section, we will firstly describe the basic concept of generalized H∞ control for a 
controlled system, followed by a brief description of the LMI-based procedures for solving the H∞ 
controller proposed by [Gahinet, P. and Apkarian, P (1994)].  Secondly, for controlling a physical 
seismic-excited structure, the concept of robust control with the robustness requirements specified is 
further introduced, and thirdly the derivation of forming a H∞ control problem via these robustness 
requirements is described so that the LMI-based procedures can be utilized in consequence. 
 
Generalized H∞ Control  
A typical block diagram of generalized H∞ controlled system is shown in Fig.1.  The generalized plant 
system is denoted by G(s), which has two sets of inputs W and U, and two sets of outputs z and y.  In Fig. 
1, the m1-dimensional vector W is the exogenous input, which might involve the external disturbance, 
measurement noise or reference signal, while the m2-dimensional vector U is the control command from 
the controller.  The p1-dimensional vector z contains the physical quantities to be attenuated, referred to as 
the controlled output, while the p2-dimensional vector y contains the measurements to be used as the 
feedback quantities, referred to as the measured output.  The block expressed by K(s) represents the 
transfer function of a dynamic output feedback controller to be designed.  In the concept of H∞ control, 
the objective is to design an appropriate dynamic output feedback controller K(s) such that the transfer 



function from from W to z, denoted as , is stable and its H∞ norm, denoted as || , is smaller 
than a given attenuation value γ, i.e., ||

zWH ∞||zWH
γ|| <∞zWH .  The H∞ norm of the transfer function  is 
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where ||  is the L2 norm of a time-variant vector.  In other words, the H∞ norm is 
the worst case of the ratio of the output　 L2 norm versus the input　 L2 norm.  It can be easily shown 
that the H∞ norm in Eq. (1) can be further rewritten as 

  ( ))(|| jω   Sup
Rω

zWzW HH|| σ=
∈

∞  (2) 

in which 1−=j and ( )   .σ  denotes the maximum singular value.  Therefore, the condition 
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Fig.1: Block Diagram of a Generalized H∞ Control  
 

In the state space, the generalized plant G(s) can be represented by the state equation expressed 
by 

UBWBAXX 21 ++=&  (3) 
UDWDXCz 12111 ++=  (4) 
UDWDXCy 22212 ++=  (5) 

in which A nnR ×∈ , B1
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11 mpR ×∈ , D12
21 mpR ×∈ , C2

npR ×∈ 2 , 
D21

12 mpR ×∈ , D22
2m2pR ×∈ ; (A, B2) is stabilizable and (A,C2) is detectable.  Likely, the state equation of 

the controller K(s) can be expressed by 
yBXAX kkkk +=&  (6) 

yDXCU kkk +=  (7) 

in which A  k
kkR ×∈ ,  kB 2pkR ×∈ , C  k

kmR ×∈ 2 ,  kD 22 pmR ×∈  are constant matrices to be determined 
by the control theory.  For simplifying the following derivation, another measured output 

WD21XC2=UD22yy +−=  instead of y is firstly used in Eqs. (6) and (7).  This assumption will be 
eliminated later by a simple transformation described in the subsequent section.  Thus, the corresponding 
matrices of the controller in Eqs. (6) and (7) are denoted by kA , kB , kC , kD , respectively.  Hence, the 
closed-loop transfer function  can be obtained by substituting Eq. (7) into Eq. (4) as zWH
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In Eq. (10), 0 represents the (kxk)-dimensional matrix with 0 entries, I  represents the (kxk)-
dimensional identity matrix. 

k k

 
LMI-based Procedure 
According to the Bounded Real Lemma [e.g., Gahinet and Apkarian (1994), Zhou and Doyle (1998)], the 
controller K(s) in Fig. 1 exists such that || γ|| <∞zWH  if and only if  there exists a symmetric matrix Xcl 

∈R (n+k)x(n+k) > 0 (i.e., Xcl positive definite) such that 
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In other words, the controller matrices ( kA , kB , kC , kD ) and a positive definitive Xcl can be found to 
satisfy Eq. (11) if and only if || γ|| <∞zWH .  The equation (11) can be further rewritten as 
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Note that Eq. (13) is a linear matrix inequality (LMI) for either  or Xθ cl individually, but not for both.  
By partitioning Xcl and Xcl

-1 in the following manner 
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in which R, S nnR ×∈ ; M, N knR ×∈ , and employing the projection lemma [Gahinet and Apkarian (1994)], 
several manipulations for Eq. (12) lead to two LMIs for R and S (the detail derivation is described in the 
Appendix for the reader　 interest), i. e., 
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in which NR and NS are the null base matrices of ( )TT DB 212  and ( )212 DC , respectively.  In addition, 
the positive definiteness of Xcl can lead to another LMI for R and S as 
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[Packard et al. (1991)].  Hence, Eqs. (15)-(17) are the three basic LMIs in solving the H∞ controller.   
Above all, the LMI-based solution procedure for the H∞ controller can be summarized in the 

following: 
1. Use Matlab LMI Toolbox to solve γ, R and S by constructing a minimization problem with the 

objective function  
)(β)(αγ SR TraceTraceJ ⋅+⋅+=  (18) 

subject to three LMI constraints described in Eqs. (15)-(17).  In addition, one more constraint 
expressed by  

minγ5.0γ   >  (19) 
can be also used to restrict the value of γ.  In Eq. (18), α, β are two given weightings to modulate the 
trace of R and S, and the value of γmin in Eq. (19) is given to confine the lower bound of γ.  
Minimization of the trace of R and S is helpful in slowing down the dynamics of the controller for 
facilitating implementation. 

2. From the identity  
RSIMNT −=  (20) 

, which is induced from Eq. (14), the matrices M,  with full column rank can be obtained by 
using the singular value decomposition.  Thus, by substituting M and N into an identity 
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, which can be also deduced from Eq. (14), the matrix Xcl 
)()( knknR +×+∈  can be obtained. 

3. Construct a minimization problem by Matlab LMI Toolbox to solve the controller matrices kA  
kkR ×∈ , kB  2pkR ×∈ , kC  kmR ×2∈ , kD  22 pmR ×∈  in θ  with the objective function 

 )( kA TraceJ =  (22) 
subject to the LMI constraint described in Eq. (12). 

4. Once kA , kB , kC , kD  is obtained, the assumption of using measured output 
WDXCUDyy 21222 +=−=  to replace y is eliminated by a simple transformation, i. e., 
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Robustness Requirements in Robust Control 
For the completeness of the derivation of robustness requirements, the physical system considered in this 
section is restricted to the so-called matched system, i.e., the system excited by the control effort 
(command) U and disturbance d (earthquakes or wind loads) through the same mechanism.  The block 
diagram of such a physical system with active control is shown in Fig. 2 by the solid borders and lines.  
For the unmatched systems to which most structural systems belong, these robustness requirements 
derived can be still applied except that the performance will degrade to some degrees, depending on its 
situation.   
In Fig. 2, the block P is the structural system (plant system); the block K is the controller system; r is the 
reference signal for the tracking problem, U is the control command generated from the controller; d is 
the external disturbance such as the earthquake or wind loading, n is the measurement noise and y is the 
measured structural response; e is the error signal which is the subtraction between the measured response 
and the reference.  In the vibration suppression problems, the reference r can be considered as a zero 



signal and the same block diagram applies.  It can be easily shown that the following relations in the 
frequency domain can be derived from the block diagram in Fig. 2; 

dPSnrTy   00 )( +−=  (24) 
dPSnTrSe     000 −+=  (25) 

in which S0 is the so-called sensitivity function and T0 is the complimentary sensitivity function, defined 
by 
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Fig. 2: Block Diagram of A Physical System with Active Control   
  
The robustness requirements considered in active control should contain the performance 

robustness and stability robustness.  As such, the performance robustness can include the resistance of 
influence from the reference r, disturbance r and measurement noise n on the response y or the error e.  
Physically, the “size” of influence at any frequency can be quantitatively measured by the maximum 
value of the L2 norm of the output vector (frequency domain) versus that of the corresponding input 
vector (frequency domain), which is mathematically bounded by the maximum singular value of the 
transfer function of the output versus input, denoted by 

The robustness requirements considered in active control should contain the performance 
robustness and stability robustness.  As such, the performance robustness can include the resistance of 
influence from the reference r, disturbance r and measurement noise n on the response y or the error e.  
Physically, the “size” of influence at any frequency can be quantitatively measured by the maximum 
value of the L2 norm of the output vector (frequency domain) versus that of the corresponding input 
vector (frequency domain), which is mathematically bounded by the maximum singular value of the 
transfer function of the output versus input, denoted by ( )   .σ .  Therefore, the performance robustness for 
the disturbance attenuation, tracking error and noise rejection in robust control can be described as 
follows [Zhou and Doyle (1998)]: 
(1) Disturbance Attenuation: for Rω∈∀ , ( ) 1)( <<σ ω ydH , i. e., ( ) 10 <<σ PS   .  Or more 

conservatively, we require ( ) 10 <<σ S . 
(2) Tracking Error: for Rω∈∀ , ( ) 1)( <<σ ω erH , i. e., ( ) 10 <<σ S . 
(3) Noise Rejection: for Rω∈∀ , ( ) 1)( <<σ ω ynH , i. e., ( ) 10 <<σ T . 

 From the relation S , it is not possible to simultaneously achieve IT =+   00 ( ) 10 <<S σ  and 
( ) 10 <<σ T  for Rω∈∀ .  Fortunately, since the dominant frequency distribution of the disturbance d (or 

reference r) lies in the lower range and that of the noise n lies in the higher range (as illustrated in Fig. 3), 
a possible trade-off between S  and  can be achieved by specifying appropriate weighting functions 
W

0 0T
e and Wy, which can be interpreted as the frequency distribution of d (or r) and n, respectively, such 

that 1<)0  (σ  SWe  and 1)0 <TWy  ( σ  for R∈∀ω .  In other words, the performance robustness for the 
disturbance attenuation, tracking error and noise rejection can be expressed as  

1|||| 0 <∞   SWe  (27) 
1|||| 0 <∞   TWy  (28) 
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Fig. 3: (a) Frequency Distribution of S0 and We;  
(b) Frequency Distribution of T0 and Wy 

 
 

 
Another concerned issue in robustness requirements is the stability robustness, which is the 

retainability of stability with respect to system uncertainty.  As in many literatures, system uncertainties 
are mostly classified into multiplicative and additive uncertainties for convenience of discussion.  Their 
effects on the system stability and the corresponding conditions for stability robustness are described in 
the following [Zhou and Doyle (1998)]: 
 
Additive Uncertainty 
A plant system with additive uncertainty can be denoted by the set 

, in which Wy}uncertaintoffunctiontransferstableais:{        ∆∆UWPΠ += U is a weighting matrix for 
modulating the “size” of ∆.  For convenience of discussion, it can be properly adjusted to cover the 
bounds of all additive uncertainties in the frequency range considered such that || 1|| ≤∞∆ .  The 
representation of the additive uncertainty in the block diagram of a physical system is shown in Fig. 4.  
By means of the linear fractional transformation (LFT), the block diagram in Fig. 4 can be converted into 
a simplified block diagram with an upper block ∆ and a lower block 0SKWU   − , as shown in Fig. 5.  
The derivation is as follows.  From Fig. 4, we observe U )oKy (PUKKe +−=−== , 

therefore .  Thus, i .  
Furthermore, by the small gain theorem [Zhou and Doyle (1998)], it is obvious to reach that the system 
stability is guaranteed if  
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1|||| 0 <∞SKWU   . (29) 
Therefore, Eq. (29) is a condition for the stability robustness. 
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Fig. 4: Block Diagram with Additive Uncertainty  

 
Multiplicative Uncertainty: 
The plant system with the multiplicative uncertainty can be denoted by the set 

, in which Wy}uncertaintoffunctiontransferstableais:){(         ∆∆ PWIΠ y+= y is a weighting matrix for 



modulating the “size” of ∆.  For convenience of discussion, it is properly adjusted to cover the bounds of 
all multiplicative uncertainties in the frequency range considered such that || 1|| ≤∞∆ .  The multiplicative 
uncertainty in the block diagram of a physical system is shown in Fig. 6.  By means of the technique of 
linear fractional transformation, the block diagram in Fig. 6 can be converted into a simplified block 
diagram with an upper block ∆ and a lower block 0TWy  − , as shown in Fig. 7.  By the small gain 
theorem, it is concluded that the system stability is guaranteed if || 1||0 <∞
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same condition as Eq. (28). 
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In summary, the robustness requirements for active control should at least contain the conditions 

of performance robustness and stability robustness, expressed in Eqs. (27)-(29).  Conceptually, the 
transfer functions involved in these three conditions can be considered as the transfer functions from the 
reference r to e, U and y, multiplied by three weighting (filter) functions We, WU and Wy, respectively.  
Hence, the controlled outputs considered become three filtered quantities ze, zU and zy as denoted by the 
dotted line in Fig. 2.   

 
The remaining task is to convert these three conditions into a generalized H∞ problem presented 

in the next section. 
 
Formulation of Robust H∞ Control for Civil Structures 
Let　 consider a civil structure subject to excitations with active control.  Although the plant system of a 
civil structure is usually not a matched system, the block diagram presented in Fig. 2 with the reference 
signal  is still used to help constructing the robust H∞ controller.  The price it pays is the 
degradation of the performance to some extent.  Thus, the state equations of the plant system P (civil 
structure), weightings W

0=r

e, WU and Wy are expressed by 
UEdBXAX pPPPP ++=&    ;   P +  (30) 
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, respectively, in which X , , ,  are the state vectors; A , B , , , , F , , B , 

, , , , , , , , and  are constant matrices in the state equations with 
appropriate dimensions.  To account for the performance requirements expressed in Eqs. (27)-(29), the 
transfer functions from r to z
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e, zU and zy are to be constructed.  Besides, for the vibration suppression 
problem, it is esteemed necessary to also include the transfer functions from the external disturbance d to 
ze, zU and zy for attenuation purpose.  Thus, by considering r and d as the exogenous input, ze, zU and zy as 



the controlled output z, and e as the measured output (because e y−= ), the overall system to be 
controlled can be re-expressed as a generalized state equations written by 
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The comparison of Eq. (34) and Eqs. (3)-(5) shows their similarity except that y in Eq. (5) is replaced by e 
for feedback.   Thus, the LMI-based solution procedure mentioned in the earlier section can be used to 
design the robust H∞ controller. 
 

NUMERICAL SIMULATION 
 

To demonstrate the applicability of the robust H∞ controller presented to civil structures, 
extensive numerical simulations using the structural dynamics of a 3-story full-scale seismic-excited 
building are conducted.  The building has a rectangular shape with a floor area of 4.5 m by 3m in each 
floor and a total height of 9 m (3m for each story), which was once constructed on the shake table of 
National Center for Research on Earthquake Engineering (NCREE) for experimental verification, as 
shown in Fig. 8.  The masses of the building from the bottom to top floors are 1144.16, 1144.16 and 
1113.62 , respectively.  An active bracing system is connected between the ground and the first 
floor to provide the active force to the building for aseismic protection.   Two earthquakes, the 1940 El 
Centro (100 seconds) and 1995 Kobe (60 seconds) earthquakes with a 0.1g PGA are used as the 
excitation sources.  This actively controlled building has once been tested using LQG control and the 
results were presented in [Wu (2000)].  In [Wu (2000)], the numerical model of this actively controlled 
building was successfully constructed and the experimental verification has been done to shown its 
correctness.  Therefore, this numerical model will be directly used as the true model system in the 
numerical simulation herein.  The system matrices of this numerical model used can be found in the web 
site URL http://www.ce.tku.edu.tw/~jcwu/research/ncree_analytical.html.  In this true system, the 
available responses of the building include the relative displacements  (i = 1, 2, 3) of each floor w.r.t. 
the ground, the absolute accelerations  (i = 1, 2, 3) of each floor and the stroke  of actuator.  The 
building with zero control command has three natural frequencies and damping ratios equal to 7.363, 
22.933 and 37.966 rad/sec, and 1.38%, 2.46% and 1.32 %, respectively.  For the comparison later, the 
response quantities of the building with zero command under earthquakes are tabulated in Table 1, and it 
is referred to as the “No Control” case in what follows.  In Table 1, “Peak” represents the peak value in 
the whole time history, while “R.M.S.” represents the root-mean-square values within the dominant 
period from 24 s to 64 s for the El Centro earthquake and 14s to 54 s for the Kobe earthquake. 
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Fig. 9: Comparison of Transfer Functions of 
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(a)  , (b)  , (c)  , (d)  , (e)  , (f) , 

(g)  , and (h) . 
1

ax3&&

2 3 f a1 a2

f

 
 
 

Fig. 8: 3-Story Full-Scale Building on the 
Shake Table of NCREE 

 
 
 
 
 
 
 
 
 

Since the displacement and velocity measurements are not quite practical for implementation, the 
absolute accelerations of all three floors are used as the feedback quantities, i. e., y = [ , , .  
However, all seven response quantities mentioned above will be computed.  It should be noted that the 8-
state nominal system used in [Wu (2000)] for LQG control is constructed through the balanced-state 
reduction method [Moore (1981)] from another system model which is identified with less accuracy than 
the true system.  The transfer functions of the response quantities due to the actuator command U for the 
nominal system and the true system are plotted in Fig. 9 to illustrate the difference.  It is observed from 
Fig. 9 that the size of the uncertainty is more significant than that just induced from the system reduction.  
This nominal system is also used in this paper for the robust H∞ controller design in order to examine the 
robustness of the controller and make comparisons with the LQG results.  Herein, the difference between 
the nominal system and the true system will be considered as the additive uncertainty and the weighting 
W

ax1&& ax2&& ax3&&
T]

U to be chosen should cover the bounds of all additive uncertainties.   
 
 
 



Table 1: Response Quantities of the Actively Controlled Building with Zero Command  
(No Control) 

 El Centro (PGA=0.1g) Kobe(PGA=0.1g) 
(1) Peak 

(2) 
R.M.S 

(3) 
Peak 
(4) 

R.M.S 
(5) 

1x (cm) 2.050 0.823 2.065 0.664 

2x (cm) 4.592 1.766 4.493 1.428 

3x (cm) 6.232 2.335 5.981 1.889 

ax1&& (g) 0.171 0.051 0.216 0.040 

ax2&& (g) 0.262 0.097 0.264 0.078 

ax3&& (g) 0.371 0.127 0.375 0.103 

 
 
In this study, two robust H∞ controllers are designed, denoted as H∞1 and H∞2, respectively.  The 

design parameters for both controllers are chosen such that H∞1 requires smaller control effort while H∞2 
requires bigger control effort, and the simulation results of them are compared with those of LQG1 and 
LQG3 controllers, which use the same measurements y = [ , , for feedback, in [Wu (2000)], 
respectively.  The weighting functions and other parameters used in the LMI computation for each 
controller are listed as follows: W

ax1&&

440)

ax2&& ax3&&
T]

U = /(11)2004.4( ++ ss , We = )105.0/()2100002.0( ++ ss , Wy 

= 0 , α=0.1589, β=0.1589 and γ)
5.0/()28000

755/(1.0)20180( ++ ss
440)/(11140) ++ ss

min=200 for the H∞1 controller; WU 

= (3.6 , We = )1002.0( ++ ss , Wy = 0)755/(1.0)20 +180( + ss , α=0.1589, 
β=0.1589 and γmin=200 for the H∞2 controller.   From the LMI-based solution procedure, the resultant 
attenuation value γ is equal to 4134.9 and 3161.1 for the H∞1 and H∞2 controller, respectively.  
Consequently, two 15-state (k=15) controllers are thus obtained, and they are further reduced to 8-state 
controller by the balanced-state reduction method [Moore (1981)] to facilitate implementation.  The 
simulated responses under the two earthquakes of 0.1g PGA using the H∞1 and H∞2 controllers are 
tabulated in Columns (2)-(5) and Columns (11)-(14) of Table 2.  In Table 2, the values inside the 
parentheses are the reduction percentages with respect to the “No Control” case in Table 1.  As observed 
in Table 2, the reduction percentages of the RMS responses using the H∞1 controller achieve about 50% 
with the control effort about 1000 kgf, while the reduction percentages of the RMS responses using H∞2 
are further improved toward 60% with the control effort about 1500 kgf.  The reductions for the peak 
responses are relatively smaller and significant difference of reduction is observed for the two different 
earthquakes.  For comparison, the simulated responses using LQG1 and LQG3 controllers [Wu (2000)] are 
also tabulated in Columns (6)-(9) and Columns (15)-(18) of Table 2, in which less effectiveness than H∞ 
controllers is observed. 

 
 
 
 



 
Table 2: Response Quantities of the Actively Controlled Building Using H∞ Controllers  

  
 H∞1 LQG1 
 El Centro 

(PGA=0.1g) 
Kobe 

(PGA=0.1g) 
El Centro 

(PGA=0.1g) 
Kobe 

(PGA=0.1g) 

(1) 
Peak 
(2) 

R.M.S 
(3) 

Peak 
(4) 

R.M.S
(5) 

Peak 
(6) 

R.M.S
(7) 

Peak 
(8) 

R.M.S 
(9) 

1x (cm) 1.395 
(32.0) 

0.293 
(64.4) 

2.010
(2.7) 

0.308
(53.7)

1.415
(31.0)

0.307
(62.7)

1.970 
(4.6) 

0.318 
(52.1) 

2x (cm) 2.475 
(45.9) 

0.589 
(66.7) 

3.962
(11.8)

0.606
(57.6)

2.736
(40.4)

0.651
(63.1)

4.051 
(9.8) 

0.656 
(54.1) 

3x (cm) 3.002 
(51.8) 

0.706 
(69.8) 

4.972
(16.9)

0.746
(60.5)

3.339
(46.4)

0.802
(65.7)

5.240 
(12.4) 

0.827 
(56.2) 

ax1&& (g) 0.121 
(29.0) 

0.025 
(50.5) 

0.130
(40.0)

0.020
(48.5)

0.121
(29.0)

0.024
(52.9)

0.147 
(31.9) 

0.022 
(45.0) 

ax2&& (g) 0.159 
(39.5) 

0.034 
(65.0) 

0.177
(32.8)

0.031
(60.7)

0.166
(36.6)

0.037
(61.9)

0.192 
(27.3) 

0.035 
(55.1) 

ax3&& (g) 0.185 
(50.2) 

0.040 
(68.7) 

0.224
(40.3)

0.037
(64.2)

0.222
(40.2)

0.042
(66.9)

0.266 
(29.1) 

0.041 
(60.2) 

U (kgf) 1153 262 1782 275 1060 221 1424 224 
 H∞2 LQG3 
 El Centro 

(PGA=0.1g) 
Kobe 

(PGA=0.1g) 
El Centro 

(PGA=0.1g) 
Kobe 

(PGA=0.1g) 

(10) 
Peak 
(11) 

R.M.S 
(12) 

Peak 
(13) 

R.M.S
(14) 

Peak 
(15) 

R.M.S
(16) 

Peak 
(17) 

R.M.S 
(18) 

1x (cm) 1.289 
(37.1) 

0.255 
(69.0) 

1.813
(12.2)

0.274
(58.8)

1.339
(34.7)

0.261
(68.3)

1.924 
(6.8) 

0.288 
(56.6) 

2x (cm) 2.104 
(54.2) 

0.468 
(73.5) 

3.373
(24.9)

0.492
(65.6)

2.239
(51.2)

0.502
(71.6)

3.683 
(18.0) 

0.538 
(62.3) 

3x (cm) 2.270 
(63.6) 

0.544 
(76.7) 

4.062
(32.1)

0.589
(68.9)

2.653
(57.4)

0.604
(74.1)

4.557 
(23.8) 

0.663 
(64.9) 

ax1&& (g) 0.104 
(39.3) 

0.023 
(55.8) 

0.117
(46.1)

0.018
(54.6)

0.101
(40.9)

0.020
(60.8)

0.128 
(40.7) 

0.020 
(50.0) 

ax2&& (g) 0.149 
(43.3) 

0.029 
(70.1) 

0.135
(48.9)

0.024
(69.0)

0.133
(49.2)

0.027
(72.2)

0.157 
(40.5) 

0.026 
(66.7) 

ax3&& (g) 0.149 
(59.9) 

0.032 
(75.2) 

0.155
(58.7)

0.028
(73.2)

0.170
(54.2)

0.033
(74.0)

0.198 
(47.2) 

0.033 
(68.0) 

U (kgf) 1706 365 2632 390 1657 323 2430 351 
 
 

CONCLUDING REMARKS 
 

The LMI-based H∞ controller that takes into account the consideration of robust requirements 
that include the performance robustness on reducing the tracking error and in resistance to the external 
disturbance and measurement noise, and the stability robustness with respect to system uncertainty, has 
been introduced.  The numerical model of the experimental full-scale 3-story seismic-excited building 
with a active bracing system, which has been verified through experiments in a literature, was used in the 



simulation to verify its applicability toward actual implementation.   In the extensive simulations, two 
earthquakes, the 1940 El Centro and 1995 Kobe earthquakes, are used as the excitations to the building.  
The system uncertainty is assumed in the controller design and acceleration measurements are used as the 
feedback quantities for practical consideration.  Two H∞ controllers are designed to successfully 
demonstrate the flexibility of modulating control effort in the approach.  Furthermore, the simulation 
results of both H∞ controllers are also compared with those of LQG controllers for their effectiveness.  
The simulation results have demonstrated that: (1) the LMI approach is efficient in computing the H∞ 
controller; (2) the effectiveness of the H∞ controllers presented is remarkable and its robustness with 
respect to disturbance attenuation, tracking error, noise rejection and uncertainty is satisfactory; (3) the 
performances of H∞ controllers are slightly better than those of LQG controllers.  Therefore, the LMI-
based robust H∞ control is suitable for the application to civil engineering buildings for aseismic 
protection. 
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APPENDIX 
 

Derivation of Eqs. (15) and (16) (excerpted from [Gahinet and Apkarian (1994)]) 
 
Projection lemma: For a symmetric matrix Ψ  and two matrices P and Q, there exists a matrix θ  
satisfying  if and only if W  and , in which 

 and  are the matrices whose columns are composed of the null space bases of P and Q, 
respectively. 

0        <++ PθQQθPΨ TTT

QW
0      <P

T
P WΨ 0      <Q

T
Q WΨW

PW

By the Projection lemma, the existence of a feasible θ  in Ineq. (12) requires the satisfaction of two 
conditions  

0      <ξξ XclclXcl
WΨW X

T   (A-1) 
and  

0      <ψX
T
ψ WΨW

cl
 (A-2) 

, in which  and  are the matrices of null space bases of 
Xcl

Wξ ψW
clXξ  and ψ , respectively.  In Ineq. (A-

1),  appears in Ψ  and  as well, therefore it needs further reduction as follows.  From the 

observation that  can be expressed as  
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, the null space matrices of  and  are related by the equation 
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The substitution of Eq. (A-4) into Ineq. (A-1) leads to 
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Now, we have obtained two Ineqs. (A-5) and (A-2) that guarantee the existence of a feasible . clX
 A further simplification of Ineq. (A-5) is performed by substituting the partition of X  and 

expressed in Eq. (14) into Φ in Eq. (A-6), i.e., 
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in which  is the null space matrix of [ .  By this, Ineq. (A-5) is rewritten as RN
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or rearranged as 
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In a similar manner, Ineq. (A-1) can be rewritten as 

0
0

0
0

0

11
111

111

11

<
























γ−
γ−

+










pp
  

 
  

I
N

IDB
DISB
CSBSAAS

I
N R

TT

T

TTT
T

S  (A-11) 

 


	Return to Main Menu
	=================
	Return to Browse
	================
	Next Page
	Previous Page
	=================
	Full Text Search
	Search Results
	Print
	=================
	Help
	Exit DVD



