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SUMMARY 
 
This paper examines the dynamic response of a concrete dam impounding an ice-covered reservoir and 
subjected to forced vibration testing. The analytical research presented is a follow-up to an extensive 
dynamic testing program carried out on an 84-m high concrete gravity dam located in northeastern 
Quebec, Canada, under harsh winter conditions, including a 1.0 to 1.5-m-thick ice sheet covering the 
reservoir. One of the major challenges encountered when analyzing ice–dam–reservoir–foundation 
interaction is modelling the complex nature of the ice and the boundary conditions governing the ice-
covered reservoir motion. The problem is further complicated because there are little or no appropriate 
observational evidence relevant to ice–dam interaction processes. Some of these challenges are addressed 
herein using a two-dimensional analytical approach, which investigates the effect due to ice cover, the 
influence of water compressibility, foundation flexibility, and reservoir bottom absorption. A frequency 
domain substructure method technique is used and a new boundary condition along the ice-cover–
reservoir interface is proposed. The technique developed is implemented in a finite element code 
specialized in the seismic analysis of concrete dams.  
 
The paper also presents a numerical and parametric study showing the effect of an ice cover on the 
dynamic response of a concrete dam using the approach developed. The 84-m-high Outardes 3 concrete 
gravity dam in northern Quebec was chosen as a model for this research. Basic aspects of the numerical 
model are established and it is shown that the ice cover greatly affects the dynamic response of the ice–
dam–reservoir system. Some main features of this influence are emphasized and discussed in a parametric 
study through the analysis of: (i) acceleration frequency response curves at the dam crest, 
(ii) hydrodynamic frequency response curves inside the reservoir, and (iii) the hydrodynamic pressure 
distribution on the upstream face of the dam.  
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INTRODUCTION 
 
Dam reservoirs in northern climates are generally covered with ice sheets for significant periods of time 
during the year. To illustrate this fact for Canada, the map in Figure 1 was prepared in the course of this 
project by gathering information from different sources.  
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Figure 1. Dams, seismic activity, and ice covers in Canada. 
 
 
The dashed line on the map indicates the southernmost border of the area where the average temperature 
of the coldest winter month is -18°C or less and where ice covers navigable waters at least 180 days per 
year. The solid line represents the southernmost border where the average temperature of the coldest 
winter month is between -18°C and 0°C and where, consequently, ice covers navigable waters for 100 to 
180 days per year [1]. The map also shows dams with reservoir gross capacities exceeding one billion 
cubic meters, as well as some of the major earthquakes that have occurred in Canada since 1663 [2]. This 
map clearly shows that most dam reservoirs in Canada are covered with ice sheets for significant periods 
of time each year, and that some of these dams are located in earthquake prone areas. Consequently, it is 
of primary importance to ensure that dams that have been or will be built in these areas are designed in a 
way to withstand the dynamic forces that could be generated under seismic excitation through their 
interaction with the ice covers and their impounded ice-covered reservoirs. In Quebec, this verification has 
become even more imperative since the recent adoption of the Quebec Dam Safety Act [3] and the Quebec 
Dam Safety Regulation [4]. According to these new regulations, dam owners are now more than ever 
responsible for assessing and controlling the safety of their dams.  
 
Part of the motivation for this study is related to the need to develop theoretical and experimental 
techniques to help dam owners, consultant engineers, and other concerned community members to ensure 
dam structural integrity and safety. 



SCOPE AND OBJECTIVES 
 
The primary objective of this project is to propose an analytical approach to investigate the effect of ice–
covers on the dynamic behaviour of gravity dams. The proposed method had to satisfy the following 
criteria : (i) to account for ice–dam interaction, as well as ice–reservoir, dam–reservoir and dam–
foundation interactions; (ii) to include water compressibility effects as well as energy dissipation 
mechanisms at reservoir bottom; (iii) to be numerically efficient to be eventually incorporated in 
specialized dam structural analysis software; (iv) once implemented, to allow for parametric studies to 
evaluate the contribution of the different substructures to the system’s overall dynamic behaviour, and 
finally (v) to form the ground basis for a 3D numerical model to be used for numerical correlation studies 
of winter forced vibration tests. 
 

EXPERIMENTAL BACKGROUND 
 

The analytical research presented here is a follow-up of an extensive dynamic testing program carried out 
on an 84-m-high concrete gravity dam located in northeastern Quebec, Canada. The experimental work, 
reported previously by Proulx and Paultre [5] and Paultre et al. [6], consisted of conducting a series of 
forced vibration tests on the Outardes 3 gravity dam under both summer and severe winter conditions. 
Owing to the high importance of the issue in evaluating dam seismic safety as discussed earlier, this 
experimental program represented a first valuable step towards understanding different aspects of ice–
dam dynamic interaction. Figure 2 illustrates the experimental setups used under summer and winter 
conditions. The collected experimental data was then compiled and analyzed to extract valuable 
information, namely acceleration and hydrodynamic frequency response curves at different locations on 
the dam and in the reservoir. A first comparison between summer and winter results identified the effects 
of the ice cover on the dynamic response of the dam–reservoir–foundation system. Modifications in 
damping and resonance frequencies were observed as well as an additional resonance attributed to the 
interaction of the dam with the ice cover. The experimental findings also constitute a reliable database that 
can be valuable in validating theoretical studies of ice–dam–reservoir–foundation interactions and 
calibrating finite element programs specializing in the dynamic analysis of concrete dams. 

 
MATHEMATICAL FORMULATION 

 
The ice–dam substructure 
The aim of this section is to formulate the equations of motion of the ice–dam–reservoir–foundation 
system using the substructure method, a technique that has been widely used during the last three decades 
for modelling dam–reservoir–foundation dynamic interaction. The basic idea behind the method is to 
divide the whole system into substructures and then write the equations of motion for each substructure 
separately. Overall system response can then be obtained by relating the different substructures through 
interaction forces arising at common interfaces. It is worth to mentioning that an important merit of the 
substructure method is its efficiency in analyzing systems with frequency dependent properties such as 
dam foundations and reservoirs [7]. As illustrated in Figure 3, the system under study consists of four 
substructures: (i) a concrete dam with a vertical upstream face, (ii) a semi-infinite ice cover of constant 
thickness, (iii) a semi-infinite reservoir of a constant height, and (iv) a semi-infinite flexible foundation. 
The ice cover is assumed to extend to infinity, but in order to carry out parametric studies, a finite ice 
cover length is considered as shown in Figure 3. Both concrete and ice are assumed to have linear, 
isotropic, elastic behaviour. Nonlinearities due to cracking and reservoir cavitation are not considered in 
this study. For the sake of clarity and brevity, and in order to effectively isolate the contribution of the ice 
cover effects to the overall system dynamic behaviour, effects due to foundation flexibility are not 
included here. Only the basic equations governing the ice–dam–reservoir interaction with a rigid 



foundation are briefly reviewed. A technique for including foundation flexibility effects in the analysis by 
idealizing it as a viscoelastic half-plane was described in a previous work [8]. 
 
 

 
 

 
Figure 2. Experimental setups used under summer and winter conditions. 



In the next sections, the equations of motion are derived for each of the ice–dam and reservoir 
substructures, and then coupled by means of the interaction forces arising at the ice–reservoir and dam–
reservoir interfaces.  
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Figure 3. The ice–dam–reservoir–foundation system substructures. 
 
First, the dynamic equilibrium equations governing the linear response of the ice–dam finite element 
system under forced-vibration testing are written. The eccentric mass shaker load is modeled by a 
harmonic force applied at dam crest and the reservoir effect is modeled by hydrodynamic loads applied at 
the dam–reservoir and ice–reservoir interfaces. By expressing the displacements and forces in terms of 
their complex-valued frequency responses, equilibrium equations are transformed in the frequency domain 
where the ice–dam substructure is assumed to have a constant hysteretic damping. A modal superposition 
analysis is then carried out to determine the first natural frequencies and vibration mode shapes, which are 
solutions to an eigenvalue problem, satisfying classical orthogonality conditions with respect to mass and 
stiffness matrices, and normalized with respect to the mass matrix. Using corresponding generalized 
coordinates, the ice–dam displacements are then expressed as a linear combination of the first computed 
eigenvectors. Taking advantage of the orthogonality properties of the eigenvectors with respect to mass 
and stiffness matrices, a system of decoupled equations is obtained with generalized coordinates as 
unknowns to be found as a function of the forced-vibration frequency, the applied harmonic load, the 
hydrodynamic forces, the system’s frequencies, eigenvectors and hysteretic damping. The hydrodynamic 
forces at the dam–reservoir and ice–reservoir interfaces are to be determined by analyzing the interaction 
between the ice–dam substructure and the reservoir.  
 
The ice-covered reservoir 
 
Basic equations 
The reservoir is modelled as a compressible fluid domain of constant depth and infinite length in the 
upstream direction. The differential equations governing the movement of water in the reservoir are first 



derived, along with the reservoir boundary conditions, especially at the ice–reservoir interface. The water 
in the reservoir is assumed inviscid but compressible, with its motion two-dimensional, irrotational, and 
limited to small amplitudes. Expressing the hydrodynamic pressure in the frequency domain, it can be 
shown that the reservoir motion is governed by the familiar Helmholtz equation associated to boundary 
conditions at the ice-reservoir, dam–reservoir and reservoir–foundation interfaces.   
 
Boundary conditions 
The boundary conditions to be satisfied at the dam–reservoir and foundation–reservoir boundaries are 
those derived by Fenves and Chopra [7], relating the normal derivative of the pressure frequency response 
to the normal component of the acceleration at the dam–reservoir interface and to a damping coefficient at 
the reservoir bottom.  
 
The boundary condition at the ice–reservoir interface has to satisfy both the dynamic and kinetic 
equilibrium of the ice cover. The derivation of this boundary condition, detailed elsewhere [9], uses a 
velocity potential-based formulation. Expressing the hydrodynamic pressure at the ice–reservoir interface 
using the linearized Bernoulli equation, and enforcing continuity of the normal velocity at the ice–
reservoir interface, it is shown that the dynamic equilibrium at the ice–reservoir interface can be obtained 
by treating the ice cover as an elastic thin plate floating on water. After some mathematical manipulations, 
a boundary condition is obtained, relating pressure derivatives, ice cover flexural rigidity, damping at the 
ice–reservoir interface, ice cover thickness and mass density, water mass density and forced-vibration 
frequency. The Helmholtz Equation is then solved by separation of variables, leading to a Sturm-Liouville 
problem, with complex-valued frequency dependent eigenvalues  ̧ and orthogonal eigenfunctions 
satisfying special equations developed in the course of the present work [9].  
 
Coupling between the ice–dam and the ice–reservoir systems 
Coupling the equations obtained for the ice–dam and the ice–reservoir systems yields a system of 
equations with generalized coordinates as unknowns, to be solved for each forced-vibration frequency. 
The acceleration and pressure frequency response functions are then obtained by modal summation in the 
frequency domain. The equations derived are analyzed to understand the effect an ice cover has on the 
dynamic behaviour of the whole system. They show that this effect can be subdivided into: (i) an added 
mass effect, (ii) an added load effect and, (iii) an added stiffness effect. As mentioned before, although the 
ice cover is assumed to extend to infinity as the reservoir, a finite length had to be considered to get a clear 
understanding of the mass and stiffness effects due to the ice cover.  
 

PARAMETRIC AND NUMERICAL STUDY 
 
Introduction 
The mathematical formulation derived to model the effect of an ice cover on the dynamic response of a 
concrete dam is used herein to conduct a parametric study in which various aspects of ice–dam–reservoir–
foundation interaction are addressed. The results of this investigation are expected to give more insight 
into the relative importance of some parameters on the dynamic behaviour of dams with ice-covered 
reservoirs.  
 
The Outardes 3 gravity dam described in previous work [5,6] is used as a model for this research. The 
dynamic behaviour of the dam is examined through the analysis of: (i) acceleration frequency response 
curves at the dam crest, (ii) hydrodynamic frequency response curves inside the reservoir, and (iii) the 
hydrodynamic pressure distribution on the upstream face of the dam. These dynamic responses are 
obtained by using the equations derived, programmed and incorporated in a finite element code 
specialized for the seismic analysis of concrete dams. 
 



Numerical model 
 
Finite element code 
The approach proposed is programmed and implemented in the finite element code EAGD-84 [7], initially 
developed to determine the elastic response of concrete gravity dam monoliths under the effect of 
horizontal and/or vertical components of ground motion. The original formulation programmed in EAGD-
84 takes account of water compressibility, as well as dam–reservoir and dam–foundation interactions. The 
code is based on the substructure method, in which the dam is modelled by finite elements, the reservoir 
as a fluid domain of constant depth and infinite dimension in the upstream direction, and the foundation 
as an isotropic viscoelastic half-plane [7]. Following the first series of forced vibration tests carried out on 
the Outardes 3 gravity dam under summer conditions, the 1984 edition of the software was used to 
analyze the two-dimensional dynamic behaviour of the dam [5]. The software was then modified to 
produce acceleration frequency response curves at a point in the dam when a harmonic load is applied at a 
given node of the finite element model. Thus, the effect of an eccentric mass shaker anchored at the dam 
crest could be simulated, allowing for model calibration against frequency response curves obtained 
experimentally [5]. After the second series of forced vibration tests on the same dam but under winter 
conditions, the program was further modified to take account of the presence of an ice sheet covering the 
reservoir. The new boundary conditions resulting at the ice–reservoir interface as discussed in detail by 
Bouaanani et al. [9] were programmed. Since part of the experimental measurements was in the form of 
hydrodynamic frequency response curves, hydrodynamic pressure calculations were completely developed 
and also programmed. Using the present version of the software, the hydrodynamic frequency response 
curves can be determined at any point in the reservoir, as well as the distribution of the hydrodynamic 
pressure on the upstream face of the dam. All the results presented in this paper were produced using the 
newly modified version of EAGD. 
 
Finite element model 
Modelling the gravity dam using EAGD requires that a cross-section of a given monolith be defined and 
discretized by quadrilateral isoparametric finite elements, including incompatible displacement modes to 
ensure a better shear behaviour [10]. Node coordinates are defined with reference to global axes and the 
translations are the two degrees of freedom associated with each node, as shown in Figure 4, which gives 
an overall view of the Outardes 3 gravity dam and the nomenclature of the various monoliths is also 
illustrated. The dam and ice finite elements are characterized by their modulus of elasticity, their density, 
and their Poisson’s ratio. The ice–dam substructure is characterized by a constant hysteretic damping 
coefficient corresponding to a constant modal damping coefficient. It is worth mentioning that finite 
element modelling of the ice cover, instead of a simplified mass-spring model as proposed by some 
researchers [11,12], makes it possible to include the contribution of both axial and flexural ice cover 
vibration modes in the analysis. It should be added that, through this analysis, the dynamic interaction 
between the ice cover and the reservoir can be rigorously modeled by applying the appropriate boundary 
conditions along the ice–reservoir interface. The dam finite element model contains 230 quadrilateral 
isoparametric elements and 264 nodes, 11 of which belong to the dam–foundation interface and 20 to the 
dam–reservoir interface. The number of elements and nodes used to model the ice cover depends on its 
length, which is a study parameter. However, for all the cases studied here, a variable nodal spacing along 
the ice cover was adopted: from dense near the ice–dam interface to gradually coarser towards the other 
end of the ice cover. The level of the upper ice cover face corresponds to in-situ measurements, giving 
roughly 2.7 m under dam crest level. 
 
Boundary conditions 
The boundary conditions at the dam–reservoir and foundation–reservoir interfaces are the same as those 
programmed by Fenves and Chopra [7]. The derivation of the boundary condition at the ice–reservoir 



interface briefly described above and in detail by Bouaanani et al. [9] includes the effect of possible 
damping at the ice–reservoir interface represented by a viscous damping coefficient. We mention however 
that in the absence of any experimental data, this damping is neglected herein. 
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Figure 4. Dimensions of the modelled monolith. 
 
 
On the other hand, the finite element modelling of the ice cover requires the definition of a boundary 
condition at its far upstream end. Ideally, this condition should take account of the friction of the ice cover 
at the reservoir border and allow for energy dissipation at this location using appropriate impedance 
functions. This effect could also be simulated with a reasonable degree of accuracy by truncating the ice 
cover at a given distance from the dam face and finding the adequate transmitting boundaries. These 
questions are difficult to address, because of the complexity of the dynamic behaviour of the ice cover and 
its interaction with the reservoir border, associated with the lack of related experimental evidence. For the 
present research, it is legitimate to assume that the ice cover is clamped at its far upstream end, due to the 
small deformations induced in the ice cover during the in-situ dynamic testing. 
 
Ice-cover properties 
Due to a lack of adequate experimental data, the ice mechanical properties were adopted directly from the 
literature, and are namely those of a columnar ice, of type S2 at an ambiant temperature of -10°C. 
Choosing this type of ice was motivated by results from other studies related to ice covers in Canada [13]. 
Determining the ice cover thickness represents another difficulty since it is far from being uniform for a 
given reservoir. Our field observations indicate a variation within 1 m. In addition to thickness variability 
of the ice cover itself, a considerable amount of snow located within a 2 to 3-m wide strip along the dam 
face was also observed. An average ice cover thickness of 1.37 m (4.5 ft) was adopted; its mass density 
was varied artificially to include the effects of snow loading and thickness variability. Finally, in order to 
account for the ice added mass effect different ice cover lengths were considered.  



 
Parametric study 
 
Effect of the ice modulus of elasticity  
It is logical to expect the ice modulus of elasticity to be an important parameter in characterizing the ice 
cover contribution to the system’s global stiffness. As discussed in Bouaanani et al. [8,9], the literature 
abounds with dispersed values for quantifying this parameter. In an attempt to cover the most possible 
cases within the framework of this research, the ice modulus of elasticity was varied within a broad 
interval, ranging from 475 MPa to 16 150 MPa.  
 
In order to evaluate the contribution of the ice cover to the system total stiffness, the effect of variations of 
the ice modulus of elasticity on the acceleration frequency response curves at the dam crest (without 
including reservoir effects) is examined first. Some of the results of this analysis are illustrated in 
Figure 5, in which the acceleration frequency response curve at the dam crest without ice cover is also 
plotted for purposes of comparison.  
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Figure 5. Effect of the ice modulus of elasticity on the acceleration frequency response curves. 
 
As can be seen from these curves, variations in the ice modulus of elasticity influence the shape of the 
frequency response curves and reveal additional resonant modes with more or less pronounced peaks, 
depending on the value of the ice modulus of elasticity. To gain better insight into these findings, it is 
useful to determine the first natural frequencies of the ice–dam system and to identify the corresponding 
mode shapes on the frequency response curves. 
 
For the sake of clarity when discussing the results in what follows, principal resonances refer to 
significant peaks on the frequency response curves and secondary resonances to all the other peaks. 
Principal resonances in each case will be ranked according to their descending amplitude, and termed first 
principal resonance, second principal resonance, and so forth. By examining the first 15 vibration 



frequencies of the ice–dam system obtained by increasing the ice elastic modulus on a wide range, and 
comparing them to the corresponding first 15 vibration frequencies of the dam without ice–cover, we 
observed that the frequency of each mode increases at each variation step of the ice modulus of elasticity. 
Basically, this means that, as expected, a higher ice modulus of elasticity stiffens the ice–dam system. 
Another important observation arising from the comparison of the acceleration frequency response curves 
in Figure 5, is that, in all examined cases, the amplitude of the ice–dam principal resonance is lower than 
that of the fundamental mode of the dam without ice cover. Again, as expected, the presence of the ice 
cover reduces the amplitudes of the horizontal motion at the dam crest.  
 
The next step in the analysis was to identify the mode shapes corresponding to the calculated frequencies. 
An example of this process is presented in Figure 6 where the modes are identified on the acceleration 
frequency response curves at the dam crest for a given value of ice modulus of elasticity. The acceleration 
frequency response curve at the dam crest without ice cover and the corresponding fundamental frequency 
are also illustrated in the same figure. These investigations showed that the peaks on the frequency 
response curves correspond, generally, to the vibration of the dam at a frequency near that of its 
fundamental mode without ice cover. It can then be concluded that, for the range of forced vibration 
frequencies considered (0 to 10 Hz) only a few modes correspond to significant peaks on the frequency 
response curves. The other modes correspond, indeed, to the vibration of the ice cover alone and do not 
imply a significant resonance of the combined ice–dam system. This can be clearly seen by comparing the 
vibration frequencies and mode shapes of the ice cover alone clamped at both ends and those of the ice–
dam system as illustrated in Figure 7. It is apparent from these results that only two of the first 10 modes 
presented (occurring at 5.88 Hz and 6.05 Hz in this case), correspond to the two peaks on the frequency 
response curve shown in Figure 6.   
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Figure 6. Mode identification for a given value of ice modulus of elasticity. 



So far we have excluded reservoir effects from the analysis. Let us examine now the case where the 
reservoir is filled with water. An example of the acceleration frequency response curves obtained at the 
dam crest with a full reservoir is illustrated in Figure 8. By comparing these curves with those obtained for 
an empty reservoir (as in Figure 5), it can be concluded that the resonant frequencies are generally lower 
when the reservoir is full and that the corresponding amplitudes are smaller because of the added mass 
effect due to the reservoir as explained in [9]. We also note that, similarly to an empty reservoir, the 
frequency response curves generally show one or two principal resonances depending on the value of the 
ice modulus of elasticity. By examining the frequency response curves we showed that variations in ice 
modulus of elasticity have an effect on the frequency and amplitude of the second principal resonance, as 
well as, a lesser effect on the frequency and the amplitude of the first principal resonance. Moreover, all 
the principal resonances have amplitudes lower than that of the fundamental mode of the dam without ice 
cover.  
 
It is also interesting to investigate the effect of the variations of ice modulus of elasticity on the frequency 
response curves of the hydrodynamic pressure and on its distribution on the upstream face of the dam. 
Figure 9 shows the frequency response curve of the normalized hydrodynamic pressure at 3 m from the 
upstream face of the dam and at 15 m below the ice–reservoir interface for different values of ice modulus 
of elasticity. To preserve the generality of the results presented herein, the hydrodynamic pressure is 
normalized with respect to both the exciting force and the hydrostatic pressure at the bottom of the 
reservoir. Again, Figure 9 shows that an increase in ice modulus of elasticity involves a reduction in the 
amplitudes of the principal resonances, a slight increase in the corresponding frequencies, and a 
modification of the frequencies of the second principal resonances. We also note that all the principal 
hydrodynamic resonances have amplitudes lower than those of the fundamental resonance of the dam 
without ice cover.  
 
Figure 10 illustrates the effect of variations in the ice modulus of elasticity on the distribution of the 
hydrodynamic pressure on the upstream face of the dam at the system’s first principal resonance. First of 
all, these curves show that the hydrodynamic pressure at the ice–reservoir interface is not equal to zero, as 
is the case for a free-surface reservoir. Sun [14] had already predicted such hydrodynamic amplification 
for offshore platforms. Then we examined the values of the hydrodynamic pressures calculated at the ice–
reservoir interface and at the reservoir bottom as well as the corresponding amplifications, presented in 
terms of a percentage of the pressure at the reservoir bottom for each calculation case and comparing to 
the hydrodynamic pressures at the reservoir bottom with a free surface. The results demonstrate that the 
amplification ratios of the hydrodynamic pressure at ice–reservoir interface remain practically constant 
independently of the values of ice modulus of elasticity.  
 
It can also be seen that, for all the calculated cases, the value of the hydrodynamic pressure at the bottom 
of the ice-covered reservoir is lower than that obtained for a free-surface reservoir. Therefore, we can 
conclude that the ice cover causes the hydrodynamic pressure to increase in the vicinity of the ice–
reservoir interface and to diminish closer to the reservoir bottom. Finally, by examining the variation of 
the hydrodynamic pressure as a function of the ice modulus of elasticity, both at the ice–reservoir interface 
and reservoir bottom, the hydrodynamic pressure in the reservoir globally decreases with increasing ice 
cover stiffness. 
 
Effect of other parameters  
Following the same procedure outlined above for studying the influence of ice cover modulus of elasticity 
on the dynamic response of the gravity dam, the effect of other parameters was also investigated, namely 
the concrete modulus of elasticity, the mass density and the length of the ice cover, and the foundation 
flexibility. A detailed description of the results obtained is presented in Bouaanani et al. [8,15]. 
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Figure 7. Vibration modes of the ice–dam system and ice cover alone, clamped at both ends. 
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Figure 8. Effect of the ice modulus of elasticity on the acceleration frequency response curves at the 
dam crest, with a full reservoir and a rigid foundation. 
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Figure 9. Effect of the ice modulus of elasticity on the frequency response curves of the normalized 
hydrodynamic pressure 3 m from the upstream face of the dam and 15 m below the ice–reservoir 
interface, with a full reservoir and a rigid foundation. 
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Figure 10. Effect of the variation of Eice on the distribution of the hydrodynamic pressure 
on the upstream face of the dam at the system’s first principal resonance. 

 
 

CONCLUSIONS 
 
The primary objective of this work was to develop a theoretical approach to model the effects of ice covers 
on concrete gravity dams. In addition, the technique proposed takes account of water compressibility and 
reservoir bottom absorption. During this work, some challenges were encountered, namely: 
 
� Difficulties related to modelling the ice cover because of its highly complex nature. The mechanical 

properties had then to be varied within broad ranges to cover most possible cases. 
� Developing a comprehensive susbstructure formulation in which the effects of the ice cover are 

combined to those of the reservoir and the foundation. 
� Derivation of a new boundary condition at the ice–reservoir interface. This boundary condition had 

to take into account the dynamic equilibrium at the interface, the flexibility of the ice cover, and 
possible damping at this location. 

 
These challenges were addressed by using a two-dimensional analytical approach, which takes into 
account the effects of an ice cover, the influence of water compressibility, foundation flexibility, and 
reservoir bottom absorption. A frequency domain substructure method technique is developed and a new 
boundary condition along the ice-cover–reservoir interface is proposed. The technique developed is 
implemented in a finite element code specialized for the seismic analysis of concrete dams.  
 
The paper also presents some results regarding the dynamic behaviour of concrete dams with ice-covered 
reservoirs, obtained by using the approach proposed. The Outardes 3 gravity dam was chosen as a model 
for this numerical study. After having mentioned the modifications made to the software, the basic 
elements of the numerical model were established. A parametric study was then carried out in order to 
appreciate the influence of various factors on the dynamic behaviour of the ice-dam-reservoir system. It 
can be clearly concluded that the ice cover greatly affects the dynamic response of the ice–dam–reservoir 



system, and some basic trends of this influence were emphasized and discussed. It is worth mentioning 
however, that the work described herein is preliminary and was intended to establish a base-line study to 
be extended for investigating dynamic interactions in two- and three-dimensional ice–dam–reservoir–
foundation systems. 
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