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SUMMARY 
 
For a buried pipeline system, the maximum responses along the pipe segments and the maximum 
differential deformations across the joints are of design concern.  A simple model of buried pipeline 
system with uniform properties is used to evaluate the modal parameters and the static design terms.  
When the modal parameters of the pipeline system are combined with the homogeneous soil properties 
into the equivalent modal frequencies and damping ratios, the modal dynamic effect can be found from 
the design spectra proposed for buildings at the same site.  Almost all the static design terms depend on 
the rotational and lateral stiffness ratios in the lateral vibration, or on the axial stiffness ratio in the axial 
vibration.  As a result, the first mode dominates the design-related responses in the most cases of lateral 
and axial vibrations. 
 

INTRODUCTION 
 
The main concern in the seismic damage evaluation of a buried pipeline system is probably the differential 
motions across the joints.  Nelson [1] introduced a discrete model containing two long pipe segments 
connected by a joint to study the so-called interference response spectrum.  Each segment is linked to the 
ground via a spring and a dashpot.  The same model was used by Hadid [2] in the stochastic response 
analysis of pipelines. 
 
On the other hand, if the seismic responses along the pipe segments are of major interest, the pipelines are 
usually modeled as uniform beams rested on elastic foundations.  The length of the pipeline could be 
finite (Hindy [3], Zerva [4]), semi-infinite (Novak [5]), or infinite (Ogawa [6]). 
 
The buried pipeline model considered here is similar to that proposed by Wang [7], except that the 
infinitely rigid segment is replaced by a uniform beam and the lateral vibration is included additionally.  
In this buried pipeline model, the beam segments of equal length are aligned and connected by identical 
joints, and the pipe-soil interaction is simulated by an elastic foundation with uniformly distributed 
springs and dashpots.  Several design-related responses, such as the maximum deformation and force 
along the segments and the maximum differential deformation across the joints, are studied when this 
buried pipeline system is excited by the axial and lateral ground motions. 
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PIPELINE MODELS 
 
In accounting for both the responses along the pipe segments and the differential responses across the 
joints in a buried pipeline system, the analysis model for axial vibration is shown in Fig. 1.  Uniform pipe 
segments of equal length connected by identical joints are excited by the ground motion in the 
longitudinal direction.  Hence, the equations of axial motion are 
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where j is the number of segments in the range of 1 j N≤ ≤ , N is the total number of the segments used 
for analysis, m , E, A and c are the mass per unit length, Young’s modulus, cross-sectional area and 
damping coefficient of the segments, respectively, gu  is the ground displacement in the longitudinal 

direction, ju  is the axial deformation of the jth segment, jx  is the axial local coordinate in the range of 

0 jx L≤ ≤ , and L  is the length of a single pipe segment. 
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Figure 1 Pipeline model for axial vibration analysis 
 
For simplicity in the vibration analysis, the effect of pipe-soil interaction is simulated by an elastic 
foundation with continuous springs of stiffness sk  and continuous dashpots of damping coefficient sc , as 
shown in Figure 1 and Eq. (1). 
 
On the other hand, the pipeline model proposed for lateral vibration analysis is shown in Figure 2.  Again, 
the elastic foundation and the uniform properties in pipe segments and joints are assumed.  The equations 
of lateral motion are 
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where EI is the flexural rigidity of pipe segments, gu  is the ground displacement in the lateral direction, 

ju  is the lateral deformation of the jth segment. 
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Figure 2 Pipeline model for lateral vibration analysis 
 
 



MODAL ANALYSIS 
 
Both Eq. (1) and Eq. (2) could be decomposed into modal equations if the damping ratio of each mode is 
assumed to dissipate the energy.  Only the modal analysis performed to Eq. (2) is discussed in detail here.  
For the case of free vibration, the equation of lateral motion of the jth pipe segment is 
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By virtue of the separation of variables, i.e., 
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If the constant obtained from the two expressions in Eq. (4) is 2

kω , then we have two ordinary differential 
equations: 
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It is obvious in Eqs. (5) and (6) that the modal shape, ( )jk jxφ , is independent of the soil properties, but 

the modal dynamic effects, ( )kq t , should be referred to the compound frequencies and damping 

coefficients.  The kth-mode shape of the jth segment, ( )jk jxφ , solved in Eq. (5) is 

 
 1 2 3 4( ) sin cos sinh coshjk j jk k j jk k j jk k j jk k jx C x C x C x C xφ β β β β= + + +  (7) 

 
where 4 2 /k k m EIβ ω= .  Furthermore, the modal properties in Eq. (7), such as kβ  and jkC

�
, can be 

determined by the boundary conditions at both ends: 
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and the compatibility conditions at joints: 
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where kθ  and lk  are the rotational and lateral stiffness of a joint, respectively.  It is assumed that the 
pipeline system is connected to two fixed ends by the two identical joints.  This assumption is reasonable 
for the response analysis in the middle pipe segments for a large pipeline system.  However, the selection 
of the number of segments in the pipeline system is limited by the assumptions of equal length and 
straight alignment of segments, and uniform soil properties. 
 
In view of Eqs. (8) through (15), the modal parameters depend only on two stiffness ratios defined as 
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The values of the rotational and lateral stiffness ratios vary in a wide range and are quite different between 
DIP and PVC pipes.  For comparison with the exact modal frequencies in the pipeline systems of simple 
boundary conditions, such as rollers, hinges, fixed supports, and even free ends, the modal frequencies are 
non-dimensionized as follows: 
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For example, the variation of the first three kω%  in a pipeline system of three segments is shown in Figure 
3, where the dash lines represent the exact results for the case of simple boundary conditions.  It is noted 
that the modal frequencies are so well-separated that the SRSS rule for the modal combination is expected 
to provide excellent response estimates.  Obviously, the well-separated modal frequencies come from the 
assumption of uniform properties of the segments and joints. 
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Figure 3 Non-dimensionized modal frequencies in lateral vibration (N=3, θρ =100) 
 
Similarly, the axial stiffness ratio is defined as 
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where ak  is the axial stiffness of a joint.  The variation of non-dimensionized modal frequencies in the 
axial vibration of a pipe system of 3N =  is shown in Fig. 4. 
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Figure 4 Non-dimensionized modal frequencies in axial vibration (N=3) 
 
Once kω  is found by a given pair of θρ  and lρ , the equivalent modal frequencies including the pipe-soil 
interaction are obtained by 
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The compound modal damping ratios can also be obtained by 
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where kζ  is the modal damping ratio for the pipe segments only.  The modal equation of motion is then 

specified by kω  and kζ , from which the modal dynamic effect could be found in the design spectrum at 
the site of the buried pipeline system. 
 

DESIGN-RELATED RESPONSES 
 
For the buried pipeline system under the lateral or lateral vibration, there are several maximum responses 
of design concern, such as the deformations and stresses along the pipe segments and the differential 
motions across the joints.  When the ground motion is involved and the orthogonality properties of modes 
are applied, the modal equation of motion becomes 
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Modeling the spatial variation of the ground excitation is one of the major topics in the vibration analysis 
of lifeline systems.  After the numerical study considering the amplitude decay and phase shift of ground 
motions, however, the homogeneous ground excitation induces the maximum design-related responses in 
most cases.  Therefore, the homogeneous ground motion is assumed for design purpose.  Then, Eq. (22) 
becomes 
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where the modal participation factor kP  is defined as 
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Finally, the total deformation after modal superposition is  
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where ( ) ( )jk j k jk jx P xψ φ=  is the effective participation function, ( )kD t  is the deformation time history of 

a single degree-of-freedom system of kω  and kζ  subjected to the ground acceleration, ( )gu t&& . 

 
Six design-related responses in the lateral vibration of a pipeline system are considered here. They are the 
maximum deformation, rotation, shear force, and bending moment along all the pipe segments and the 
maximum differential deformation and rotation across the joints.  The static design responses of the kth 
mode obviously depend on the effective participation function and its first three derivatives, and then 
depend on θρ  and lρ  as a result.  The dynamic effect in each mode due to ( )gu t&& , max( )kD , could be 

found in the design spectra used for common building design.  It is recommended that the SRSS rule be 
applied in the modal combination because of the assumption of uniform properties in the pipeline system. 
 
In fact, the contribution of the even modes to the design-related responses in a pipeline system of odd 
number of segments is negligible because of the symmetry of the pipeline system, the uniform soil 
properties, and the homogeneous excitation.  In most cases for a pipeline system of three segments, only 
the first and the third modes in the lateral vibration analysis and the first mode in the axial vibration are 
required to get the satisfactory results of the design-related responses. 
 
For example, for a pipeline system of three segments and 100θρ =  under the lateral vibration, the non-

dimensionized static design responses of the first and the third modes for several typical values of lρ  are 

listed in Table 1 and Table 2, respectively.  In those tables, maxψ , maxψ ′ , maxEIψ ′′ , and maxEIψ ′′′  are the static 
maximum lateral deformation, rotation, shear, and bending moment along the segments, respectively, and 

maxψ∆  and maxψ ′∆  are the static maximum lateral differential deformation and rotation across the joints, 
respectively.  Probably, the differential motion across the joints is more critical in the seismic damage 
evaluation of a buried pipeline system than the other design-related responses along the segments.  It is 
also noted in Tables 1 and 2 that the maximum lateral differential deformation across the joints is more 
sensitive to the variation of lρ  than the others. 
 

Table 1 Static design values of the first mode in lateral vibration (N=3, θρ =100) 
 

lρ  3
1 / /EI mLω  maxψ  max Lψ ′ ×  2

max Lψ ′′ ×  3
max Lψ ′′′ ×  maxψ∆  max Lψ ′∆ ×  

1.900E+01 2.019E+00 1.358E+00 9.781E-01 2.986E+00 4.981E+00 2.622E-01 2.986E-02 
6.000E+02 2.432E+00 1.322E+00 1.335E+00 3.974E+00 6.213E+00 1.036E-02 3.974E-02 
2.640E+03 2.445E+00 1.319E+00 1.345E+00 4.002E+00 6.243E+00 2.365E-03 4.002E-02 

 
 

Table 2 Static design values of the third mode in lateral vibration (N=3, θρ =100) 
 

lρ  3
3 / /EI mLω  maxψ  max Lψ ′ ×  2

max Lψ ′′ ×  3
max Lψ ′′′ ×  maxψ∆  max Lψ ′∆ ×  

1.900E+01 6.192E+00 5.299E-01 8.018E-01 2.212E+00 9.916E+00 5.219E-01 8.987E-03 
6.000E+02 1.270E+01 5.751E-01 1.884E+00 9.131E+00 3.640E+01 6.067E-02 9.132E-02 
2.640E+03 1.313E+01 5.553E-01 1.901E+00 9.259E+00 3.539E+01 1.340E-02 9.260E-02 

 
 
As for the axial vibration of a buried pipeline system, the design-related responses would be the maximum 
axial force in the pipe segments and the maximum axial deformation across the joints.  For a pipeline 



system of three segments under the axial vibration, the non-dimensionized static design responses of the 
first mode for some typical values of aρ  are listed in Table 3.  In Table 3, maxEAψ ′ , and maxψ∆  are the 
static maximum axial force along the segments and the static maximum axial differential deformation 
across the joints, respectively. 
 

Table 3 Static design values of the first mode in axial vibration (N=3) 
 

aρ  
1 / /EA mLω  max Lψ ′ ×  maxψ∆  

1.000E-02 7.636E-02 8.493E-03 8.493E-01 
1.000E-01 2.364E-01 8.120E-02 8.120E-01 
1.000E+00 6.260E-01 5.515E-01 5.515E-01 
1.000E+01 9.683E-01 1.190E+00 1.190E-01 
6.000E+01 1.033E+00 1.308E+00 2.180E-02 

 
 
On the basis of the above vibration analysis, the procedure for the seismic demands of a buried pipeline 
system is stated as follows. 
 
1. A pipeline model of three or five pipe segments is preferred because of the assumptions of uniform 

properties of segments and soil and homogeneous ground excitation used for simplifying the analysis. 
 
2. The axial, lateral, and rotational stiffness of the joints should be carefully evaluated in order to 

estimate the modal parameters and the static design-related responses. 
 
3. The soil properties are then added to obtain the compound modal frequencies and damping ratios in 

order to find the spectral deformation in the design spectra proposed for buildings at the same site. 
 
4. Each modal design-related response would be the product of the results in Steps 2 and 3.  The SRSS 

rule is suggested to compose the total design-related responses except that the pipelines are buried in a 
pretty hard site. 

 
CONCLUSIONS 

 
A simple model of buried pipeline system with finite boundaries is used to develop the procedure for the 
seismic demands related to the pipe segment and the joint.  The main assumptions include the uniform 
properties in pipes, joints and soil, and the homogeneous ground excitation.  On the basis of the 
assumptions and numerical results, some important conclusions are given in the following: 
 
1. A pipeline model of three or five pipe segments is preferred for the design purpose. 
 
2. The static design-related responses depend on the rotational and lateral stiffness ratios in the lateral 

vibration, and depend on axial stiffness ratio in the axial vibration. 
 
3. The contributions of the first and the third modes to the static design-related responses are of major 

concern in the lateral vibration, while the results of the first mode only are good enough in evaluating 
the static design-related responses in the axial vibration. 

 
4. After combining the modal parameters of the pipeline system and the soil properties to get the 

equivalent modal frequencies and damping ratios, the modal dynamic amplification effects can be 



found in the design spectra used for building design at the same site.  Then, the design-related 
responses are still dominated by the first mode even for a pipeline system of small values of stiffness 
ratios. 
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