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SUMMARY 
 
Pattern recognition techniques are able to predict the cluster of aftershocks of earthquake sequences. Self-
Organizing feature maps (SOFM) have in recent years become powerful intelligent tools, used widely in 
pattern recognition and data clustering. These networks often used to predict the outcome of a future event 
based on current observations of the state of the environment. The aim of this paper is to show a reliable 
prediction of  distribution of the location of aftershock patterns  using Artificial Neural Networks 
(ANNs).These results strongly support this technique on investigating these spatial and temporal patterns 
in local and regional seismicity data. 
 

Introduction 
 
The prevalence of earthquake clustering and its strong imprint on spatial and temporal patterns of 
seismicity, provide convincing arguments [1].  Shaw et al. in 1992 worked in patterns of seismic activity 
preceding large earthquakes. The recent of interest in neural networks has led to renewed research in the 
area of pattern recognition problems using SOFM.  
In this work we present a method for prediction of aftershock patterns using SOFM.Self-Organizing 
feature maps originated by Kohonen[9], in the late 1970's, and refined since then, are the unsupervised 
network of choice. Several features of the maps make them desirable in our case. SOFM are a 
dimensionality reducing technique, which can be compared to, for example, principal components 
Analysis. This algorithm has been used to cluster the data. The SOFM defines a mapping from the input 
data space onto an output layer by the processing units of e.g. 2-D laminar network become sensitive to 
specific items of the input space in a topological order of the input items. Kohonen’s algorithm creates a 
vector quantizer by adjusting weights from common input nodes to M output nodes arranged in a two 
dimensional grid as shown in Fig.1.   
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Aftershocks pattern evolution and prediction in nonlinear systems is complicated by nonlinear mode 
coupling and noise, however understanding such patterns, which are the surface expression of the 
underlying dynamics, is critical to understanding and perhaps characterizing the physics which control the 
system. 
Earthquake fault systems are examples of driven nonlinear threshold systems [8], comprised of interacting 
spatial networks of statistically identical, nonlinear units that are subjected to a persistent driving force 
[5]. Numerous examples of such systems exist, including neural networks [2]. 
. We apply neural network methods, Kohonen’s Self-Organizing Feature Maps (SOFM) and then a 
supervised method which extends the map’s usefulness, The SOFM algorithms has been tested on Bam’s 
aftershocks (Fig.3.). These algorithms have been used to predict the cluster of pattern using Artificial 
Neural Networks (ANNs). Neural networks are non-parametric methods, and thus do not require the 
building of a comprehensive model. While a priori knowledge may sometimes be built into the network, 
this is not necessary, and excellent results may be obtained without such knowledge. Our simulations have 
suggested that the correlations in the seismicity represented by the SOFM modes above can be described 
by phase dynamics. Phase dynamics is a method used in various branches of physics to describe the 
behavior of important parameters of the physical system [3],[4]. 
In this report, we discuss a new  
  The SOFM map is a good approximation to the input space. This property is important since it provide a 
compact representation of the given input space( the location of aftershocks). The feature map naturally 
forms a topologically ordered output space such that the spatial location of a neuron in the lattice 
corresponds to a particular domain in input space. The advantage of this feature is that it can simplify 
local modeling of the input signal embedded in the space. 
 
Data Base 
 
In order to monitor the aftershock occurrence and the faulting mechanism, International Institute of 
Earthquake Engineering and Seismology (IIEES) had deployed a temporary seismic network of 5 stations 
in this area for a period of six weeks. Figure 2 shows the epicenter map of 31 aftershocks (Ml>2.5) 



recorder during this period. We found a clear tendency that aftershocks occur in clusters (Fig.3.), which 
implies strong heterogeneity in both the rupture process and the medium along the fault zone (Fig.4). The 
raw data consists of location (latitude and longitude) of Bam’s aftershocks. 
Self-organizing feature maps (SOFMs) originated by Kohonen in 1970’s, and refined since then, are the 
unsupervised network of choice. Several features of the maps make them desirable in our case. The maps 
are topology conserving that is, relationships among points tend to be conserved in the mapping process. 
This occurs even if the intrinsic dimension of the data is larger than that of the map, although the topology 
conservation must necessarily become more local rather than completely global. While the clustering of a 
group of similar points may be done as well with a traditional k-means method, this will not indicate the 
relationship between the groups.  
The unsupervised SOFM gives a good indication of the topology and grouping of the aftershocks data, but 
is not therefore necessarily an optimum classifier.  The SOFM algorithm can be summarized as follows: 

1. Initialize the weights w of a 1 or 2-dimensional network to small random weights. 
2. For each input x, determine the closest or best-matching node, according to some predetermined 

criteria. Commonly used criteria are the minimum Euclidean distance or the maximum inner 
product.  

3. Adjust the weights such that neurons in the neighborhood N of the best matching neuron move 
closer to the input, 

                w (n+1)= w(n)+ h(n)[x(n)-w(n)], for j∈N 
                 w(n+1)=            w(n) , Otherwise 
Where h (n) , the learning rate and the size of N decrease with time. 
Here, training begins with N including the full map and learning rate 1. Both of these parameters 
decrease approximately exponentially over the course of 2000 training runs. 

 

 

 

 
 

Fig.2. Bam’s Aftershocks Recorded by IIEES Seismic Networks. 
 
 
 

 



 
Fig.3. Predicted of Bam’s Aftershocks Pattern for Next 2 Months. 

 

 
Fig.4. Location map of Bam aftershock’s clusters which is predicted by Artificial Neural Networks  

 
 

RESULTS 
 
To predict and identify seismic risk at high seismicity areas is very important work to asses the seismic 

hazard. In this paper, the possible of prediction the temporal and spatial distribution of aftershocks are 

searched for. The aim of this paper is shown a reliable prediction of patterns of aftershocks similar to the 

traditional methods using Artificial Neural Networks (ANNs); Investigation of the dynamics of 

aftershocks data requires the use of methods from the pattern recognition. The recent of interest in neural 

networks has led to renewed research in the area of pattern recognition problems. This paper has shown 



that SOFM can be used to predict the concentration and the trend of aftershocks of the BHUJ earthquake 

(26 January, 2001), India. Our experience confirmed that algorithm can be applied for local distribution in 

this aftershock region. In this work we present a method for identifying these areas of increased 

probability of an event. This pattern dynamics approach that we have applied to historical seismicity data 

in BHUJ earthquake (26 January, 2001 reveals wealth of interesting spatial patterns .These space patterns 

in the seismic activity directly reflect the existence of precondition for the occurrence of large 

earthquakes. 

Aftershock distribution shows the rupture of the main shock, which is an important issue for estimating 

the risk of future disastrous earthquakes. Aftershocks tend to occur near the mainshock, but the exact 

geographic pattern of the aftershocks varies from earthquake to earthquake. Statistically, aftershocks are 

not mutually independent in space. In the weeks and months after a strong earthquake, there will be many 

aftershocks, some strong enough to cause additional damage to structures already weakened due to the 

main shock. Aftershock clustering is an unsupervised technique, which finds possible clusters in the data. 

In this research, the theory of Self-Organizing Feature Maps (SOFM) is applied in the learning procedure.  

. During training SOFM, after enough input vectors, weights will specify cluster or vector centers in the 

input space, the point density function of the vector centers tends to approximate probability density 

function of the input vectors. The input vector position maps had been used Latitude and longitude and 

arranged as a neat assembly of rows and columns. 

SOFM provides a topologically organized output of the input vectors and predicted clusters of aftershocks 

or distribution of earthquake swarms. 
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