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SUMMARY 
 
In the concept of performance based earthquake resistant design, appropriate evaluation of seismic 
demand and capacity of structures is important, and simple procedures for response prediction are 
required. In this study, energy dissipating behaviors of reinforced concrete structures with viscous 
dampers subjected to earthquakes, are investigated, and based on these results, a procedure to predict 
inelastic response displacement by equalizing dissipated damping and hysteretic energy of structures to 
earthquake input energy is proposed. 
Seismic resisting capacity of viscous damper that is effective device to control earthquake response of 
buildings passively, is evaluated by damping force and dissipated damping energy, and then appropriate 
estimation of response velocity is required. In the first part of this paper, properties of response velocity of 
SDOF (single degree of freedom) system with viscous damper subjected to earthquakes, is investigated. 
And the concept and examples of a procedure to predict the inelastic response displacement of structures 
are shown. 
 

INTRODUCTION 
 
Viscous damper is effective device to control earthquake response of buildings passively. But because of 
phase differences between restoring force of structures and damping force of viscous dampers, that is time 
lag between maximum restoring force and maximum damping force, it is difficult to design on the basis of 
resisting force of buildings against inertia force of earthquakes. In the concept of performance based 
earthquake resistant design, appropriate evaluation of seismic demand and capacity of structures is 
important, and simple procedures for response prediction are required. In this study, energy dissipating 
behaviors of reinforced concrete structures with viscous dampers subjected to earthquakes, are 
investigated, and based on these results, a procedure to predict the inelastic response displacement by 
equalizing dissipated damping and hysteretic energy of structures to earthquake input energy is proposed. 
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Figure 1 shows time history model of energy response, where VE  is energy by movement, HE  is 

dissipated hysteretic energy, DE  is dissipated damping energy, HD EE +  is dissipated energy by 

structure, IVHD EEEE =++  is input energy by earthquake. Authors [1] investigated momentary input 

energy E∆  to indicate the intensity of energy input to structures, and to predict inelastic response 
displacement of structures by corresponding earthquake input energy to structural dissipated energy. E∆  
is defined by increment of dissipated energy ( HD EE + ) during t∆  that is interval time of VE =0 (relative 

movement of structure is zero) as shown in Figure 1. And t∆  is period of a half cycle response from one 
local maximum to next local maximum of response displacement as shown in Figure 2. By considering 
energy response during a half cycle response, seismic resisting capacity of viscous damper is evaluated by 
dissipated damping energy not only by damping force. 
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Figure 1. Model of Energy Response Figure 2. Model of a Half Cycle Response 
 
For estimation of seismic response and resistance of structures with viscous dampers, evaluation of 
maximum damping force maxcV  ( c : damping coefficient of viscous damper, maxV : maximum response 

velocity) and dissipated damping energy that depends on maximum damping force, are important. In the 
first part of this paper, properties of response velocity of SDOF (single degree of freedom) system with 
viscous damper subjected to earthquakes, is investigated. And the concept and examples of a procedure to 
predict inelastic response displacement of structures are shown. 
 

ANALYTICAL METHOD 
 
Elastic SDOF system with viscous damper is used to investigate behaviors of response velocity. Damping 
factor of this system is h =0.10. 
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Figure 3. Input Ground Motions Figure 4. Acceleration Response Spectra 
 



For input ground motions, records of El Centro NS (1940 Imperial Valley Earthquake), Hachinohe City 
Hall N164E (1994 Sanriku Haruka Oki Earthquake), Japan Meteorological Agency (JMA) at Kobe NS 
(1995 Hyogoken Nanbu Earthquake) and simulated ground motion are used. Acceleration time histories 
are shown in Figure 3, and acceleration response spectra are shown in Figure 4. Phase angles of simulated 
ground motions are given by uniform random values and Jennings type envelope function. Response 
spectrum is controlled to fit to the target response spectrum that has constant response acceleration range 
(from 0.16sec to 0.864sec), constant response velocity range (from 0.864sec to 3.0sec) and constant 
response displacement range (longer than 3.0sec). 
 

RESPONSE VELOCITY AND RESPONSE PERIOD 
 
Maximum Response 
Momentary input energy E∆  in Figure 1 is given at each half cycle of response, and then the maximum 

E∆  in total duration time is maxE∆ . In this paper, maximum values are defined as follows. 

DS  ; Maximum response displacement in total duration time, or displacement response spectrum 

VS  ; Maximum response velocity in total duration time, or velocity response spectrum 

maxδ  ; Maximum response displacement in a half cycle of maxE∆  

maxV  ; Maximum response velocity in a half cycle of maxE∆  

By the results of response analysis of elastic SDOF systems with elastic period from 0.05sec to 5.0sec, 
comparison of DS  and maxδ , and comparison of VS  and maxV  are shown in Figure 5. As for response 

displacement in Figure 5(a), because E∆  is considered to be related with the response displacement [1], 

DS  or almost same values of DS  occur just after maxE∆  is inputted. On the other hand, as for response 

velocity in Figure 5(b), the difference between VS  and maxV  is relatively large. Though there are many 

cases where VS = maxV , it is found that E∆  and response velocity is not always related and minimum 

values of maxV  is about a half of VS . 
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Figure 5. Comparison of Maximum Response (El Centro NS) 
 
Response Velocity 
In case of stationary response of elastic SDOF systems subjected to harmonic ground motions, maximum 
response velocity maxV  is given by Equation (1) from maximum response displacement maxδ  and elastic 

period T . Generally maxV  is estimated by this equation. 



maxmax

2 δπ
T

V =      (1) 

Ratio of response maxV  to estimated maxV  by Equation (1) is shown in Figure 6 by solid line. Ratio 

increases in long period range. Generally predominant period of earthquake is shorter than natural period 
or inelastic equivalent period of structures, and therefore actual response period of systems becomes 
shorter than T  and actual response velocity becomes faster than that of Equation (1). 
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Figure 6. Ratio of Response Velocity to Estimated Velocity 

 
To estimate appropriate maxV , response period t∆2  is defined in this study. t∆  is period of half cycle 

response in Figure 1 and Figure 2, then equivalent response period around maxδ  is assumed to be t∆2 . 

Ratio of response maxV  to estimated maxV  by Equation (2) is shown in Figure 6 by broken line. 

maxmax 2
2 δπ

t
V

∆
=      (2) 

Ratio is relatively stable around 1.0 in all period range. Appropriate maxV  is found to be estimated by 

actual response period t∆2  instead of elastic period T . 
 
Response Period 
Response period t∆2  of elastic SDOF systems subjected to earthquakes are shown in Figure 7. t∆2  is 
equal to T  in short period range, and is constant in long period range. The corner period is considered to 
be related to the peak period of response displacement spectra DS  shown in Figure 8. In long period range 

where DS  takes constant or decreasing values, t∆2  tends to be stable. 
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Figure 7. Response Period Figure 8. Displacement Response Spectra 

 
ESTIMATION OF RESPONSE VELOCITY 

 
Based on properties of response velocity and response period, an estimation procedure of response 
velocity is proposed. Estimation process and examples are introduced in the following. 
1) Give response displacement spectrum DS  and define peak period CT  
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2) Regard CT  as corner period, assume response period t∆2  according to elastic period T  
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Figure 10. Response and Assumed Period 



 
3) Estimate response velocity maxV  by Equation (4) 
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Figure 11. Response and Estimated Velocity 

 
Response and estimated maxV  are shown in Figure 11, and almost appropriate values can be estimated. In 

the long period range, estimated values are overestimated. Because of shifted response of displacement, 
average displacement amplitude of a half cycle response is smaller than DS  though t∆2  does not change. 

In longer period range of CT , pseudo-velocity Vp S  given by Equation (5) decreases because of constant 

or decreasing values of DS , but response maxV  does not decrease. The difference between response maxV  

and Vp S  is considered to influence to the difference between t∆2  and T . 

DVp S
T

S
π2=       (5) 

 
INELASTIC STRUCTURAL MODEL 

 
For objective structure, 4 stories and 12 stories reinforced concrete frame structures are used in this study. 
By characteristics of these structures and eigenvalue analysis, properties of equivalent SDOF system are 
defined as shown in Table 1. Model L is equivalent to 4 stories frame structure and Model H is 12 stories. 
 

Table 1. Analytical Model of SDOF System 
 

 Model L Model H 

Initial Period 0.47sec 0.88sec 

Yield Force yF  6076kN 16444kN 

Mass m  1332ton 4166ton 

ByC  0.47 0.40 

Yield Base Shear Coefficient mgFC yBy /=  ( g =9.8m/s2) 

 



As for inelastic force - displacement relationship of SDOF system, degrading trilinear type for reinforced 
concrete structures shown in Figure 12 is used. Viscous damping of structure is ignored for simplification 
of investigation. Damping factor of attached viscous damper is h =0.10 for each structural model. 
 

K0 : Initial Stiffness

Ky : Yield Point Secant Stiffness

Fy : Yield Force

δy : Yield Displacement

µ  : Ductility Factor
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Figure 12. Model for Inelastic Force - Displacement Relationship 

 
ESTIMATION OF DISSIPATED ENERGY BY STRUCTURES 

 
The concept of energy based prediction is equalizing dissipated energy by structures to inputted energy by 
earthquakes. In this and following section, model and formulation of dissipated energy will be introduced, 
and prediction procedure will be shown. 
In this section, model and formulation of increment of dissipated hysteretic energy HE∆  by structure, and 

increment of dissipated damping energy DE∆  by viscous damper during a half cycle response 

corresponding to maximum momentary input energy maxE∆ , are shown. 

 
Dissipated Hysteretic Energy by Structure 
Force - displacement relation of structures subjected to earthquakes are shown in Figure 13. 
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Figure 13. Force - Displacement Relation of Structures Figure 14. Model of Hysteretic Loop 
 



By these results and so on, a half cycle response for this hysteretic model is assumed as shown in Figure 
14 [1], and then increment of dissipated hysteretic energy HE∆  is defined by vertical hatched area minus 

horizontal hatched area. HE∆  is given by Equation (6). According to this formulation, HE∆  is 
represented by response ductility factor µ . 
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Dissipated Damping Energy by Viscous Damper 
Figure 15 shows response damping force during a half cycle response corresponding to maxE∆ . Solid line 

is the response damping force, and broken line is the assumed ellipse which will be mentioned later in this 
subsection. In case of stationary response of elastic SDOF systems subjected to harmonic ground motions, 
damping force - displacement relation of viscous damper makes ellipse loop. In this section, formulation 
of increment of damping energy DE∆  is shown according to a number of assumptions. 
 
1) Assumption of Ellipse 
By assuming damping force - displacement relationship as ellipse as shown in Figure 16, DE∆  is given 
by Equation (7). 

acVED max2
1 π=∆      (7) 

where a  is the average displacement amplitude. 
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Figure 15. Force - Displacement Relation of Damper Figure 16. Model of Damping Force 

 



2) Average Displacement Amplitude 
Average displacement amplitude a  is formulated by model of hysteretic loop in Figure 14. 
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3) Equivalent Period and Response Period 
Equivalent period T  is defined by secant stiffness of maximum response of structures. And response 
period t∆2  is given by Equation (3) with considering influence of input ground motions. 
 
4) Maximum Response Velocity 
Response velocity maxV  is estimated by Equation (2). 

 
Broken line in Figure 15 is assumed ellipse by response maxδ , assumed a  and maxV . In case of 

Hachinohe, assumed ellipse can simulate response results well, but in case of JMA Kobe, difference of 
displacement amplitude is shown. 
 
Comparison of Dissipated Energy 
Figure 17 shows comparison of dissipated energy. In case of Model L estimated energy can estimate the 
response energy approximately. However because of unsuitable assumption for HE∆  in smaller ductility 

factor range, HE∆  of Model H is zero. But DE∆  of both Models are estimated well, and because of 

relatively larger values than HE∆ , inaccuracy of estimated HE∆  is improved on total dissipated energy 

DH EE ∆+∆ . 
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Figure 17. Comparison of Dissipated Energy 

 
PREDICTION OF MAXIMUM RESPONSE 

 
A response prediction procedure of maximum response displacement is shown with examples. 
 
(1) Define Structure and Input Ground Motion 
As examples, response prediction of Model L and Model H subjected to Hachinohe N164E and JMA 
Kobe are explained. 
 



(2) Input Energy of Ground Motion 
Energy equivalent velocity EV∆  is determined as follows. 

m

E
V E

max2∆=∆      (9) 

EV∆  can be estimated approximately by Equation (10) [2]. 

),()2.02.1(2),( hTSThhTV VpE +=∆ π    (10) 

Response EV∆  and estimated EV∆  by Equation (10) are shown by solid line in Figure 18. Estimated EV∆  
will be used in the following prediction process. 
 
(3) Equivalent Period 
Equivalent period of structures is assumed to be 0.75 times of period given by secant stiffness of 
maximum response. 0.75 is coefficient to consider the influence of shorter predominant period of input 
ground motions. Equivalent period is formulated as function of response ductility factor µ . 
 
(4) Dissipated Energy by Structure and Viscous Damper 

HE∆  is given by Equation (6) as a function of µ . DE∆  is given by Equation (7) and so on as a function 

of µ . And then, DH EE ∆+∆  is given as function of µ . Broken line in Figure 18 is the relationship 

between DH EE ∆+∆  and equivalent period by parametric µ . This broken line indicates the energy 
dissipating capacity and equivalent period of each structural model on a certain response displacement. 
 
(5) Response Prediction 
In Figure 18, the cross point (pointed by arrows) of input energy (thick solid line) and dissipated energy 
(broken line) indicate the energy equivalent period, that is, the equivalent period of predicted 
displacement. By the comparison with plotted point of response analysis results, it is considered that 
predicted displacement can estimate approximately. 
 

0 0.5 1 1.5 2
Period(s)

0

50

100

150

E
n

er
gy

 E
q

u
iv

al
en

t 
V

el
oc

it
y(

cm
/s

)

(a) Hachinohe N164E

Response V∆E Estimated V∆E

M
od

el
 L

M
od

el
 H

Predicted Response

Response Point by Analysis

 

0 0.5 1 1.5 2
Period(s)

0

50

100

150

200

250

E
n

er
gy

 E
q

u
iv

al
en

t 
V

el
oc

it
y(

cm
/s

)

(b) JMA Kobe NS

Response V∆E Estimated V∆E

M
od

el
 L

M
od

el
 H

Predicted Response

Response Point by Analysis

 
Figure 18. Prediction of Maximum Response 

 
 
 
 
 



CONCLUSIONS 
 
In this study, energy dissipating behaviors and response prediction of reinforced concrete structures with 
viscous dampers are investigated for the purpose of applying to performance based earthquake resistant 
design. Then the following conclusions are found. 
 
1) For the seismic resistance of viscous dampers, evaluation of response velocity is important. It is found 
that response velocity is estimated by response period that depends on spectral properties of ground 
motions. Response period is equal to elastic period of structures in short period range, and is constant in 
long period range. As for viscoelastic dampers that have velocity depending stiffness and damping 
characteristics, the influence of response period is considered to be important particularly. 
 
2) Seismic resisting capacity of viscous damper should be evaluated not only by the damping force but 
also by the dissipated damping energy. By a number of assumptions including response velocity and 
response period, increment of dissipated damping energy is formulated and estimated well. 
 
3) A procedure to predict inelastic response displacement by equalizing dissipated energy to earthquake 
input energy is proposed. Because energy dissipating behaviors are evaluated by considering hysteretic 
and damping properties of structures, this procedure can be applied to various structures with respective 
appropriate assumptions. 
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