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SUMMARY 
 
A model is proposed for the force-deformation behaviour of reinforced concrete members under biaxial 
loading with axial force. It embodies an existing uniaxial hysteretic model with piecewise linear behaviour 
as the foundation for its development and proceeds from analogy and comparison with the biaxial 
formulation of the Bouc-Wen smooth hysteretic model previously presented by other authors.  
The proposed biaxial model formulation requires the same information needed for the corresponding 
uniaxial model and introduces an additional correcting term into the existing uniaxial model coupling the 
two loading directions. The validity of the presented model is demonstrated through the analytical 
simulation of available biaxial experiments on reinforced concrete columns. The presented model is 
proven to be efficient and establishes a simple form of analysing reinforced concrete structures in which 
biaxial interaction should be considered.  
 

INTRODUCTION 
 
There are still a number of unsolved problems standing in the way of the adequate modeling of reinforced 
concrete (RC) buildings under general earthquake loading. One of the main issues is related to the fact that 
buildings are tridimensional structures and in several cases the simplification of the tridimensional models 
into bidimensional ones without much loss of accuracy is impossible. In many situations biaxial structural 
interaction and torsional oscillation may arise, namely as a result of structural irregularity, affecting the 
structural response. However, even for structures with regular and symmetric configurations and uniform 
mass distributions in the building plan, planar models cannot be considered in order to obtain a response 
accurate enough. Since earthquake excitation is, in general, multi-dimensional, biaxial structural 
interaction must, therefore, be considered. 
The behavior of structural elements, especially axially loaded RC members, under biaxial loading histories 
is important, not only because the real response of specific members is in many cases tridimensional, but 
because the biaxiality of the loading leads to a reduction of the bearing capacity of the member, while 
increasing the stiffness and strength degradation usually present with cycling. The inelastic behavior of 
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vertical members, in particular of columns, is, therefore, of special interest and requires nonlinear member 
models able to represent their behavior under generalized cyclic biaxial bending with axial loading. 
Nonlinear dynamic analysis in three dimensions is still very limited, not only due to the higher 
requirements in computer time, but also because there is a lack of relatively simple models that can 
accurately and reliably define the complex behavior of vertical members under inelastic biaxial bending 
with axial force. Adding one more dimension to the problem of uniaxial flexure considerably increases its 
complexity and the difficulty of developing simple analytical models. As a consequence, it has been seen 
over the years that the development of phenomenological rules in three dimensions able to reproduce 
experimentally observed behavior, like the ones available for the bidimensional problems, has been short 
on success.  
Fibre models constitute the major category of models used in tridimensional analyses. These models can 
capture the full coupling of the two bending directions with the axial force. However, their requirements in 
computer time and input preparation are much higher than those of macroelements based on empirical 
moment-curvature or force-deformation relations. Moreover, only recent more advanced fibre models [1] 
take into account the effects of the shear deformations and bond slip. Therefore, despite the great power of 
fibre models, there is still room for development and application of simpler models for RC members, since 
the simulation of the global seismic response must essentially reproduce the member effective stiffness 
and energy dissipation as a function of the deformation level. 
Excluding fibre models, the present state-of-the-art in modeling RC members under cyclic biaxial bending 
with axial load is far behind that of the uniaxial flexure. A detailed review of experimental results and 
models for cyclic biaxial bending of RC members with axial force is presented in [2].  
Outside the theory of fibre models, the existent analytical models follow the concepts of Classical 
Plasticity [3], Mroz's Multisurface Plasticity [4, 5, 6], Bouc-Wen's [7] hysteresis model [8, 9, 10], 
Bounding Surface Plasticity [11, 12, 13] or lumped damage mechanics [14]. 
Since engineers performing nonlinear dynamic planar analyses with piecewise linear (PWL) models are 
more familiar with these type of models, it seems important, for the purpose of upgrading to tridimensional 
analyses, to try to develop a framework of biaxial models where PWL models can fit. The present paper 
proposes a new model for biaxial bending with axial force that is an extension of an existing uniaxial 
hysteretic model with PWL behavior. The general formulation of the model proceeds from analogy and 
comparison with the biaxial formulation of the Bouc-Wen smooth hysteretic model [9]. Although retaining 
most of the physical meaning embodied in the Bouc-Wen model, the presented framework adds simplicity 
and versatility since many of the existing PWL models can be used with this formulation. 
The model formulation is presented in a general force-displacement form to be in agreement with the 
experimental results selected to test the performance of the model. However, the specific biaxial bending 
form is easily obtained by expressing the force and displacement as moment and curvature. 
 

THE BIAXIAL BOUC-WEN MODEL AS A BASIS FOR THE PROPOSED MODEL 
 
The basic format of the Bouc-Wen model for uniaxial behavior was first presented by Bouc [15], later 
generalized by Wen [7], and involves the solution of a differential equation. The generalized model 
expresses the restoring force as the combination of an elastic force and a plastic force 
 

 ( ) ZF1uKF y ⋅⋅−+⋅⋅= αα  (1) 
 
 
 
where K is the initial stiffness, α is the post-yield stiffness ratio, Fy is the yield force, and Z is the hysteretic 
parameter given by 
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in which A, γ, β and n are dimensionless parameters controlling the shape and magnitude of the hysteresis 
loops and uy is the yield displacement of the system.  
By rewriting Eq. (1) in its incremental form instead,  
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it can now be joined with Eq. (2) into a single expression which defines the incremental restoring force iF&  

for a specific displacement increment iu& . 
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The variable Zi can be eliminated from Eq. (4) by rewriting Eq. (1) in the form 
 

 ( ) y
ii

i
F1

uKF
Z

⋅−
⋅⋅−

=
α
α

 (5) 

 
and considering that the global restoring force Fi results from: 
 
 i1ii FFF &+= −  (6) 
 
where Fi-1 represents the global restoring force for the previous displacement increment. 
 
Later, this uniaxial formulation was extended by Park, Wen and Ang [16] to define a biaxial 
force-deformation model with coupled differential equations. This model was then used and modified by 
Kunnath and Reinhorn [8] to model the behavior of RC columns under biaxial loads. Later on, the model 
was generalized by Casciati [9] and also by Wang and Wen [10] from which resulted two different 
formulations of the initial biaxial model. However, both forms give similar results. Since the Wang and 
Wen [10] formulation is simpler, it was selected to formulate the biaxial model proposed in the following. 
Nevertheless, the same mathematical reasoning can be applied to the Casciati [9] form.  
 
The biaxial construction of the Bouc-Wen model by the Wang and Wen [10] form follows the same 
general idea as for the uniaxial case. The restoring forces for both directions are defined by 
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in which the parameters involved have the same meaning as for the uniaxial case, Eq. (1), but are now 
referred to the orthogonal directions X and Y. The hysteretic parameters Zx and Zy are then defined by the 
following coupled differential equations: 
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where the parameters involved have also the same meaning as for the uniaxial case and sign() refers to the 
mathematical signum function. 
As for the case of the uniaxial model, Eq. (7) can also be reformulated into an incremental form: 
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and joined with Eq. (9) to define the following system of coupled equations which express the incremental 
restoring orthogonal forces xF&  and yF& : 
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In the same way as for the uniaxial case, the variables 

ixZ  and 
iyZ  may be eliminated from Eq. (10) by 

rewriting Eq. (7) in the form 
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and considering that the global restoring forces 

ixF  and 
iyF  result from: 
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FRAMEWORK OF THE PROPOSED BIAXIAL MODEL 
 
Considering the definition of the incremental orthogonal forces 

ixF&  and 
iyF&  by Eq. (10), it can be seen, 

by a simple mathematical transformation, that the first part of this system  
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matches Eq. (4) applied to the X and Y directions, thus corresponding to the uniaxial incremental restoring 
forces calculated for each direction without biaxial interaction. To simplify the notation, these incremental 
forces will be called 

ixuniF −
&  and 

iyuniF −
& , respectively. The remaining part of the system corresponds to 

the correcting factors 
ifxC  and 

ifyC  accounting for the interaction between the two loading directions: 
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Based on Eq. (13) and (14) a condensed form of Eq. (10) can, therefore, be defined as 
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Considering that the incremental forces 

ixuniF −
&  and 

iyuniF −
& can be obtained by any kind of uniaxial 

hysteretic model, especially PWL models which are more common, the presented framework introduces a 
simple and flexible form to treat biaxial bending. This formulation requires the same information needed 
for the corresponding uniaxial PWL model and only introduces an additional correcting term coupling the 
two loading directions.  
Since the uniaxial hysteretic model that may be considered to obtain the incremental forces 

ixuniF −
&  and 

iyuniF −
& may be very different from the initial uniaxial Bouc-Wen formulation, the amount of biaxial 

interaction between may also be different. To take this into account, an additional parameter δ varying 
between 0 and 1 was introduced in Eq. (15) to scale the amount of interaction between the two loading 
directions. The final formulation of the proposed method is then defined by Eq. (16). The values of the 
scaling factor δ will be defined when presenting the experimental and numerical results of the biaxial tests 
simulations.  
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For each vector of displacement increments ( )
ii yx u;u && , the incremental forces 

ixuniF −
&  and 

iyuniF −
&  can be 

separately calculated. Next, for a given value of the δ scaling factor, the correcting factors 
ifxC  and 

ifyC  

are evaluated by solving the system of differential equations defined by Eq. (16). In the following 
application of this framework, and in order to cut down the number of variables, the shape factors γ, β and 
n, still necessary to find 

ifxC  and 
ifyC  were set to be the values suggested by Kunnath and Reinhorn [8], 

which are,  
 
 21== γβ  (17) 
 
and 
 
 2n =  (18) 
 
The efficiency of the presented framework will be presented in the following by comparing numerical 
predictions with experimental test results. First, though, a brief review of the PWL uniaxial hysteretic 
model considered as the base of the proposed framework will be presented. 
 

THE COSTA-COSTA UNIAXIAL HYSTERETIC MODEL 
 
The framework presented in the previous section allows for any uniaxial hysteretic model to be used to 
simulate biaxial structural behavior since the interaction part of the global model is independent of the 
uniaxial part. 
To perform a series of tests simulating experimental behavior of frame members under cyclic biaxial 
loading, the Costa-Costa uniaxial hysteretic model [2, 17] was selected. A brief description of this model is 
presented in the following.  
This model represents a generalization of the original Takeda model [2] with a trilinear skeleton curve in 
monotonic loading, defined by the cracking point ( )cc F;d  and the yield point ( )yy F;d , and including 

pinching, stiffness degradation and strength degradation effects. Unloading-reloading loops prior to 
yielding in either direction are bilinear, with slopes equal to those of the pre-cracking and post-cracking 
branches in the virgin loading. After the initial yielding, pinching is modeled by first reducing the initial 
slope of the reloading branch, Fig. 1, heading to the most extreme point of any previous post-yield 
excursion in the direction of the reloading, through the multiplication of the stiffness Ks towards the 

previous extreme point by factor ( )β
my d/d , in which dy represents the yield displacement, dm is the 

maximum response displacement and β is a positive constant, thus giving 
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where Fm is the force at the previous maximum response point and d0 is the deformation at the load 
reversal point. Once the response point crosses the line connecting the origin and the maximum response 
point, the reloading branch, then, heads towards the maximum response point, Fig. 1.  
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Figure 1 – Pinching effect in the Costa-Costa model. 

 
The unloading stiffness Kd after yielding is reduced from the elastic stiffness Ke by the factor ( )αmy d/d  

where α is a positive constant, Fig. 2. 
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Figure 2 – Unloading stiffness degradation in the Costa-Costa model. 

 
Post-yield strength and stiffness degradation with cycling is modeled by directing the reloading branch, 
after modification for pinching, towards a point at a displacement equal to dm and at a force 

( ) m
'
m F1F ⋅−= λ , where λ is the Wang and Shah damage index [2], Fig. 3. After reaching this terminal 

point of the reloading branch, further loading takes place parallel to the post-yielding stiffness of the virgin 
loading curve. 
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Figure 3 – Strength degradation in the Costa-Costa model. 
 
 
 



COMPARISON OF THE BIAXIAL MODEL WITH EXPERIMENTAL TEST RESULTS  
 
The numerical results of the proposed biaxial framework using the Costa-Costa uniaxial model were 
compared to experimental results performed in RC columns under complex biaxial displacement paths 
with constant axial force. Results from two different experimental programs were selected to carry out the 
evaluation. 
 
Biaxial tests performed by Bousias et al [18] 
Results from an intense experimental program on the behavior of RC columns under complex biaxial load 
paths carried out by Bousias et al [18] were considered to evaluate the performance of the proposed 
method. The specimens consisted of RC columns with a 0.25*0.25 m2 cross section and a free length of 
1.5 m and were built as cantilevers into a heavily reinforced foundation. Longitudinal reinforcement 
consisted of eight 16 mm diameter deformed bars uniformly distributed around the perimeter of the 
section. Transverse reinforcement comprised a double hoop pattern of 8 mm diameter stirrups at a 70 mm 
spacing. Specimens were over-designed in shear so that their behavior would be controlled by flexure. 
Axial loads were kept low as the values of ν, Eq. (20), where N represents the axial force, Ac is the cross 
section area and fc is the uniaxial concrete compressive strength, were around 0.10. Additional details 
about the experimental program and results can be found in [18]. 
 

 
cc fA

N=ν  (20) 

 
Numerical simulation of test S1 
In this test, uniaxial displacement cycles were applied alternately in the two transverse directions, in pairs 
of cycles with linearly increasing amplitude, Fig. 4. Figs. 5 and 6 show the hysteresis loops of both 
directions corresponding to the experimental results while Figs. 7 and 8 present the matching numerical 
predictions.  
It can be observed that the experimental results of both directions are almost identical. Bousias et al [17] 
indicate that only a slight stiffness degradation in the direction of subsequent loading due to damage in the 
preceding cycle in the orthogonal direction was detected. This observation appears to mean that, for this 
test, the behavior in a specific direction is uncoupled from the behavior in the other one. This statement 
would also justify the reason why differences in the results were not found when using any value between 
0 and 1 of the δ factor to scale the amount of interaction between the two loading directions.  
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Figure 4 –Displacement cycles applied in test S1. 
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Figure 5 – Experimental hysteresis loops in X 

direction. 
 

Figure 6 – Experimental hysteresis loops in Y 
direction. 
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Figure 7 – Simulation of the hysteresis loops in 
X direction. 

Figure 8 – Simulation of the hysteresis loops in 
Y direction. 

 
Numerical simulation of test S7 
In this test, the imposed biaxial deflection path is defined by concentric nested squares of increasing size, 
centered at the origin and traced counterclockwise. Three displacement squares were applied with half-
side lengths of 40 mm, 60 mm and 80 mm, Fig. 9. Figs. 10 and 11 show the hysteresis loops of both 
directions corresponding to the experimental results while Fig.12 and 13 present the matching numerical 
predictions.  
The value of the interaction scaling factor δ considered in this simulation was 0.25, which indicates a 
rather low coupling of the two loading directions. However, by using values of the δ factor up to 1, only 
the matching of the unloading and reloading stiffness is negatively affected, as strength levels remain 
essentially the same.  
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Figure 9 – Displacement cycles applied in test S7. 
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Figure 10 – Experimental hysteresis loops in X 

direction. 
 

Figure 11 – Experimental hysteresis loops in Y 
direction. 
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Figure 12 – Simulation of the hysteresis loops 
in X direction. 

Figure 13 – Simulation of the hysteresis loops 
in Y direction. 

 
Numerical simulation of test S8 
As for test S8, the imposed biaxial deflection path of this test consists of concentric nested squares, 
centered at the origin and traced counterclockwise but now of decreasing size. Three displacement squares 
were applied with half-side lengths of 100 mm, 80 mm and 60 mm, Fig. 14. Figs. 15 and 16 show the 
hysteresis loops of both directions corresponding to the experimental results while Figs. 17 and 18 present 
the matching numerical predictions.  
The value of the interaction scaling factor δ considered in this simulation was 0.6. However, very small 
variations in the overall matching of the test are obtained when increasing its value up to 1.  
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Figure 14 – Displacement cycles applied in test S8. 
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Figure 15 – Experimental hysteresis loops in X 

direction. 
 

Figure 16 – Experimental hysteresis loops in Y 
direction. 
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Figure 17 – Simulation of the hysteresis loops 
in X direction. 

Figure 18 – Simulation of the hysteresis loops 
in Y direction. 

 
Biaxial tests performed at the Kawashima Laboratory [19] 
Results from an experimental program carried out at the Kawashima Laboratory of the Department of Civil 
Engineering at the Tokyo Institute of Technology [19] were used as a second set of results to assess the 
validity of the proposed biaxial model. The specimens consisted of RC columns with a 0.40*0.40 m2 cross 
section and a free length of 1.75 m. Longitudinal reinforcement comprised sixteen 13 mm diameter 
deformed bars uniformly distributed around the perimeter of the section. Transverse reinforcement was 
composed by a single hoop pattern of 6 mm diameter stirrups at a 50 mm spacing. Axial loads were kept 
low as the values of ν were around 0.03. Additional details about the experimental program and results can 
be found in [19].  
 
Numerical simulation of test TP77 
The imposed biaxial deflection path for this test comprised a number of cycles defining two squares 
connected in the shape of an 8, Fig. 19. A set of nine 8-shaped cycles were applied and alternately traced 
clockwise and counterclockwise with approximate amplitudes of 3 mm, 7 mm, 13 mm, 20 mm, 25 mm, 35 
mm, 40 mm, 45 mm and 55 mm, Fig. 20. Such displacement path can be seen as an alternating cross-like 
loading along the two diagonals, with loading and unloading along each diagonal applied in piecewise 
form separately along each side of the cross section. Figs. 21 and 22 show the hysteresis loops of both 
directions corresponding to the experimental results while Figs. 23 and 24 present the matching numerical 
predictions. 
The value of the interaction scaling factor δ considered in this simulation was 1.0, in order to retrace as 
close as possible the degrading effects present with cycling that can be observed in the experimental 
results.  
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Figure 19 – Loading orbits of test TP77. Figure 20 – Displacement cycles applied in test 

TP77. 
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Figure 21 – Experimental hysteresis loops in X 
direction. 

 

Figure 22 – Experimental hysteresis loops in Y 
direction. 
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Figure 23 – Simulation of the hysteresis loops 

in X direction. 
Figure 24 – Simulation of the hysteresis loops 

in Y direction. 
 
Numerical simulation of test TP78 
In this test, the imposed biaxial deflection path is defined by concentric nested circles of increasing size, 
centered at the origin and traced clockwise. Eight displacement circles were applied with radiuses around 
3 mm, 6 mm, 13 mm, 20 mm, 27 mm, 34 mm, 40 mm and 47 mm, Fig. 25. Figs. 26 and 27 show the 
hysteresis loops of both directions corresponding to the experimental results while Figs. 28 and 29 present 
the matching numerical predictions. 
As for the previous test, and also for the same reasons, the value of the interaction scaling factor δ 
considered in this simulation was 1.0.  
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Figure 25 – Displacement cycles applied in test TP78. 
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Figure 26 – Experimental hysteresis loops in X 

direction. 
 

Figure 27 – Experimental hysteresis loops in Y 
direction. 
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Figure 28 – Simulation of the hysteresis loops 

in X direction. 
Figure 29 – Simulation of the hysteresis loops 

in Y direction. 
 

DISCUSSION OF THE RESULTS 
 
Accounting for the simplicity of the proposed biaxial model, agreement between experimental results and 
numerical predictions can be considered to be adequate. The overall experimentally captured coupling 
effects between the two loading directions as well as the general strength levels were matched by the 
proposed model. However, it is important to notice that the quality of the numerical results is greatly 
dependent of the characteristics of the uniaxial hysteretic model chosen to be the support of the proposed 
biaxial framework. If a model with poor correlation with uniaxial results is chosen, an adequate fitting of 
biaxial results cannot be expected.  
 
Although the obtained results can be considered to be adequate, a couple of aspects still need further 
investigation.  
First, the interaction scaling factor δ, which was set manually for the presented numerical simulations, was 
seen to vary from test to test. A more objective definition of this factor needs to be found in order to 



demonstrate the full strength of the proposed framework and effectiveness in the analysis of the inelastic 
response of RC members and structures.  
Second, by examining the presented experimental results, it can be seen that in almost all of the columns a 
decrease of the strength capacity of the virgin load curve is present when a previous loading stage occurs 
in the orthogonal direction. In rough terms, one can say that the yield force of the monotonic curve of a 
specific loading direction decreases when the member is first damaged in the orthogonal direction. This 
effect is not captured adequately enough by the proposed model as can be seen, for example, by 
comparison of Figs. 6 and 8, or 11 and 13, or 16 and 18. The modeling of the structural coupling of the 
two loading directions is not enough to simulate this effect since it is essentially tied to the value of the 
yield force assumed by the uniaxial model. As an attempt to justify this strength degradation effect, 
Marante and Florez-Lopez [14] stated that the axial load variation that would have probably occurred 
during the tests was responsible for the differences in the strength levels. Although the effect of varying 
axial load is an important one in the cyclic behavior of RC members, it is of the authors’ knowledge that 
this was not the case, since the measured axial force variations during the tests were very small. To 
strengthen the validity and effectiveness of the proposed framework, specific degradation rules coupling 
the two loading directions should be defined to suitably scale the virgin load curves, this way allowing for 
better fitting of experimental results. 
 
With respect to the sensitivity of the uniaxial model parameters α, β and λ, some final remarks should be 
presented. With respect to the α parameter, responsible for the unloading stiffness degradation, it was seen 
that using values similar to the ones considered in normal uniaxial behavior gives similar results. However, 
this was not the case for the λ parameter responsible for the strength degradation. Since most of the 
strength degradation occurring with cycling is captured by coupling the two loading directions, the 
necessary values of the λ parameter are usually smaller that the ones used in uniaxial behavior and in some 
cases, its consideration may even be unnecessary. Regarding the β parameter responsible for the 
simulation of pinching effects, since none of the experimental results exhibited specific degradation effects 
due to shear forces, this parameter was not considered in the simulations.  
 

CONCLUSIONS 
 
The present paper introduces a new approach for the behavior of biaxially loaded RC members. The 
proposed framework establishes an extension of existing PWL uniaxial hysteretic models and uses the 
biaxial structural interaction form of the Bouc-Wen biaxial hysteretic model to couple the two loading 
directions. The main asset of the proposed concept is the possibility to integrate any given uniaxial 
hysteretic model to form a global biaxial model. Since PWL uniaxial models play an important role in the 
nonlinear analysis of planar structures, their integration in biaxial modelling frameworks is of interest.  
 
The Costa-Costa PWL uniaxial hysteretic model was selected to integrate the proposed biaxial framework. 
This model represents a generalization of the original Takeda model with a trilinear skeleton curve in 
monotonic loading and including pinching, stiffness degradation and strength degradation.  
 
The validity of the presented model was demonstrated through the analytical simulation of available 
biaxial experiments on RC columns. The obtained numerical results were adequate and proven the model 
to be efficient, thus establishing a simple form of analysing RC structures in which biaxial interaction 
should be considered. However, additional research is still necessary to objectively define the interaction 
scaling factor which rules the coupling of the two loading directions and seems to exhibit a close relation 
with the loading history. Also, to capture with more accuracy the decrease of the strength capacity of the 
virgin load curve witnessed when a previous loading stage occurs in the orthogonal direction, specific 



degradation rules coupling the two loading directions should be defined to suitably scale the virgin load 
curves, this way allowing for better fitting of experimental results. 
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