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SUMMARY 
 
Bridges structures are key elements of transportation network and their efficiency is very much essential 
during the emergency phase after a seismic events. Owing to catastrophic damage levels observed on 
bridges as result of strong earthquakes, investigation studies in the last decades have been focused on 
methods able to improve their stability and reliability. Therefore, as reply of weakness inherent on 
conventional seismic design methods, non traditional ones have been developed intended for preventing 
or reducing inelastic deformations, and consequent destructive effects, in bridges structures. For this 
reason a great effort has been made in this field in order to introduce passive vibration control devices 
with the aim to improving bridges behavior against seismic events, and to avoiding, simultaneously, 
significant cost increments. In this study the performance of HDRB utilized for bridges seismic protection 
is assessed; in detail, the reliability, evaluated in terms of first passage probability, is calculated and a 
sensitivity analysis is carried out in order to recognize the most suitable isolator mechanical parameters 
which allow to attain high performance of this technique.  
 

INTRODUCTION 
 
In the last decades the use of seismic isolation is getting increased attention from designers for seismic 
bridges hazard mitigation. This technique, having the main aim to protect relatively low mass elements as 
piers and foundations, makes use of seismic isolators located between bridge deck and piers. The use of 
aseismic devices is quite easy in bridges, because these can be located by replacing conventional devices 
adopted to accommodate thermal movements, with isolation systems. For the seismic protection of 
bridges, Rubber Bearings (RB), Lead Rubber Bearing (LRB) and High Damping Rubber Bearing (HDRB) 
are extensively adopted. The most important characteristic of these devices is the opportunity to provide 
into a single element, vertical support, lateral flexibility, restoring force and dissipation energy. Symans et 
Al [1] supplied an extensive review of current applications in this field. 
Seismic isolation is a strategy intended for reducing seismic forces to or near the elastic limit capacity of 
structures, curtailing at the same time inelastic deformations and related damage phenomena. With the use 
of seismic isolation in bridges, reduction of shear forces transmitted from the superstructure to the piers is 
achieved thanks to the combination of two effects: first, the isolator works by shifting the natural period of 
the bridge away from the frequency range where is high the energy content of earthquakes. Also, the 
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energy demand required to the structure from the earthquake is also reduced thanks to the dissipation 
energy concentrated is these devices, properly designed for this purpose. In this study performance of 
HDRB used for bridges seismic isolation is assessed; in detail, the reliability evaluated in terms of first 
passage probability is calculated. In order to take into account of random nature of earthquakes, the 
analysis will be performed using a stochastic approach. More precisely, a gaussian, zero mean, non-
stationary, filtered stochastic process is used in order to realistically model the seismic action. Moreover, 
as consequence of using the isolation technique, the constitutive behavior of the bridge is assumed linear, 
whereas a non linear model is adopted for the isolation system. After the covariance analysis is performed 
by using the approximate technique of stochastic linearization, the reliability of the isolated bridge is 
evaluated in the hypothesis of Poisson assumption. The reliability analysis is adopted in this study with 
the aim to performing serviceability assessment for the isolated bridge. For this scope two different criteria 
of serviceability have be introduced. The first one regards the displacement of the top of the pier: more 
precisely, the requirement that the pier remains in the elastic range is attained if this displacement does 
not exceed a specific value xp

max, that assumes the meaning of the critic threshold level for the reliability 
assessment. The second serviceability criterion considers the relative displacement of the superstructure 
respect to the pier; this is related to acceptable isolator deformations and to requirements for the 
superstructure response.  
 

STRUCTURAL MODEL AND MOTION EQUATIONS  
 

The dynamic analysis of bridges structures is a quite complex problem and therefore it needs to introduce 
some simplifications in order to make easy the formulation of a mathematical model able to represent in a 
suitable manner their dynamic behavior under seismic actions. In bridges structures the HDRB are 
installed between the deck and the columns; moreover, the deck is assumed rigid and the piers are 
supposed linear as result of the reduction of seismic forces due to devices installation. When seismic 
devices are located between the deck and the piers it is possible to model the isolated bridge by means of a 
2 degrees of freedom system, having masses ms and mp. The piers can be well represented in their first 
vibration mode by means of the first natural frequency ωp and the damping coefficient ξp. The rigid deck, 
instead, can be well modeled by means of a concentrate mass ms located on the isolator. The elastic 
frequency ωb and the damping coefficient ξb of the isolator are defined, respectively, as: 
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where kb and cb are the isolator elastic stiffness and the damping. 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 1: Schematic model of the isolated bridge. 
 

 



By introducing the displacement vector { }Tsp uu ,=u , where up and us are, respectively, the displacement of 

the top of the pier respect to the ground and of the deck relative to the pier, the equations of the motion for 
the isolated bridge subjected to a seismic motion represented by the time modulated Kanai-Tajimi process 
[2] are:  
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In equation (1) the Bouc-Wen model [3] has been adopted in order to describe the isolator constitutive 
law. This is characterized by a non linear behavior and by energy dissipation; this is a very versatile model 
able to reproduce several constitutive laws, both softening and hardening, with and without degradation, 
when the parameters defining the model are correctly selected. Complete information about the Bouc-Wen 
model can be found in the study of Baber and Wen [4]. More precisely, zb is an internal variable related to 
hysteretic behavior; also the parameters 

bβ , bγ , 
bη , 

bα  and 
bA  govern the shape of the isolator hysteretic 

cycle and can be selected in order to reproduce the observed hysteretic cycle of isolators. Furthermore, in 
equation (1) the filter motion equation is present, where xf is the response of the filter having frequency ωg 
and damping coefficient ξg. Finally, w is the white noise excitation process at the bed rock and V(t) is the 
exponential modulation function: t

v
vtetV βα −=)( .  

The problem just stated is non linear as consequence of the isolator hysteretic behavior. Many different 
mathematical methods can be used in order to solve this stochastic problem. In the research here 
presented, the equivalent stochastic linearization is adopted. This technique is the most practical 
approximate method for the analysis of stochastic non linear structural dynamic problems. The basic idea 
of the method is that the non linear equation can be well replaced by an appropriate linear one; moreover, 
the hypothesis of a gaussian response process must be assumed. The approximate linearized equation is 
then achieved by making minimum, in a stochastic way, the difference between the non linear equation 
and the linearized one. As result, with the equivalent stochastic linearization method, the non linear 
equation governing the internal variable zb is replaced with the next linear one: 
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Atalik and Utku [5] provided the equivalent coefficients 
e

bc  and 
e

bk  for 1=bA  and 1=bη , in the 

hypothesis of variables zb and su&  jointly gaussian: 
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In equation (3) the terms
bzσ  and 

su&σ  are, respectively, the standard deviations of variables zb and su& ; 

moreover, [ ]bs zuE &  is the covariance of the mentioned variables. By adopting the approximate method of 

the stochastic linearization, the motion equations can be written in the following way: 
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where the linearization coefficients ke 
b and ce 

b
 appear.  

After one introduces the 7 elements state vector Y: 

{ }T
fbf xzx &&uuY =   

the state equation for the system can be written as: 

( ) ( ) ( )ttt BYAY e +=&      (5) 

where B(t) is a vector of order 7, called transfer input vector, having all elements equal zero except 
( ) )(7 twVtB −=  and where eA  is a square matrix of order 7, representing the equivalent linearized state 

matrix. After the state equation is written, the stochastic analysis can be performed by solving the 
differential equation of the covariance matrix ( )tYYQ , whose elements, variable in the time, are the 

second order moments [ ]ji YYE  relative to the state vector Y: 
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In equation (6) ( )tG is a matrix of order 7 having all elements equal zero except ( ) 2
077 )(2 tVStG π=  

where S0 is the white noise intensity.  
 

RELIABILITY ASSESSMENT 
 
One of the most crucial problem in the structural design process is the reliability assessment. An ordinary 
measure of the reliability is to define this as the complement of the failure probability. One of the main 
reason for studying the response of a system to a random input is the possibility to assess this failure 
probability. In fact, for a structure subjected to a random input the failure probability is usually formulated 
as the first passage problem, i.e. the probability that a specific response will exceed a given threshold level 
during a fixed time range. The observation time may be, for example, the lifetime of the structure or the 
strong motion duration of an earthquake. 
Therefore, if the failure criterion for a structure is reached when the absolute value of a general  response 

)(tX  exceeds a given critic threshold level during an observation time [0-t] (life time), then the reliability 

of the structure is obtained when there is not failure in the range [0-t], that is when the threshold limit is 
not reached. Then, if X(t) is the system response process, the complement of the failure probability, i.e. the 
structural reliability, indicates the probability Ps(t,ξ) that the response process X(t) does not exhibit any 
crossing of the threshold limit ±ξ (double barrier) when 0 < τ < t. Exact solutions have not get been 
developed for the crucial problem of the first excursion failure probability, but a variety of methods with 
different degree of approximation are available in literature. In this study the reliability function Ps(t,ξ) is 
evaluated in the hypothesis of independent threshold crossings, with a Poisson distribution [6]: 
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are, respectively, the mean number of crossings of the thresholds ξ+  and 0+ in the unit time. 
The reliability analysis is adopted in this study with the aim to performing the assessment on the 
serviceability requirements for the isolated bridge: for this scope two different criteria of serviceability 
have be introduced. The first one regards the displacement of the top of the pier: more precisely, the 
requirement that the pier remains in the elastic range is attained if this displacement does not exceed a 
specific value xp

max, that assumes the meaning of the critic threshold level for this reliability assessment. 
The second serviceability criterion considers the relative displacement of the superstructure respect to the 
pier; this is associated to acceptable isolator deformations and to serviceability requirements for the 
superstructure.  
In figures 2, 3 the reliability of the pier and the deck, evaluated by adopting the Poisson assumption, is 
discussed. The most significant parameters controlling the isolator performances are the ratio pbI ωω /=  

that is the ratio between the elastic isolator frequency and pier one, and the parameter αb from whose the 
inelastic device behavior depends. In order to achieve the reliability assessment the stochastic model for a 
typical earthquake expected on a ground having a moderate flexibility, as the El Centro 1940 one, is 
considered. This earthquake is characterized by an energy content concentrate in the range 1-4 Hz with a 
peak acceleration around 0.34g. Therefore, in the KT model the values ωg=15rad/sec, ξg=0.42 are adopted, 
whereas  two intensities: S0=0.0033m2/sec3 and S0=0.0080m2/sec3 (that is a more severe earthquake), are 
considered. Finally for the modulation function V(t), αv=0.33 and βv =0.125 are assumed, which 
correspond to Vmax=1 and tmax=8sec, where tmax is the time where V(t) attains Vmax. 
Figures 2 and 3 corresponds to αb=0.4 and αb=0.2, respectively. Different lines are referred to I=0.25 and 
I=0.5. First of all, the results point out that the pier reliability improves is a lower isolation ratio is 
adopted. Concerning the pier serviceability requirement it needs, as previous specified, the this remains in 
the elastic range. The limit xp

max =0.025m at the top of the pier is then fixed. In probabilistic terms, the 
serviceability requirement is satisfied if the failure probability, that is the probability that this limit is 
exceeded is very small. The fixed failure probability target is 10-4, then 1-10-4 =0.999 is obtained for the 
reliability. Concerning the deck, a displacement xs

max =0.15m is fixed as limit displacement, and the same 
reliability target 0.999 is assumed. Figures 4 and 5, where the horizontal line corresponds to the fixed 
reliability target, represent two details of figures 2 and 3, respectively.  

 

 
 



Figure 3. Pier and deck reliability vs. pier and deck threshold levels: ωp=20rad/sec, ξb=10%, ξp=5%, 
αb=0.2, µ=5, Y=0.01 m. 
 
 
Now, it is possible to verify if the requirements previous established are satisfied. About the pier, the 
target is reached only for -I=0.25, S0=0.0033m2/sec3, αb=0.4-, for -I=0.25, S0=0.0033m2/sec3 and 
S0=0.0080m2/sec3 , αb =0.2-, whereas if the value I=0.5 is adopted, the pier serviceability is never assured. 
About the deck displacement, the reliability is always guaranteed except that for -I=0.25, 
S0=0.0080m2/sec3 , αb =0.2.  
By using these graphs, tanks to the sensitivity analysis carried out, therefore, one can assess both 
concerning the satisfaction of bridge serviceability requirements and, also regarding the most suitable 
mechanical isolator parameters, that are the isolation ratio I and the post-elastic stiffness ratio αb, which 
allow to reach high performance of this technique.  

 
Figure 4: Pier and deck reliability vs. pier and deck threshold levels: ωp=20rad/sec, ξb=10%, ξp=5%, 
αb=0.4, µ=5, Y=0.01 m. 
 

Figure 5: Pier and deck reliability vs. pier and deck threshold levels: ωp=20rad/sec, ξb=10%, ξp=5%, 
αb=0.2, µ=5, Y=0.01 m. 
 

  

  



 
 
 

CONCLUSIONS  
 
In this study the dynamic response of bridges isolated by HDRB to seismic actions modeled as non-
stationary, stochastic, filtered processes, is assessed. The main goal of the study is to evaluate the devices 
performance in terms of reduction of pier and deck response and, also, in terms of the satisfaction of pier 
and deck serviceability requirements, with the final aim to select suitable mechanical parameters of 
devices, which guarantee high results of this technique. The analysis shows that the use of isolators can 
substantially protect low mass elements, such as the piers, from the high inertia forces transmitted from 
the deck. In this way the piers remain in the elastic range, as has been evaluated performing a reliability 
assessment; moreover, by selecting suitable isolator mechanical parameters, also the serviceability 
requirement for the deck is achieved. 
 

REFERENCES 
 
1. Symans D. M., Kelly J.M., Steven W. “Hybrid seismic isolation of bridge structures”. Proc. of 2nd 
World Conf. on Structural Control, John Wiley and Sons, Chichester, England; New York; 2:  923-932, 
1999. 
2. Tajimi H. “A statistical method of determining the maximum response of a building during 
earthquake” Proc. of 2nd World Conf. on Earthquake Engineering, Tokyo, Japan, 1960.  
3. Wen Y.K. “Method for random vibration of hysteretic systems”. Journal of the Engineering 
Mechanics Division ASCE 1976; 102: 150-154. 
4. Baber T. T., Wen Y. K. “Stochastic response of multistory yielding frames”. Earthquake Engineering 
and Structural Dynamics 1982; 10: 403-416.  
5. Atalik  T.S, Utku S. “Stochastic linearization of multi degree of freedom non linear systems”. 
Earthquake Engineering and Structural Dynamics 1976; 4: 411-420.  
6. Nigam N. C. “Introduction to random vibrations”; The Mit. Press, Cambridge, Mass, 1983. 


	Return to Main Menu
	=================
	Return to Browse
	================
	Next Page
	Previous Page
	=================
	Full Text Search
	Search Results
	Print
	=================
	Help
	Exit DVD



