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SUMMARY 
 
Earthquake ground motions and the resultant responses of structures are very uncertain and random. 
Therefore, it is desirable to find the probable future excitation that can produce the worst and largest 
responses in the structures. A modified method of optimization in frequency domain is proposed to find 
the maximum response of multi-story buildings easier and faster than before. In this research, a stationary 
input excitation is found for shear model of buildings to maximize sum of the inter-story drifts as a design 
criterion. The input power (area of power spectral density (PSD) function) and the intensity (magnitude of 
PSD function) are fixed and the critical excitation is found under these constraints by solving a new 
optimization problem using Simpson integration. In the new method, optimization is performed 
numerically and the critical response is obtained efficiently during the less time by using very few steps to 
achieve the same accuracy. This method is presented for the structures with different modal frequencies. 
In addition, the large effect of the first modes relative to the higher modes, especially for narrow-band 
input excitations, is presented. 
 

INTRODUCTION 
 
In the recent seismic design procedures, a spectrum is found according to the past earthquakes. The 
structures designed by this design spectrum can really resist the past earthquakes but not certainly the 
future earthquakes maybe with completely different frequency content. For designing the important 
structures like power plants and tall buildings, reliability and safety are the most important parameters. So 
it is needed to obtain the worst and critical input excitation analytically and numerically regardless of the 
past earthquakes. 
First of all, R.F. Drenick [1] introduced the concept of critical input excitations in time domain for 
structures. Shinozuka [2] expressed the same problem in the frequency domain and presented narrower 
upper bound of the maximum response. Up to now, lots of people have worked on the subject of critical 
input excitation. Recently, Takewaki [3] has developed a new critical excitation method for stationary 
inputs. He proposed a new constrained optimization problem in frequency domain by limiting the input 
power (area of power spectral density function) and the intensity (magnitude of PSD function). Authors in 
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their last papers [4,5]  introduced some exact and numeric methods of solving that optimization problem. 
In this research, it is tried to solve the optimization problem by a modified numeric method with a few 
steps to decrease the running time of computer program. This efficient method is so much useful specially 
for large structures.  
Therefore, the essential part of random vibration theory of critical excitation optimization problem for 
stationary inputs is described briefly in the next section. 
 

1- THEORY OF OPTIMIZATION PROBLEM OF CRITICAL EXCITATION 
 
1-1- Random Vibration Theory 
Consider an n-story building (Fig. 1), subjected to horizontal ground acceleration üg(t) that is a stationary 
Gaussian random process with zero mean. Taking Fourier transform from both sides of the equation of 
motion of the multi-storey building in time domain gives equation of motion in frequency domain as [6] 

(-ω2M+iω C+K)U(ω) = -Mr Üg (ω)                                   (1)   
 

 
Fig. 1. n-story shear building model subjected to horizontal base acceleration  

 
M , C and K represent the system mass, viscous damping, stiffness matrices, respectively and        
r = {1,…,1}t represents the influence coefficient vector for transferring displacements to drifts. U(ω) and 
Üg(ω) are the Fourier transforms of the horizontal floor displacement u(t) and the horizontal input 
acceleration üg(t), respectively. C is physical damping matrix or Rayleigh damping or generalized 
proportional damping [6]. Equation (1) can be reduced to the following form 

AU(ω) = BÜg(ω)                              (2) 

Where  

A= (-ω2M+iω C+K)                                 (3) 

B = -Mr                                (4) 

Interstory drifts are defined as d(t)={di(t)} and their Fourier transforms as D(ω) ={Di(ω)}. Then D(ω) is 
related to U(ω) as 

D(ω)=TU(ω)                               (5) 

Where T is a constant transformation matrix consisting of –1, 1 and 0.  

 T (i,i) = +1   : i=1,…,n                                                       (6) 

T(i,i-1) = -1   : i=2,…,n                               (7) 



T(i,j) =0   : 1−≠≠ ijij &                               (8) 

Combining equations (2) and (5) leads to  

D(ω)=TA-1 BÜg(ω)                            (9) 

Where HD(ω) = {HDi(ω)} is the transfer complex frequency response function of the interstory  drifts as 

HD(ω) =TA-1 B                                            (10) 

Sg(ω) denotes the PSD function of the input üg(t). Using the random vibration theory, the mean square 
of the ith interstory drift can be computed from 
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Taking the summation of all the variances of drifts as a displacement criterion gives 
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1-2- Shape of the F-function (F(ω )) 
Since the integration of F(ω ), means the area under its curve, is the most important part of the objective 
function, shape of the F-function becomes important in the critical excitation optimization. F-function 
generally has up to n peaks near modal frequencies for an n-DOF system. F( ω ) is a function of dynamic 
parameters of the structure like modal frequencies and dampings. In the figure 2, three models with 
different modal parameters are shown. In the figure 3, different shapes of F( ω ) for these 2-DOF systems 
have been shown. If the frequency of the first and the second mode are far from each other, F-function has 
two peaks like figure 3(a). If these two frequencies are near together, F-function has two peaks besides 
together like figure 3(b). In the figure 3(c), two modal frequencies are so much near that produce only one 
peak in the F-function 
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Fig. 2. Three 2-DOF systems 
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Fig. 3. F-function for 2-DOF systems 

 As seen in figure 3, the peaks of  F-function are higher in the first modes and become lower in the higher 
modes. As a generalization for 2-DOF systems, a frequency range ( ω̂∆ ) around the first mode can be 
found that F-function value is higher than the peak value of the second mode. In the figure 4, this 
frequency range is shown between 1ω̂  and 2ω̂  for the model1 and model2. ω̂∆  for model1 and model2 

with 050.=ξ  is equal to 2.258 and 0.898 rad/sec, respectively. 
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Fig. 4. Higher range of the first mode 

 
2- INTRODUCING THE OPTIMIZATION PROBLEM 

 
Referring to Takewaki [3], for finding the critical excitation, an optimization problem of the general case 
can be expressed as 
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As previously indicated, F-function generally has up to n peaks near modal frequencies for an n-DOF 
system. So the input excitation should be divided into some pieces to resonate the different modes. In each 
piece, because of maximization, Sgi equals to maximum intensity ( s ) for all the ω ’s. So the shape of 
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input excitation becomes rectangular. Then only the frequency content should be obtained. Therefore, the 
start and the end circular frequency of rectangles should be specified as the result of optimization. 
Because of the rectangular frequency bands, the constraints of optimization problem of the general case 
can be expressed as  
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This optimization problem is a nonlinear constrained one with boundary values. Regarding to that all the 
Sgi‘s are equal to maximum intensity ( s ), the relation (17) could be simply written as 
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totalω∆  (summation of frequency bandwidths) is pre-specified and equal to sS . So only the optimal 
distribution of total band width in frequency domain is desirable. 
As an example, we take a 2-DOF structure with the F-function as shown in figure 5. If we assume total 
bandwidth around the first mode, we reach to F-functions less than the peak value of the second mode 
(Fig. 5(a)). Therefore, for considering the greater F-functions, we should place a share of bandwidth 
around the second mode (Fig. 5(b)) dictated by a line named “Optimum line”. 
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        (a) Nonoptimal        (b)Optimal  

Fig. 5. Comparison of optimal and non-optimal critical excitation of a 2DOF system 
 
Even in MDOF systems, a horizontal line named “Optimum Line” can be used (figure 6). Each horizontal 
line has one objective function value (f). The “Optimum Line” is the horizontal line that gives the total 
frequency bandwidth equal to sS . So it can be easily proved that all the circular frequencies at the ends 
of each rectangular band of all the modes have the same F-function value (figure 6). 
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Fig. 6. Schematic position of frequency bands of all the mode 

 
 

3- NUMERICAL OPTIMIZATION METHOD FOR FINDING CRITICAL EXCITATION 
 
3-1- Ordinary Optimization Method 
However, as introduced in the first papers of authors [4], the “Optimum Line” is a simple geometric 
solution. But finding the intersection point of F-function curve with a considered horizontal line can’t be 
easily achieved. In other words, finding the start (and the end) frequencies of each rectangular frequency 

band is difficult: ,...,,, maxmaxmaxmax
∗∗
2211 ωωωω . 

To overcome this difficulty, a simple method of optimization was proposed by authors [5]. In this method, 
frequency range of F-function is divided intoδω ’s. The mid point of each δω  is founded, then F(ω ) for all 
the start, end and mid points is calculated. So the area under F(ω ) in each δω  can be computed using the 
quadratic approximation of Simpson method of integration 

( ) ( )







++







 ++== ∫
+=

=

δωωδωωωδωωωδ
δωωω

ωω
iii

i

i

FFFdFA
2

4
2

1

)(            (22) 

After finding the iAδ ’s for all the iδω ’s, they are sorted in descending order ...≥≥≥ 321 AAA δδδ . 
Now we have  
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Where [ ]N  is the round part of N 

δω
sS

N =                  (24)  

By decreasingδω , iAδ ’s decreases and the equation (23) is reduced to the simplified form with a good 
accuracy 
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Therefore, while using small steps, the answer of optimization problem of critical excitation becomes 
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3-1- Modified Optimization Method 
 
A disadvantage of the ordinary method is its time-consuming inherent. In this method, for 
increasing the accuracy of the response and critical input excitation, it is required very large 
number of steps. Therefore, the ordinary method is inefficient, especially for the large structures. 
To overcome this disadvantage, a new method is presented. In the figure 7, it is seen that in the 
ordinary (old) method, endstart and 11 ωω do not have equal )(ωF . This nonoptimality is a result of 

dividing into equalδω ’s.  
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Fig. 7. Modified Optimization Method 

 
To equalize F-functions of endstart and 11 ωω  and to produce an optimum line as shown in the fig 7, 

we can modify the start and the end frequencies ( 21 ωω and ). By assuming the F-function to 

change linearly in each step δω , we have from details of figure 7 that 

111 δωmff +=        (Detail 1)               (27) 

222 δωmff +=      (Detail 2)               (28) 
m1 and m2  are the slopes of the drawn line of details.Now, to include the decimal part, we have 
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The right term of the above equation is named rδω . From equation (26), (27) and (28): 

rδωδωδω =+− 21                          (30) 

222111 δωδω mfmf +=+                          (31)  
The equations (30) and (31) leads to  
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If rδω closes to zero, we have  

m

f

∆
∆

−== 21 δωδω                (34) 



So the modified Area of F-function between the frequency bandwidth of input excitation is calculated 
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Two integration in the equation (35) are taken by Simpson method. For MDOF systems that critical input 
excitation becomes two or more rectangles, the general equation becomes 
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In which, ii
mandf  are the F-function value and slope of the ith Intersection of optimum line and F-

function, respectively. Also, n is the number of frequency rectangles of critical input excitations. Now, 
other iδω  ‘s can be calculated 
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5- EXAMPLES OF SDOF AND MDOF SYSTEMS 

 
5-1- Single degree of freedom systems 
In the SDOF systems, power spectral density of input excitation will be only one rectangle by the width of  

sS=∆ω  . Accordingly, the mean square of the drift can be computed from 
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Authors in their last papers [4] presented the exact solution of optimal (maximal) story drift by taking 
partial differentiation of f relative to ω1. Therefore, we had  

2
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Where Z is modification factor near one and less than one.  
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as an example, a SDOF example is considered. Its mass and stiffness is 25330 kg and 106 N/m . 
So the natural circular frequency and period becomes 6.283222 rad/s and 1 sec. In the exact 
method of optimization, Z-factor becomes 0.9141135 and critical excitation frequency range is 



calculated between 3.1879917 to 8.2704093 rad/sec as shown in figure 8 that comparing these 
numerical optimization methods with exact method verifies them. In the table 1, the result of the 
ordinary and modified methods are presented for different frequency steps (δω ). In this table, it 
is seen that in the ordinary method, a large number of steps is needed to achieve a good accuracy 
in frequency bandwidth of critical excitation. For example, in the modified method, the input 
frequency bandwidth is calculated 3.18799 rad/sec to 8.27041 rad/sec which is more accurate 
than that of the ordinary method even with 310−=δω  that equals 3.188 to 8.270 rad/sec.  
 

Table 1- Numerically optimized critical excitation for a SDOF system 

=sec)/(radδω  05.0=ξ   
Hyogoken-Nanbu, 
Kobe University NS, 1995 0.1 0.01 0.001 

=− endstart 11 ωω  3.2-8.2 3.19-8.2 3.188-8.27 Ordinary 
Method of 
Optimization =)( fMax  0.118463591 0.1184657413 0.118465750433 

=− endstart 11 ωω  3.18142-
8.26384 

3.1879921-
8.27041 

3.187991730-
8.27041 

Modified 
Method of 
Optimization =)( fMax  0.1184662312 0.11846575043 0.118465750749 
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Fig. 8. Optimal critical excitation of SDOF system with T=1 sec. 

 
5-2- Multi degree of freedom systems 
In the figure 2 and 3, we saw three 2-DOF systems and their F-functions. In the figure 9, the optimal 
critical input excitation of the model1 (Ref. to Fig. 2) have been obtained. In the figure 9(a) and 9(b), the 
power and intensity limit are of El Centro NS (1940) and Hyogoken-Nanbu Kobe Univ. (1995), 
respectively. It is seen that the modal bandwidths of figure 9(b) is narrower than figure 9(a) because of the 
larger value of ( )IntensityPowertotal =∆ω  for the earthquake of Hyogoken-Nanbu Kobe Univ. (1995). 
According to the figure 9, the bandwidth of the first mode is greater than the second mode for both 
earthquakes. 
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        (a)                (b) 
Fig. 9. Optimal critical excitation of Model1 (Ref. to Fig. 2) 

 
In the table 2, assuming different frequency steps (δω ), the frequency bandwidthes and the f-value of the 
model1 (Ref. to Fig.2) to Hyogoken-Nanbu Kobe Univ. (1995) has been calculated. From this table, 
ordinary and modified optimization methods could be compared. It is seen that modified method needs 
fewer steps than ordinary method to achieve the same accuracy in calculating the start and end frequency 
bandwidthes and in calculating the objective fuction equals f-value.  
 

Table 2- Numerically optimized critical excitation of Model1 for Hyogoken-Nanbu Kobe University, 1995 

=sec)/(radδω  Model 1, 05.0=ξ  
Hyogoken-Nanbu, 
Kobe University, 1995 0.1 0.01 0.001 

=− endstart 11 ωω  2.2-6.1 2.210-6.110 2.207-6.107 

=− endstart 22 ωω  8.2-9.30 8.17-9.35 8.1710-9.353 

Ordinary 
Method of 
Optimization 

=)( fMax  0.6320139466 0.63206448410 0.63206474727 

=− endstart 11 ωω  2.20073-
6.111756 

2.206544-
6.107456 

2.206579088-
6.10747544 

=− endstart 22 ωω  8.1735227-
9.3449153 

8.1735227-
9.3449153 

8.171064-
9.3525856 

Modified 
Method of 
Optimization 

=)( fMax  0.632069668 0.63206476985 0.63206475197 

 
Also, the limits of El Centro NS (1940) is chosen and the same prolem is solved repitedly. The results are 
shown at the table 3. From this table, we can obtain the same results.  
The total bandwidth ( totalω∆ ) at the table 2 and 3 is equal to 8.424 and 5.082 for El Centro NS (1940) and 
Hyogoken-Nanbu Kobe Univ. (1995), respectively. Since the total bandwidth for both earthquakes is 
greater than ω̂∆  of model1, both of them yield two frequency bandwidthes as seen in the figure 9.   
 
 
 

 
 

 
 
 



 
 

Table 3- Numerically optimized critical excitation of Model1 for El Centro NS, 1995 

=sec)/(radδω  Model 1, 05.0=ξ  
El Centro NS, 1940 

0.1 0.01 0.001 

=− endstart 11 ωω  0.6-6.9 0.54-6.90 0.537-6.901 

=− endstart 22 ωω  7.5-9.6 7.52-9.58 7.525-9.585 

Ordinary 
Method of 
Optimization 

=)( fMax  0.668181179 0.668181179 0.668181179 

=− endstart 11 ωω  0.5358-6.900 0.5362693-
6.900934 

0.536269297-
6.9009026 

=− endstart 22 ωω  7.522-9.582 7.5251391-
9.584716567 

7.52520534-
9.58481446 

Modified 
Method of 
Optimization 

=)( fMax  0.668181179 0.668181179 0.668181179 

 
Also, the Model2 is chosen as another model that has two besides peaks. Figure 10 showes the optimal 
critical input excitation of the mode2. It is seen that two frequency bandwidthes have joined together and 
only one frequency bandwidth have been produced. Table 4 shows the detailed results for different 
frequency steps.    
 

Table 4- Numerically optimized critical excitation of Model2 for Hyogoken-Nanbu Kobe University, 1995 

=sec)/(radδω  Model 2, 05.0=ξ  
Hyogoken-Nanbu, 
Kobe University,1995 0.1 0.01 0.001 

=− endstart 21 ωω  3.7-8.7 3.590-8.670 3.592-8.674 Ordinary 
Method of 
Optimization =)( fMax  0.7375774 0.73758766 0.737587823 

=− endstart 21 ωω  3.5888-8.6712 3.5917-8.67416 3.5918-
8.674225 

Modified 
Method of 
Optimization =)( fMax  0.7375699 0.73758780 0.73758724 
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Fig. 10. Optimal critical excitation of Model2 (Ref. to Fig. 2) 

 



 
 
As the last example, a four story building is considered  with  the modal  frequencies equal to 

..&.,.,. srad50166512848425 4321 ==== ωωωω  we take 310−=δω rad/s and the power and intensity of 

El Centro NS (1940) earthquake ( 03302780 .,. == sS ) as the limits. Then as shown in the figure 11, all 

the modal frequency bandwidthes have been calculated by the proposed method of optimization: 
srad /024.721 =∆+∆ ωω , srad /400.13 =∆ω and 04 =∆ω  . 
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Fig. 11.  Critical excitation for 4-DOF system 

 
6-CONCLUSIONS 

 
In this paper, ordinary method of finding optimal critical excitation has been modified. Comparing the 
modified and ordinary method shows the efficiency and speed of the proposed method specially for 
finding the start and end frequency of the modal bandwidthes. Multi degree of freedom examples show 
more effectiveness of the first modes than higher modes, especially for the narrowband input excitations 
and it is seen that if total frequency bandwidth ( totalω∆ ) is less than an important frequency band ( ω̂∆ ), 
only the first mode will be contributed. 
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