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Summary 

A general methodology is outlined to study the dynamic behaviour of embedded foundation in 
homogeneous and layered soil medium. A computational tool is developed to determine the 
impedance functions of foundation in layered soil medium. Cone frustums are used to model 
the foundation soil system. Cone frustums are developed based on wave propagation 
principles and force-equilibrium approach. Various degrees of freedom, such as, horizontal, 
vertical and rocking are considered for this study. Different parameters, such as, nature of 
soil medium, embedment depth of foundation, Poisson’s ratio of soil medium, depth of top soil 
layer are considered for the present study. 

Key Words: soil-structure-interaction, embedded foundations, layered soil medium, cone 
frustums, impedance functions, dynamic excitations. 

INTRODUCTION 

There are many parameters affecting the dynamic response of structures, such as: the type of 

structure, type of foundation, soil characteristics etc. The observations from the earthquake 

damaged sites show that, the local soil properties, underground and surface topography of soil 

medium and the foundation geometry have an important effect on the dynamic behaviour of 

structures. The local soil conditions and the interaction between soil and foundation will 

affect the dynamic behaviour of a structure in three different ways, such as, soil amplification 

effect, kinematic interaction effect and inertial interaction effect. The total influence is 

generally termed as Soil-Structure Interaction (SSI) effects.  
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The critical step involved in the substructure approach of SSI analysis is to determine the 

force-displacement characteristics of the soil. This relationship may be in the form of an 

impedance (stiffness) function, or, inversely, a compliance (flexibility) function. For the 

present study, the force-displacement relationship of foundation is expressed with impedance 

function. The foundation impedance functions depend on the soil configuration, material 

behaviour, frequency of excitation and type of foundation. In general, for a linear elastic or 

visco-elastic material with a homogeneous or horizontally stratified soil deposit, the 

impedance function is both complex valued and frequency dependent. The soil deposits rarely 

have uniform properties, particularly when considering the variation of shear modulus and 

Poisson’s ratio. In general, the soil media consists of multiple layers with different properties; 

some times drastic changes in properties can be noticed between two adjacent layers. The 

impedance functions of foundations embedded in visco-elastic soil medium can be 

determined either with rigorous approach ( Bycroft [1] ) or with simple physical model ( Wolf 

and Paranesso [2] ). 

The analysis becomes more complex if the soil media is inhomogeneous consisting of 

multiple layers with different properties. Treating the inhomogeneous soil media as a 

homogeneous one with average properties or as a media with properties varying linearly or 

parabolically will give rise to unrealistic solutions. The shear and dilatational waves generated 

by the exciting force propagate through each of the soil layer with differing amplitudes. They 

will experience reflections at the interfaces of soil layers and will diminish in amplitudes as 

they travel towards the far field.  

Jaya and Prasad [3] have developed a simple physical model (cone frustum model) to 

determine the dynamic behaviour of the embedded foundation in layered as well as 

homogeneous soil medium. The developed cone frustum model is capable of incorporating 

the complexity of layered soil media and the complicated behaviour of propagating waves. 

The behaviour of embedded foundation in layered soil medium is studied using cone frustum 
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model and the results are compared with the published results ( Jaya and Prasad [3] ).This 

paper presents the influence of various parameters on the impedance functions embedded 

foundations. 

CONE FRUSTUM MODEL 

Ehlers [4] has developed the basic cone model for surface foundation under translational 

motion in homogeneous soil. Later, Meek and Wolf [5] presented a simplified methodology 

to enable the practitioner to evaluate the dynamic response of base mat on the surface of 

homogeneous soil. The cone model concept was extended to compute the dynamic response 

of a footing or base mat on a soil layer resting on rigid rock (Meek and Wolf [6]) and on 

flexible rock (Wolf and Meek [7]). Meek and Wolf [8] performed the dynamic analysis of 

embedded footings by idealizing the soil as a truncated cone instead of an elastic half-space. 

Double cone is introduced to represent the disk in the interior of a homogeneous full-space. 

Wolf and Meek [8] calculated the dynamic-stiffness coefficients of a disk on the surface of a 

horizontally stratified site with multiple layers by introducing cone frustum model. Later, the 

concept of cone frustum model is extended for embedded foundation ( Jaya and Prasad [3] ). 

The basic steps for the development of cone frustum model for an embedded foundation are 

briefly discussed.  

Fig.1 shows a rigid cylindrical foundation of radius 0r  embedded to a depth e in a layered 

half-space. The stratified soil consists of multiple layers with varying material properties. For 

a particular soil layer m, ( ) ( ), ,G m mν ( )mρ  and dm, are the shear modulus, Poisson’s 

ratio, the mass density and the depth of soil layer, respectively.  

The first step in the evaluation of impedance function of the foundation is to develop the 

stiffness matrix of the free field. The free field is defined as the soil medium without any 

excavations or rigid foundations. The development of free-field stiffness matrix of the site 



 4

demands the discretisation of the cylindrical soil region with rigid disks, where the foundation 

is to be inserted later (Fig.1). The number of rigid disks existing per soil layer depends on the 

properties of the corresponding soil layer, foundation geometry and the maximum frequency 

of excitation. For good accuracy, the soil region is discretised in such a way that the thickness 

of the soil slices should not exceed one sixth of the shortest wavelength of the propagating 

waves. For a soil layer m with thickness md , the thickness of soil slices within the layer, 

( )e m∆ , is determined with the expression Eq.1. The number of disks, N(m), stacked per 

layer is determined as per Eq.2 and the total number of disks stacked in the cylindrical soil 

region, where the foundation is to be inserted is nd, (Eq.3). 
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Fig.1. - Embedded cylindrical foundation with radius r0 and embedment depth e in 
layered soil medium resting on a half-space 

 

DYNAMIC STIFFNESS COEFFICIENT OF FOUNDATION  

The soil layers sandwiched between the rigid disks are treated as cone frustums and the 

underlying homogeneous half-space as a single cone. The backbone cone for each rigid disk 

is developed independently [Fig.2a and Fig.2b]. For the rigid disk at the surface level, the 

backbone cone is developed as shown in Fig. 2a, which starts from the surface disk and 

extends downwards to infinity. The backbone cones for all other embedded disks are 

developed as shown in Fig. 2b, which start from the source disk with two cones. One of cones 

extending upwards to the soil surface and the other extending downwards to infinity. Fig.2c 

shows the details of a single cone frustum with rigid disks at interfaces. Foundations under 

translational (horizontal and vertical) and rotational (rocking) modes are treated separately.  
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Fig.2 – Backbone cones for surface and embedded disks. 
 

At first, consider the backbone cone for a surface disk, as shown in Fig. 2a. The radii of the 

cone frustums at the interfaces are determined from the geometry of the backbone cone.  In 

the backbone cone, any cone frustum j is bounded by interfaces j and j+1 (Fig. 2c). The force-

displacement relationship for the cone frustum j, can be written as given in Eq.4 (Wolf [9]). 

The coefficient matrix in Eq.4 denotes the dynamic-flexibility matrix of the cone frustum, j, 

which connects the displacements and the forces at interfaces j and j+1. 
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where, ( )jP ω  and ( )ju ω  are the force and displacement amplitudes at interface j and 

( )1jP ω+  and ( )1ju ω+  are the force and displacement amplitudes at interface j+1. The 

coefficients ( )jS ω  and ( )1jS ω+  are the dynamic-stiffness coefficients of the single cones 

with surface disks of radius jr and 1jr + , respectively. The properties of the soil half-space are 

same as that of the cone frustum j, bounded by the interfaces j and j+1. The expressions for 

( )jS ω  and ( )1jS ω+  for various degrees of freedom are given in Jaya and Prasad (3). The 

transfer functions ( ),j jT ω , ( ), 1j jT ω+ , ( )1,j jT ω+  and ( )1, 1j jT ω+ + , defined in Eq.4, can be 

derived from the superposition of the Green’s functions defining the displacements at the 

interfaces of cone frustums (Jaya and Prasad [3]). The inverse of the coefficient matrix in 

Eq.4 gives the dynamic stiffness matrix of the cone frustum. Similarly, the dynamic –stiffness 

matrices of all the cone frustums in the backbone cone can be developed independently.  

The underlying half-space is modeled as a single cone with disk n at the surface, for which the 

force-displacement relation is written as, 

( ) ( ) ( )n n nP S uω ω ω=                                              (5) 

where, the coefficient ( )nS ω  is the dynamic-stiffness coefficient of the underlying half-

space with a rigid disk of radius rn at the surface. ( )ωnP  and ( )ωnu  are the force and 

displacement amplitudes at the nth interface. The dynamic-stiffness matrix of the backbone 

cone is then developed by augmenting the dynamic-stiffness matrices of all the layers and the 

dynamic-stiffness coefficient of the underlying half-space. The dynamic-equilibrium equation 

for the backbone cone is then written as, 

( ) ( ){ } ( ){ }
1 11

S u Qω ω ω=                                            (5) 

where, ( )
1

S ω    denotes the dynamic-stiffness matrix associated with the backbone cone 

representing a rigid disk (disk no.1) on the surface of layered medium, ( ){ }
1

u ω  is the 
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displacement amplitudes at the locations of all the disks due to unit load at the surface disk 

(disk no.1) and ( ){ }
1

Q ω  is the vector of external load amplitudes at all the disks locations.  

Similarly, for all other loaded embedded disks, the displacement vectors are developed and 

represented as, ( ){ } ( ){ } ( ){ }
2 3
, , ,

n
u u uω ω ωLL . All the displacement vectors are 

augmented together to form the dynamic-flexibility matrix of the free field, the inverse of 

which gives the dynamic stiffness matrix of the free field, ( )fS ω   . The matrix 

( )[ ] nn
fS ×ω  is discretised in the nodes corresponding to the rigid disks. The force-

displacement relationship for the free field is then written as,  

( ){ } ( ) ( ){ }fP S uω ω ω =                                                      (6) 

 

For foundations under horizontal excitations, the same procedure is adopted to evaluate the 

dynamic-stiffness matrix of the free-field. As the soil mass deforms in shear under horizontal 

excitations, the shear modulus G  of soil and shear wave velocity sc  are considered for the 

analysis. In the same manner, the force displacement relationship of foundation under rocking 

motion can also be determined. Then various dynamic-stiffness coefficients of foundation can 

be determined by considering the kinematic interaction effect as well as extraction of soil 

mass from the free field and can be expressed as Eq.7, Eq. 8 and Eq.9 ( Jaya and Prasad [3] ), 

( ) { } ( ) { } 21 1
T f

ah h
S S mω ω ω = +                                                 (7) 
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The various inertial quantities involve the mass 0am A e ρ=  of the excavated soil cylinder. 

The rocking dynamic-stiffness coefficient ( )r
S ω  (Eq. 9) consists of two separate 

components. Rigid-body rotation about the centre of the base is viewed as the sum of 

translation of the disks without rotation (vector {e}) and a constant rotation of the disks 

without translation (vector {1}). The vectors {e} and {1} can be expressed as, 

{ } [ ]T1n 1,,1,1,11 LL=×      (10) 

{ } [ ]T1n 0,e,,e2e,ee,ee ∆∆∆ LL−−=×    (11) 

The dynamic-stiffness coefficient of foundation for various degrees of freedom can be 

expressed as function of static-stiffness coefficient, spring coefficient and damping coefficient 

as, 

( ) ( ) ( )( )0 0 0statS K k a ia c aω = +                                          (12) 

The results of the present study for the static-stiffness coefficient ( Ksta ) of foundation are 

matching with the exact solutions. The spring ( )0k a and damping ( )0c a  coefficients for 

various types of foundations embedded in different types of soil medium are evaluated. The 

cylindrical foundations, which are embedded in homogeneous as well as in layered soil 

medium, under horizontal, vertical and rocking excitations are considered for the present 

study. The impedance functions of such foundations are evaluated and the results are then 

validated with those of the other reported results [ Jaya and Prasad (3) ]. The important 

parameters that affect the impedance functions of foundations are identified as the type of soil 

medium, the amount of embedment and the depth of top soil layer. Foundations embedded in 

various types of homogeneous soil medium with Poisson’s ratios ranging from 0 to 0.45 are 

analysed. The ratio of embedment depth to radius of foundation considered are 0, 1.0, 1.5 and 

2. In the case of layered soil medium, the influence of top soil layer depth on impedance 
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functions of foundation is investigated. The formulation of the problems and the results are 

discussed in the following sections. 

RESULTS AND DISCUSSION 

Type of Soil Medium 

Poisson’s ratio significantly influences the dilatational wave velocity. In case of vertical 

vibration, the relative contribution of the dilatational wave is higher than that of the other 

waves. So, variation of Poisson’s ratio affects the vertical response to a considerable extent. 

The amount of this influence is investigated by considering a cylindrical foundation 

embedded in various soil half-spaces with Poisson’s ratios; 0, 0.25, 0.33 and 0.45, under 

different excitations. 

The normalised impedance functions for foundations under horizontal excitations are shown 

in Fig. 3. The spring coefficient ( )k ah 0 increases with the increase in Poisson’s ratio, at 

higher excitation frequency under consideration. The damping coefficient, ( )c ah 0 , deceased 

by 16% for an increase in Poisson’s ratio from 0 to 0.45, which remains constant throughout 

the whole frequency range under considerations. 

Consider the foundation under vertical excitations with e r0 1= . The normalised impedances 

are shown in Fig. 4. For the dimensionless frequency of excitation, a0 1= , the influence of 

Poisson’s ratio of the soil on the spring coefficient ( )k av 0  of the foundation is very little and 

only 1% increment is noticed due to an increase in Poisson’s ratio from 0 to 0.45. But, when 

a0  increases to 3, the influence of Poisson’s ratio of the soil on the spring coefficient become 

significant; about 25% increment in the value of ( )k av 0  is noticed. So, it is understood that 

the influence of Poisson’s ratio (ν) on spring coefficient is a frequency dependent 

phenomenon. Also, it is observed the influence of Poisson’s ratio (ν) on damping coefficient 

( )c av 0  is significant. There is a decrease of 24.7% in ( )c av 0  value is noticed for an increase 

in Poisson’s ratio from 0 to 0.45. From the Fig. 5, it is observed that the normalised rocking 
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impedance functions, [ ( )k ar 0 and ( )c ar 0 ], are not greatly influenced by the change in 

Poisson’s ratio of soil medium.  

Embedment depth of foundations 

Foundations with embedment depth to radius ratios - ( e r0 ) of 0, 1.0, 1.5 and 2.0 are 

considered for the present study. The impedance functions of foundations under horizontal, 

vertical and rocking excitations are normalised as given by the Eq. 12. The normalised 

horizontal impedance functions are shown in Fig. 6. Fig. 7 shows the normalised vertical 

impedance functions and Fig. 8 shows the normalised rocking impedance functions. 

It can be noticed from these results that, the spring coefficients for the horizontal, vertical and 

rocking excitations are not affected much due to the change in e r0  ratio.  

In the case of surface foundations with e r0 0= , the spring coefficient, ( )k a0 , and damping 

coefficient, ( )c a0  remains constant throughout the frequency range under consideration for 

the foundations under horizontal and vertical excitations. For the foundations under rocking 

motions, the variation of spring as well as damping coefficients are very smooth. 

For embedded foundations, the damping coefficients increase with the increase in depth of 

embedment ( e r0 ). For the foundations under horizontal and rocking motions, the influence 

of e r0  ratio to the spring coefficients of foundation is very less. On the other hand, the 

damping coefficients increase with the increase in embedment depth. About 10 to 15% 

increment is noticed when the e r0  ratio increases from 1.0 to 1.5 as well as from 1.5 to 2.0. 

For the foundations under vertical motions with a0 1= , as the e r0 ratio increases from 1 to 

2, the damping coefficient increases by 23.8%. While, the spring coefficient decreases with 

the increase in e r0  ratio, but the influence of embedment depth to the spring coefficient is 

very less. Only 4.76% of reduction in the value of vertical spring coefficient is noticed when 

the e r0  ratio varies from 1 to 2.  
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Depth of top soil layer 

The presence of bedrock below the soil layer significantly affects the dynamic behaviour of 

the embedded foundation. Similarly, the depth of the soil layer overlying the bedrock also 

influences the impedance functions of foundations. The ratio of depth of layer to the 

embedment depth of foundation ( ed ) is considered as the influencing parameter. The ed  

values of 1, 3 and 5 are considered for the present study. The variation of the impedance 

functions of foundations under horizontal and vertical motions are shown in Fig.9 and Fig.10. 

When the foundation is resting on the base rock  (for 1=ed ), a smooth variation in the 

graph for spring and damping coefficients are noticed. As the top layer depth increases, peaks 

and valleys are noticed in the graphs for the impedance functions, which shows the 

importance of cut-off frequency in the analysis of foundation in soil layer ( Wolf [9] ). The 

resonance frequency of the soil medium, resting on the bottom base rock, is changing with the 

increase in layer depth. 

CONCLUSION 

A comprehensive study on the dynamic behaviour of cylindrical foundations embedded in a 

homogeneous and in layered half-space, under horizontal, vertical and rocking excitations, is 

carried out. Investigations were carried out to study the effects of embedment depth of 

foundation, Poisson’s ratio of soil medium and the depth of top soil medium, on impedance 

functions of foundations. From the study, it has been observed that, the foundation imparts 

maximum spring coefficient values when the embedment depth of foundation is equal to the 

radius of foundation. Increase in Poisson’s ratio of soil makes the soil-foundation system 

more stiffer. As the top layer depth increases, peaks and valleys are noticed in the graphs for 

the impedance functions, which shows the importance of cut-off frequency in the analysis of 

foundation in soil layer. The resonance frequency of the soil medium, resting on the bottom 

base rock, is changing with the increase in layer depth. 
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Fig. 3 - The horizontal impedance functions of the cylindrical foundation embedded 
in soil mediums with different Poisson’s ratios   

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig. 4 - The vertical impedance functions of embedded cylindrical foundation with 
different Poisson’s ratios  
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Fig. 5 - The rocking impedance functions of embedded cylindrical foundation with 
different Poisson’s ratios  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 6 - The horizontal impedance functions of embedded cylindrical foundation with 

different e r0  ratios 
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Fig. 7 - The vertical impedance functions of embedded cylindrical foundation with 
different e r0  ratios 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 8 - The rocking impedance functions of embedded cylindrical foundation with 
different e r0  ratios 

 

 

 

0 . 5 1 . 5 2 . 5 0 . 0 1 . 0 2 . 0 3 . 0 

0 . 5 

0 . 0 

1 . 0 

Dimensionless frequency a0 

Sp
ri

ng
 C

oe
ff

ic
en

t k
v(

a 0
) 

e/r0 = 0 
e/r0 = 1 
e/r0 = 1.5 
e/r0 = 2 
 

Dimensionless frequency a0 

0 . 5 1 . 5 2 . 5 0 . 0 1 . 0 2 . 0 3 . 0 

0 . 5 

1 . 5 

0 . 0 

1 . 0 

2 . 0 

D
am

pi
ng

 C
oe

ff
ic

en
t c

v(
a 0

) 

e/r0 = 0 
e/r0 = 1 
e/r0 = 1.5 
e/r0 = 2 
 

Dimensionless frequency a0 

Sp
ri

ng
 C

oe
ff

ic
en

t k
r(a

0)
 

e/r0 = 0 
e/r0 = 1 
e/r0 = 1.5 
e/r0 = 2 

0 . 5 1 . 5 2 . 5 0 . 0 1 . 0 2 . 0 3 . 0 

0 . 3 

0 . 8 

0 . 0 

0 . 5 

1 . 0 

0 . 5 1 . 5 2 . 5 0 . 0 1 . 0 2 . 0 3 . 0 

0 . 3 

0 . 8 

0 . 0 

0 . 5 

1 . 0 

e/r0 = 0 
e/r0 = 1 
e/r0 = 1.5 
e/r0 = 2 

Dimensionless frequency a0 

D
am

pi
ng

 C
oe

ff
ic

en
t c

r(a
0)

 



 16

 

 

 

 
 
 
 
 
 
 
 
 
 

 

Fig. 9 - The horizontal  impedance functions of embedded cylindrical foundation with 

various ed  ratios 

 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 10 - The Vertical impedance functions of embedded cylindrical foundation with 

various ed  ratios 
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NOTATIONS 
 

Notations  Description 

( )e m∆  - Thickness of soil sandwiched between rigid disks 

0r  - Radius of foundation 

rj - Radius of cone frustum at jth interface 

0a  - Dimensionless frequency 0

s

r

c

ω 
 
 

 

ω  - Frequency of excitation 

c  - Appropriate wave velocity 

cs - Shear wave velocity 

( )N m  - Number of rigid disks in layer m 

nd - Total number of disks 

md  - Depth of layer m 

( )ju ω  - Displacements at interface j  
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( )jP ω  - Force amplitudes at interface j  

( )jS ω  - Transnational dynamic stiffness matrix of rigid disk at 
interface j 

( ),j jT ω  - Transfer function describes the displacement at interface j due 
to force at j under translational motions. 

( )
1

S ω    - Translational dynamic-stiffness matrix associated with the 
backbone cone representing a rigid disk (disk no.1) 

( ){ }
1

u ω  - Displacement amplitudes at the locations of all embedded 
disks due to unit load at disk no.1 

( ){ }
1

Q ω  - Vector of external load amplitudes 

( )fS ω    - Dynamic stiffness matrix of the free-field 

e - Embedment depth of foundation 

am  - Mass of soil to be excavated to impose the foundation 

0A  - Cross-sectional area of foundation 

ρ  - Mass density of soil 

S(ω)h - Dynamic stiffness coefficient of foundation under horizontal 
excitations 

S(ω)v - Dynamic stiffness coefficient of foundation under vertical 
excitations 

S(ω)r - Dynamic stiffness coefficient of foundation under rocking 
excitations 

G(m) - Shear modulus of soil medium at jth interface 

ρ(m) - Mass density of soil medium at jth interface 

ν(m) - Poisson’s ratio of soil medium at jth interface 
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