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SUMMARY 
 
An investigation on the torsional seismic response controlling capacity of dissipation devices in the 
asymmetric-plan buildings is herein presented. Effects of the plan-wise distribution of supplemental 
damping on torsionally dynamic behaviour have been investigated by using modal analysis techniques in 
the state space representation. Parametrical analysis leads to the optimal plan-wise allocation of damping 
resources on varying the dynamic characteristics of the asymmetric-plan system. Results are also obtained 
by both applying H2 and H∞ norm control methods and by numerically analysing  the dynamic response to 
recorded and synthetic seismic excitations. 

 
INTRODUCTION 

 
Studies on the seismic response of asymmetric-plan systems have always aroused considerable interest in 
the scientific community [Hejal, R. and Chopra, A., 1987] [Kan, C. L. and Chopra, A. K., 1979]. The 
importance of torsional effects on the seismic behaviour of structures having an irregular plan distribution 
of mass and stiffness is generally taken into account in aseismic provisions and guidelines for the design 
of seismic-resistant systems. 
From the beginning of the 1990s, assessment studies started to evaluate the possibilities of utilising extra-
structural damping in order to reduce seismic demand in asymmetric-plan systems  [Pekau OA, Guimond 
R., 1991], [Goel RK, 1998]. Recent studies have demonstrated the effectiveness of such a control strategy 
in reducing both the linear [Goel RK, 2000], [Lin W-H, Chopra AK, 2001] and non-linear [Goel RK, 
Booker A., 2001] seismic response of asymmetric systems through the use of viscous-fluid devices. These 
studies have pointed out the importance of the plan-wise distribution of additional damping devices by 
supplying a sort of design guideline. The result of these studies is to arrange the supplemental dampers 
such that the damping eccentricity respect to the mass centre takes on the largest value with algebraic sign 
opposite to the structural eccentricity [Goel RK, 2000]. This means locate the supplemental damping 
centre on the flexible edge side.  
This study faces the same problem through methodologies of “vibration control theory”. In particular, 
linear seismic response of non-proportional damped systems is investigated through the use of modal 
analysis techniques and H2 and H∞ transfer function norms. Parametrical analyses are carried out for the 
definition of supplemental damping design criteria by considering the mass and stiffness properties of the 

                                                 
1 Department of Civil Engineering – University of Salerno (Italy) 



asymmetric system. Finally, the design criteria have also been tested through the dynamic analysis of 
asymmetric systems subjected both to synthetic and recorded seismic events. 
 
 

DYNAMIC ANALYSIS OF ASYMMETRIC-PLAN SYSTEMS  
EQUIPPED WITH SUPPLEMENTAL DAMPING 

 
Let us consider the structure shown in figure 1 described in a co-ordinate system where the origin of the 
axes is located to coincide with the centre of stiffness KC  and the direction of x-axis is described by the 

line connecting KC  with the centre of masses MC . System asymmetry is defined by eccentricity e , 

which is the distance between the centres of mass and stiffness.  
 

 
Figure 1: Model of an asymmetric-plan system  

 
The particular choice of this co-ordinate system brings about an uncoupling of translation displacement 
along the x-axis from that which is lateral-torsional along the y-axis. In this paper we will examine only 
the lateral-torsional behaviour as defined by the two degrees of freedom ( )θ,yu .  

The system is characterized by its natural damping parameters proportional to its mass and stiffness by 
means of α  and β , and with extra-structural damping devices described by viscous damping constants 

ixc ,  and iyc ,  respectively in directions x and y. The equations of motion are derived for the two degrees of 

freedom system as: 
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In (1), the supplemental damping system is described by eccentricity Ce  between the centre of damping 

),( CCC yxC ≡   and the centre of stiffness KC , the radius of gyration Cρ  and the overall damping 

coefficient extyc ,  in direction y: 
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In the following, l  indicates the projection along the x-axis of the edge of the system, n  is the number of 
dampers, and finally, ix  and iy  the coordinates which identify the position of the i-nth device.   

Equations (1) can be written in the form: 
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where yξ  and yω  represent the supplemental viscous damping factor and the pure translation natural 

circular frequency respectively. In a symbolic form (4) can be rewritten as: 
 

( ) gext u&&&&&&

gMIKζζCζKMζM −=++++ βα  (5) 

 
where M , extC  and K  represent the mass, supplemental damping and stiffness matrices respectively, gI  

is the influence vector of the ground motion and [ ]Tly θ=ζ  the displacement vector.  

The supplemental damping may be considered as a control action described by ζCu &= . Equation  (5) can 
therefore be rewritten in the form: 
 

( ) uMIKζζKMζM g −−=+++ gu&&&&& βα  (6) 

 
which in state space representation leads to: 
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or rather, in symbolic form: 
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where [ ] [ ]TT
lyly θθζζ &

&

& ==Z  is the state vector of the system, with A  the state matrix for the 

uncontrolled structure and with [ ]Textx C0K1 22=  the gain matrix that connects the control action to the 
system state.  
In the complex Laplace space, equation (8) can be written as: 
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By defining 21)( ss gBAIH −−=  the transfer matrix relating the complex response of the uncontrolled 

system to the input seismic action, the system (9) can be rewritten as: 
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From (10) the control block diagram, shown in fig. 2, which is representative of the behaviour of an 
asymmetric-plan system equipped with extra-structural damping is obtained [Palazzo B., Petti L., 1997].  
 

H 
+ 

+ 

)/( 2sBB gu
 K1 

ug 

u 

Z 

 
Figure 2: Block diagram of the controlled system   

 
It is interesting to note that the supplemental dissipation is seen by the system as a closed loop controller 
in which the control action works retroactively on the system. It can be observed that, although the 
controller input is the complete state of the system, the specific form of the gain matrix, 1K , only allows 
for direct control of the velocity components. Therefore, displacement control  is obtained by indirectly 
controlling the velocity. By means of supplemental energy dissipation, it is therefore possible to control 
efficiently the relative displacements coupled to high values of velocity components. 
System  (9) can also be rewritten as: 
 

( ) gu&&&

g1u BZKBAZ ++=  (11) 

 
In this case, ( )1uKBA +  represents the state matrix of the controlled system. 
 
 
 
 



MODAL ANALYSIS IN THE SPACE STATE  
 
Writing down the dynamic problem (9) or rather (11) in the space state allows for the dynamic equations 
to be uncoupled, even in the presence of non-proportional damping. As is known eigenvalues and 
eigenvectors of the matrices ( )1uKBA +  and A  represent the poles (i.e. modal circular frequency and 
damping) and the modal forms of the controlled or uncontrolled system.  
In particular, for an N-degrees of freedom system, which is not over-damped, there exist N complex 
conjugate couples of poles nλ : 
 

21 nnnnn i ξωωξλ −−−=  and 21 nnnnn i ξωωξλ −+−=  (12) 

 
In (12) nω  and nξ  represent respectively the vibration circular frequency and the damping factor, both of 

which are related to the complex conjugate couples of the modal forms ( )nn ΦΦ ,  and assessed by: 
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By noting the modal properties, the state vector can be written as: 
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with ip  the i-nth principal coordinate. From  (14) and (9), taking into account the orthogonality of modal 

forms ( )nn ΦΦ ,  with respect to the state matrix, system (9) or rather (11), uncouples in N complex 
conjugate couples of first order differential equations.  
 

)(tupp gnnnn &&& Γ=+ λ  (15) 

 
in which nΓ  represents the participation factor of the n-nth mode which, in the case of the uncontrolled 
system is written as: 
 

g
1

n BΦ
−=Γn   for  Nn 2...,3,2,1=  (16) 

 
The dynamic modal properties of the controlled system depend on the following set of parameters: 

- the translation vibration period of the system, T ; 
- the supplemental damping, extξ ; 
- the structural eccentricity, le /=ε ; 
- the spreads of mass and stiffness about their distribution centroids, lMM /ρλ =  e lKK /ρλ = ; 

- the supplemental damping eccentricity, leCC /=ε ; 

- the spread of damping about its centroid, lCC /ρλ = . 
 

With the aim of evaluating the effect of such parameters, in a wide range, on the dynamic characteristics 
of the system, a numerical analysis has been carried out. Main results are summarized in figures 3-11, 
where modal property values of the controlled system are plotted on varying the plan-wise distribution of 



supplemental damping, having fixed sec1,0=yT ( sec8,62 rady =ω ), 2,0=ε ,  5,0== KM λλ , 

1,0=extξ . Figures refer to systems with a coupling effect between the lateral and torsional motion 

( KM λλ = ).  
The results show how a plan-wise arrangement of dissipation resources significantly influences two modal 
properties:  the participation factor (fig. 3) and the modal damping (fig. 7). In particular, from figure 3 it is 
possible to verify the supplemental damping centre as progressively moving towards the mass centre as 
the participation factor of the second modal form increases, while the same for the first mode is 
substantially constant. Spread of the damping resources appears to have in this case a secondary role on 
modal participation factors. 
From figure 7, we can see that a bordering of the supplemental damping centroid to the mass one consists 
in a reduction on the second modal form damping and a correspondent increase of that on the first form. It 
can be also noted that the greater the spread of the extra-structural dissipation devices, the higher the 
modal damping on both modal forms. Furthermore, the two modal forms have the same modal damping 
for a supplemental damping eccentricity value equal to 0.1, that is in the case in which the damping centre 
has the same distance from the stiffness and mass centroids. 
As a general result, it can be proof that in the cases of lateral and torsional motion coupling ( KM λλ = ), 
the modal damping values are symmetrical with respect to a vertical axis passing through the middle point 
of the segment between the mass and stiffness centroids (figs. 7, 9, 11). 
In all the cases analysed, a substantial independence of the modal circular frequency values from the plan-
wise arrangement of supplemental damping has been observed (fig. 4). In addition, it is possible to notice 
how, in the case of motion coupling, the torsional component is the largest in both the modal forms (figs. 
5,6). 
Furthermore, the numerical parametric analysis allowed for an investigation of the effectiveness of the 
supplemental dissipation devices on varying the dynamic parameters of the system. The main results are 
listed as follows: 

- the influence of supplemental damping arrangement on modal participation factor appears to 
decrease when structural eccentricity increases (fig. 8); 

- increasing structural eccentricity leads to a simple translation of the above mentioned symmetry 
axis toward higher values of the supplemental damping eccentricity (fig. 9); 

- the increase of the supplemental damping resource accentuates the dependence of the 
participation factor on the plan-wise distribution (fig. 10); 

- modal damping increases adding supplemental dissipation resources (fig. 11); 
- other modal properties present a negligible dependence on the investigated parameters. 

It is opportune to underline that, being Cρ  physically viewable, for classical architectural plan 
arrangement, as the minimum distance between the supplemental damping centre and the farthest device, 
and considering the definition of the  parameter l , the following constraint comes out: 
 

leCC ≤+ρ   (17) 

 
Equation (16) can be written in a non-dimensional form as: 
 

1≤+ CC ελ   (18) 

 



 
Figure 3: Modal participation factor norm on varying plan-wise 
distribution of supplemental damping – Ty=0.1 sec   

 
Figure 4: Apparent vibration circular frequencies on varying 
plan-wise distribution of supplemental damping – Ty=0.1 sec   

  

 
Figure 5: First modal form components on varying plan-wise 
distribution of supplemental damping – Ty=0.1 sec   

 
Figure 6: Second modal form components on varying plan-
wise distribution of supplemental damping – Ty=0.1 sec   

  

 
Figure 7: Modal damping on varying plan-wise distribution of supplemental damping – Ty=0.1 sec   

 
As far as the control of the lateral-torsional seismic response of the system is concerned, the modal 
analyses carried out only provide a set of preliminary provisions. 



First of all, no position exists for the supplemental damping centroid to minimize the contribution of both 
the modal forms. The higher the damping related to the first modal form, the lower is that related to the 
second modal form, and vice versa. Therefore, the problem of the optimal allocation of dampers is not 
trivial, and should be faced by means of analytical tools able to synthesize in a performance index the 
overall modal properties contributing to the seismic response of an asymmetric-plan system. 

 

 
Figure 8: Modal participation factor norm on varying plan-wise 
distribution of supplemental damping – Ty=0.1 sec   

 
Figure 9: Modal damping on varying plan-wise distribution of 
supplemental damping – Ty=0.1 sec   

  

 
Figure 10: Modal participation factor norm on varying plan-
wise distribution of supplemental damping – Ty=0.1 sec   

 
Figure 11: Modal damping on varying plan-wise distribution of 
supplemental damping – Ty=0.1 sec   

 
 

OPTIMAL PLAN-WISE DISTRIBUTION PROBLEM FOR SUPPLEMENTAL DAMPING 
 
This work presents a new approach to solving the optimal plan-wise distribution problem of supplemental 
damping. In particular, such an approach is based on the study of the transfer function relating the 
maximum edge displacement of the asymmetric-plan system to the input seismic excitation. The 
evaluation of the ∞H  and 2H  norms of such a transfer function represent suitable perfomance index for 
the definition of optimal design criteria for the plan-wise distribution of extra-structural dampers. 
 



Transfer function of controlled systems 
Let us consider the Laplace transform of the controlled system. In equation (11) it is possible to evaluate 
the system’s state transform using the following equation: 
 

( ) gUss 21

g1u BKBAIZ −−−=  (19) 

 

where ( ) 21)( sss g1u BKBAIG −−−=  represents the  transfer function vector relating the state of the 

controlled system to the input seismic excitation. Above all, since our interest lies in investigating the 
seismic response in terms of edge displacements, we define the transfer functions relating the flexible 

edge displacement )(sG + , and to stiff edge displacement )(sG −  to the ground motion as follows: 
 

[ ] )(0011)( ssG G⋅=+  (20) 

[ ] )(0011)( ssG G⋅−=−  (21) 

 
The plan-wise distribution optimisation has been investigated through the analysis of performance indices 
defined by the ∞H  and 2H   norms of the transfer functions (20) and (21).  
 
Control in norm 2H  

The 2H  norm of a transfer function )(sG  is defined as (Boyd et al., 1991): 
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where the symbols tr and ∗  respectively represent the trace and the transpose complex conjugate 
operators. If one considers that the power density spectral response of the system )(ωoutS  to a white noise, 

characterized by 1)( =ωinS , is given by 
 

)()()( ωωω iiout GGS =  (23) 
 
the equation (23) shows that norm 2H  represents a measure of the root mean square (RMS) of the system 

response to white noise. Therefore, regulating the system response Z , with the target to minimize the 2H  
norm, means to minimize the RMS response.  In the time domain the system RMS response is given by: 
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−
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the problem of the 2H  control can lead back to the minimization of the following performance index:  
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2
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where it is assumed that the system is at rest until the time 00 =t . 



 
Control in norm ∞H  

The ∞H  norm of a stable system transfer matrix is defined as (Boyd et al., 1991):  
 

[ ])(sup
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sH
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Gσ
>
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Where ( ).σ   is the maximum singular value operator defined as: 
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Such an expression shows that the ∞H  norm represents a measure of the upper extreme of the rms output-
input ratio. Therefore, in this sense we are talking about design control in the "worst case". 
Consider a linear system, in a null state until 0=t , described in the time domain by: 
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Let the gain 2L  have the following expression: 
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It is possible to demonstrate that 2L  coincides with the ∞H  norm, so such a norm can be physically 

interpreted as the upper extreme of the 2L  gain on varying the input signal. 

  
Optimal plan-wise damper distribution  
In figures 12-17, values of the 2H  and ∞H  norms applied to the transfer function )(sG +  and )(sG −  on 

varying mechanical parameters describing the plan-wise distribution of the extra-structural damping, Cε  

and Cλ , are plotted. In particular, figure 12-13 show the ∞H  norm trend for both )(sG +  and )(sG −  
transfer function and for 4.02.0 −=ε . In figures 14-17, according to the aim of limiting the maximum of 
both edge displacements, for every considered ( Cε , Cλ ) couple, the maximum value of the ∞H  (figs. 14-

15) and 2H (figs. 16-17) norm between the two transfer function under consideration is represented. 
These results allow for the evaluation of an optimal plan-wise arrangement of the dissipation resource  
described by the parameters ( optC ,ε , optC ,λ ), considering also the physical limit expressed by equation (17) 

(dotted line). Specifically, the dashed line in figures 14-17 represents the optimal value of the damping 
centre eccentricity having fixed the spread of damping about its centre. This optimal condition is 

characterized by the equality of the ∞H  or 2H  norms for both the transfer functions )(sG +  and )(sG − . 
 
 



 

 
Figure 12: H∞ norms of the transfer function between seismic input and edge displacement 

 

 
Figure 13: H∞ norms of the transfer function between seismic input and edge displacement 

 
From the obtained results the following general considerations can be derived: 

- the increase of the supplemental damping centre eccentricity toward the flexible edge reduces 
the flexible edge displacement, but it worsens the response of the stiff one.  

- optimal control of stiff edge displacement is obtained when the supplemental damping centre 
is located between the mass and stiffness centroids (fig. 12-13); 

- the increase in the supplemental damping spread has a beneficial effect on the control of both 
flexible and stiff edge displacements (fig. 12-13); 

- the optimal condition, which minimizes both flexible and stiff edge ∞H  norm, provides for a 
allocating of the extra-structural damping centroid in correspondence to the mass centre, in the 
case of Cλ =0. By considering increasing values for Cλ the optimal value for Cε  increases too 
(figs. 14-17) ; 

Flexible edge Stiff edge 

Flexible edge Stiff edge 

System parameters 
ε=0,2 

T=0,1 sec 
ξ=0,10 

λK=λM=0,5 

System parameters 
ε=0,4 

T=0,1 sec 
ξ=0,10 

λK=λM=0,5 



- the optimal plan-wise distribution using the 2H  norm presents slightly higher values of the 

supplemental damping centre eccentricity in comparison to the ∞H  norm case; 

- the increase in structural eccentricity determines a corresponding higher value for the optimal 
damping eccentricity; 

- using a value of the parameter Cλ  that is higher than the optimal value does not significantly 

affect the ∞H  and 2H  norms. 
With reference to the reported cases the supplemental damping optimal distribution parameter 
dispositions are indicated in table 1: 
 

Table 1: Optimal arrangement of extra-structural dissipation resource 
 Norm Optimal distribution 

∞H  εC=0.33 λC=0.67 
ε=0,2 

2H  εC=0.41 λC=0.59 

∞H  εC=0.57 λC=0.43 
ε=0,4 

2H  εC=0.62 λC=0.38 
 

           
Figure 14: Maximum H∞ norm considering both positive and 
negative edge transfer functions 

     
Figure 15: Maximum H∞ norm considering both positive and 
negative edge transfer functions 

         
Figure 16: Maximum H2 norm considering both positive and 
negative edge transfer functions 

    
Figure 17: Maximum H2 norm considering both positive and 
negative edge transfer functions 

System parameters 
ε=0,4 

T=0,1 sec 
ξ=0,10 

λK=λM=0,5 

System parameters 
ε=0,2 

T=0,1 sec 
ξ=0,10 

λK=λM=0,5 

System parameters 
ε=0,2 

T=0,1 sec 
ξ=0,10 

λK=λM=0,5 

System parameters 
ε=0,4 

T=0,1 sec 
ξ=0,10 

λK=λM=0,5 



NUMERICAL TESTS  
 
In order to validate the achieved results, a wide numerical tests to evaluate the dynamic response of a 
2DOF system ),( θy  in the case of seismic excitations having only one translation component are carried 
out. Several plan-wise distributions of supplemental damping are investigated and compared with the 
optimal distributions listed in table 1. In particular, the mean value of the maximum edge displacement 
response of the systems is evaluated for 10 synthetic seismic excitations compatible with response spectra 
class A described in EuroCode 8 (prEN 1998-1:2003). Two different vibration periods, selected in the 
circular frequency range in which the synthetic seismic inputs present high energetic content, and 
different supplemental damping values are considered. The results are summarized in the following tables 
2-3. 
Results confirm the key role of an optimal plan-wise distribution of supplemental damping. It is possible 
to note, indeed, how equal amounts of dissipation resources can be consistent with maximum edge 
displacement different for a factor equal to 4. Furthermore, as concerns maximum displacement control, 
an incorrect disposition of supplemental damping lead to the dissipation resources be ineffective. It also 
serves to emphasize, as the results in tables 2-3 show, the coherence of the ∞H  and 2H  norms as a 
mathematical tool to investigate the optimal distribution of dampers.  
The optimal value of distribution parameters ( optC ,ε , optC ,λ ) allows for a reduction of edge maximum 

displacement in comparison with all other considered plan-wise arrangements of dampers, especially for  
T=0,25 sec. 
Finally, the seismic response of structures with a high vibration period to the recorded seismic event of 
Mexico City (1985) have been investigated. This specific seismic excitation is particularly 
disadvantageous for flexible systems, therefore the dynamic response of the controlled system allows us to 
verify the robustness of the proposed control strategy. Results are presented in table 4, while in figs. 18-19 
time-histories for flexible edge displacement are plotted, to compare the seismic response for correct and 
incorrect plan-wise distribution of the dissipative resource. Also in this case, the results obtained confirm 
the effectiveness of the proposed approach, in particular for high values of extra-structural damping and 
structural eccentricity. 
 
 

Table 2: Maximum edge displacement mean values [m] 
Plan-wise distribution parameters 

Optimal parameters System parameters 
εC=0.33 
λC=0.67 

εC=0.41 
λC=0.59 

εC=0 
λC=1 

εC=1 
λC=0 

εC=-1 
λC=0 

εC=0.5 
λC=0.5 

εC=-0.5 
λC=0.5 

Flexible edge 0.0027 0.0027 0.0028 0.0024 0.0045 0.0028 0.0040 T=0,1 
sec Stiff edge 0.0010 0.0011 0.0008 0.0018 0.0009 0.0012 0.0011 

Flexible edge 0.0185 0.0184 0.0184 0.0145 0.0393 0.0183 0.0332 
 

ξ=0,1 T=0,25 
sec Stiff edge 0.0119 0.0130 0.0092 0.0248 0.0098 0.0157 0.011 

Flexible edge 0.0021 0.0021 0.0021 0.0018 0.0050 0.0021 0.0032 T=0,1 
sec Stiff edge 0.0008 0.0009 0.0007 0.0022 0.0004 0.0010 0.0004 

Flexible edge 0.0113 0.0112 0.0118 0.0086 0.0449 0.0109 0.0239 
ξ=0,3 

T=0,25 
sec Stiff edge 0.0075 0.0085 0.0057 0.0290 0.0045 0.0104 0.0037 

Flexible edge 0.0018 0.0018 0.0019 0.0015 0.0053 0.0018 0.0029 T=0,1 
sec Stiff edge 0.0008 0.0009 0.0007 0.0025 0.0004 0.0010 0.0003 

Flexible edge 0.0088 0.0088 0.0095 0.0063 0.0471 0.0083 0.0198 

 
ε=0,2 

ξ=0,5 
T=0,25 

sec Stiff edge 0.0064 0.0075 0.0048 0.0308 0.0029 0.0090 0.0022 
 
 
 



 
Table 3: Maximum edge displacement mean values [m] 

Plan-wise distribution parameters 
Optimal parameters System parameters 
εC=0.57 
λC=0.43 

εC=0.62 
λC=0.38 

εC=0 
λC=1 

εC=1 
λC=0 

εC=-1 
λC=0 

εC=0.5 
λC=0.5 

εC=-0.5 
λC=0.5 

Flexible edge 0.0042 0.0041 0.0041 0.0035 0.0056 0.0042 0.0059 T=0,1 
sec Stiff edge 0.0017 0.0017 0.0015 0.0017 0.0019 0.0017 0.0023 

Flexible edge 0.0260 0.0255 0.0256 0.0203 0.0406 0.0266 0.0422 
 

ξ=0,1 T=0,25 
sec Stiff edge 0.0151 0.0157 0.0114 0.0178 0.0159 0.0145 0.0187 

Flexible edge 0.0030 0.0029 0.0030 0.0025 0.0054 0.0030 0.0046 T=0,1 
sec Stiff edge 0.0011 0.0012 0.0009 0.0016 0.0011 0.0011 0.0013 

Flexible edge 0.0157 0.0152 0.0158 0.0117 0.0415 0.0162 0.0313 
ξ=0,3 

T=0,25 
sec Stiff edge 0.0095 0.0101 0.0062 0.0175 0.0089 0.0087 0.0096 

Flexible edge 0.0026 0.0025 0.0026 0.0021 0.0057 0.0026 0.0041 T=0,1 
sec Stiff edge 0.0010 0.0011 0.0008 0.0017 0.0008 0.0009 0.0009 

Flexible edge 0.0119 0.0116 0.0124 0.0088 0.0455 0.0123 0.0267 

 
ε=0,4 

ξ=0,5 
T=0,25 

sec Stiff edge 0.0074 0.0082 0.0047 0.0184 0.0064 0.0066 0.0065 
 

Table 4: Maximum edge displacement mean values [m] – Mexico City event 
Dissipation resources parameters 

System parameters Optimal 
H∞ norm 

Optimal 
H2  norm 

εC=0 
λC=1 

εC=1 
λC=0 

εC= -1 
λC=0 

εC=0.5 
λC=0.5 

εC= -0.5 
λC=0.5 

Flexible edge 0.6808 0.6866 0.6885 0.5098 1.8996 0.6682 1.4959 
ε=0,2  

Stiff edge 0.7401 0.8220 0.5047 1.2929 0.5611 0.8686 0.6513 
Flexible edge 0.5492 0.5471 0.5473 0.4299 0.7893 0.5230 0.7298 

 
ξ=0,1 

ε=0,4 
Stiff edge 0.5128 0.5231 0.4239 0.5888 0.4107 0.5407 0.4860 

Flexible edge 0.2628 0.2413 0.3379 0.2036 2.1492 0.2263 0.9333 
ε=0,2 

Stiff edge 0.3505 0.4229 0.2339 1.3399 0.2499 0.5561 0.2139 
Flexible edge 0.3091 0.2970 0.3376 0.2114 1.0047 0.2935 0.6543 

ξ=0,3 

ε=0,4 
Stiff edge 0.2690 0.2922 0.1927 0.5678 0.2269 0.3373 0.2430 

Flexible edge 0.1630 0.1447 0.2291 0.1261 2.2098 0.1258 0.7205 
ε=0,2 

Stiff edge 0.2440 0.3035 0.1522 1.4033 0.1581 0.3991 0.1076    
Flexible edge 0.2052 0.1972 0.2473 0.1381 1.1651 0.1883 0.5843 

 
T=2,2 

sec 

ξ=0,5 

ε=0,4 
Stiff edge 0.1638 0.1965 0.1188 0.5829 0.1626 0.2362 0.1515 

 

 
Figure 18: Maximum edge displacement comparison – Mexico 
City seismic event 

 
Figure 19: Maximum edge displacement comparison – Mexico 
City seismic event 



  CONCLUSION 
 
A new approach for defining plan-wise optimal arrangement of supplemental damping in asymmetric-plan 
systems has been carried out. The dynamic problem has been investigated in the state space representation 
showing that the supplemental dissipation resources work as a closed-loop feedback control action. This 
allowed for a better physical understanding of the problem and for the formulation of optimal plan-wise 
design criteria for additional damping devices showing that moving the damping centre through the 
flexible edge lead to swap the stiff role between the edges.  
Optimal  plan-wise  arrangement of supplemental damping, obtained by using ∞H   and  2H   norms, take 
place when supplemental damping centre is close to the mass center for low value of damping radius of 
gyration, while as this radius increases, the optimal location moves through the flexible edge. 
Such design provisions have been positively verified through wide numerical tests comparing the seismic 
response to synthetic and real excitations for optimal and non-optimal plan-wise distributions of 
supplemental damping. Such numerical analyses have also shown how an no optimal arrangement of 
extra-structural dissipation devices can result in maximum edge displacement four times greater than that 
which may be achieved through adopting the optimal solution.   

 
ACKNOWLEDGMENTS 

 
This work is part of the project of the Campania Regional Center of Competence “Analysis and 
Monitoring of the Environmental Risk” supported by the European Community on Provision 3.16. 
 

REFERENCES 
 
1. Doyle J.C., Glover K., Khargonekar P., Francis B., State-space solution to standart H2 and H∞ 

control problems. IEEE Transaction on Automatic Control, 34, 831-847, 1989. 
2. Eurocode 8, Design of structures for earthquake resistance - Part 1: General rules, seismic actions 

and rules for buildings, ENV 1998-1:2003, 2003. 
3. Goel RK, Effects of supplemental viscous damping on seismic response of asymmetric-plan system. 

Earthquake Engineering and Structural Dynamics 1998; 27:125-141 
4. Goel RK, Seismic behaviour of asymmetric-plan buildings with supplemental damping. Earthquake 

Engineering and Structural Dynamics 2000; 29:461-480 
5. Goel RK, Booker CA, Inelastic seismic response of asymmetric systems. Earthquake Engineering 

and Structural Dynamics 2001; 30:411-430 
6. Hejal, R. and Chopra, A., Earthquake response of torsionally-coupled buildings, Report 

UCB/EERC-87/20, December 1987 
7. Kan, C. L. and Chopra, A. K., Linear and nonlinear earthquake responses of simple torsionally 

coupled systems, Report UCB/EERC-79/03, February 1979 
8. Kreyszig E., Advanced Engineering Mathematics (7th edition), Wiley, New York, 1993 
9. Lin W-H, Chopra AK, Understanding and predicting effects of supplemental viscous damping on 

seismic response of asymmetric one-storey systems. Earthquake Engineering and Structural 
Dynamics 2001; 30:1475-1494 

10. Palazzo B., Petti L., Aspects of structural vibration passive control, International Journal of 
MECCANICA, Vol. 32 N.6 December 1997 

11. Pekau OA, Guimond R., Controlling seismic response of eccentric structures by friction dampers, 
Earthquake Engineering and Structural Dynamics, 1991; 20(6):505-52 


	Return to Main Menu
	=================
	Return to Browse
	=================
	Next Page
	Previous Page
	=================
	Full Text Search
	Search Results
	Print
	=================
	Help
	Exit DVD



